Next Article in Journal
sFlt-1 Levels as a Predicting Tool in Placental Dysfunction Complications in Multiple Pregnancies
Previous Article in Journal
Self-Cleavage of Human Chloride Channel Accessory 2 Causes a Conformational Shift That Depends on Membrane Anchorage and Is Required for Its Regulation of Store-Operated Calcium Entry
Previous Article in Special Issue
Prognostic Associations of Concomitant Antibiotic Use in Patients with Advanced NSCLC Treated with Atezolizumab: Sensitivity Analysis of a Pooled Investigation of Five Randomised Control Trials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Hope and Challenges: Immunotherapy in EGFR-Mutant NSCLC Patients

1
Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
2
Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
Biomedicines 2023, 11(11), 2916; https://doi.org/10.3390/biomedicines11112916
Submission received: 5 September 2023 / Revised: 24 October 2023 / Accepted: 26 October 2023 / Published: 28 October 2023

Abstract

:
EGFR tyrosine kinase inhibitors (TKIs) are the preferred initial treatment for non-small cell lung cancer (NSCLC) patients harboring sensitive EGFR mutations. Sadly, remission is transient, and no approved effective treatment options are available for EGFR-TKI-advanced EGFR-mutant NSCLCs. Although immunotherapy with immune checkpoint inhibitors (ICIs) induces sustained cancer remission in a subset of NSCLCs, ICI therapy exhibits limited activity in most EGFR-mutant NSCLCs. Mechanistically, the strong oncogenic EGFR signaling in EGFR-mutant NSCLCs contributes to a non-inflamed tumor immune microenvironment (TIME), characterized by a limited number of CD8+ T cell infiltration, a high number of regulatory CD4+ T cells, and an increased number of inactivated infiltrated T cells. Additionally, EGFR-mutant NSCLC patients are generally non-smokers with low levels of PD-L1 expression and tumor mutation burden. Promisingly, a small population of EGFR-mutant NSCLCs still durably respond to ICI therapy. The hope of ICI therapy from pre-clinical studies and clinical trials is reviewed in EGFR-mutant NSCLCs. The challenges of application ICI therapy in EGFR-mutant NSCLCs are also reviewed.

1. Introduction

Lung cancer is the leading cause of cancer-related death worldwide [1]. Non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancers. Up to 50% of NSCLCs in Eastern Asia and 8–16% of NSCLCs in the West had epidermal growth factor receptor (EGFR) mutations [2,3,4]. EGFR L858R missense mutation and in-frame exon 19 deletions (19del) were the most common mutations found in EGFR-mutant NSCLCs, accounting for ~85% of all EGFR-activating mutations [3,4,5,6]. NSCLCs with EGFR L858R or 19del were sensitive to initial EGFR tyrosine kinase inhibitor (TKI) therapy [7,8]. Relative to traditional chemotherapy, EGFR-TKI therapy significantly extended progression-free survival (PFS), overall survival (OS), and improved quality of life due to relatively low toxicity for NSCLC patients harboring sensitive EGFR mutations [9,10,11,12,13,14,15,16,17,18]. EGFR-TKI therapy was the first-line treatment for NSCLC patients with sensitive EGFR mutations in the National Comprehensive Cancer Network (NCCN) guidelines [19]. Unfortunately, the remission was transient for only nine months to around two years [9,10,11,12,13,14,15,16,20]. With the universal application of EGFR TKIs to treat the EGFR-mutant NSCLCs, EGFR-TKI resistance represents an unmet clinical problem. So far, no approved effective treatment options are available for EGFR-TKI-advanced EGFR-mutant NSCLCs, and these patients need chemotherapy-consisting therapy. However, the clinical benefit of chemotherapy-consisting therapy is modest, with a high potential for toxicity.
Other than targeted therapies, immunotherapy with immune checkpoint inhibitors (ICIs), represented by anti-programmed cell death-(ligand) 1 [anti-PD-(L)1] therapy, had demonstrated improved survival rates, long-term survival benefits, and a favorable safety profile over chemotherapy in a subset of advanced NSCLCs [21,22,23,24,25,26,27]. So far, there are six ICIs (ipilimumab, nivolumab, pembrolizumab, atezolizumab, avelumab, and durvalumab) approved by FDA as first- or second-line treatments for advanced NSCLCs but not suggested for patients with sensitive EGFR mutations [28]. Relative to NSCLCs with the EGFR wild-type, ICI therapy failed to improve survival benefits in most EGFR-mutant NSCLCs [29,30,31,32,33,34]. Clinical benefit from ICI therapy was associated with inflamed tumors with infiltrated immune cells, high tumor mutation burden (TMBs), and increased expression of PD-L1 on tumor cells [35]. However, the oncogenic EGFR signaling in lung cancer with EGFR mutations contributed to a non-inflamed tumor immune microenvironment (TIME) characterized by a limited infiltration of CD8+ T cells [36,37,38], a high number of infiltrations of regulatory CD4+ T cells [38], and an increased number of inactivated infiltrated T cells [39]. Additionally, EGFR-mutant NSCLCs were generally non-smokers [34] with low PD-L1 expression [36,37,39] and with a low tumor mutation burden [36,37]. The mechanisms mediating durable effects in a small proportion of EGFR-mutant NSCLCs were worth additional investigation [40].

2. Hope

2.1. The Efficacy of Osimertinib for EGFR-Mutant NSCLCs Is Independent of PD-L1 Levels

Osimertinib treatment decreased PD-L1 expression on EGFR-mutant NSCLC cell lines by reducing PD-L1 at the mRNA level and promoting PD-L1 degradation with proteasomes [41]. Interestingly, the median PFS (mPFS) of osimertinib was similar in PD-L1-negative patients (TC < 1%) (18.9 months) and in PD-L1-positive patients (TC ≥ 1%) (18.4 months) [42]. The data suggested that the osimertinib efficacy was independent of PD-L1 status in EGFR-mutant NSCLCs.

2.2. Subtypes of EGFR Alterations May Be Sensitive to ICI Therapy

ICI efficacy varies in the subtypes of EGFR alterations in EGFR-mutant NSCLCs. EGFR wild-type and L858R NSCLCs had a similar outcome, while EGFR 19del NSCLCs had a worse outcome when treated with ICI therapy [43]. Other groups also supported the findings that ICI therapy alone or in combination exhibited improved survival outcomes in the EGFR L858R group relative to the EGFR 19del group [44,45,46,47]. One of the possible explanations was that EGFR L858R-mutant tumors were more likely to have a significantly increased CD8+ T cell infiltration than EGFR 19del tumors [39]. Additionally, EGFR T790M-negative patients were more likely to benefit from ICI therapy than EGFR T790M-positive patients [48,49], as the EGFR T790M-negative tumors had higher PD-L1 expression than the EGFR T790M-positive tumors [48,50]. Other than the common mutations, 10–20% of EGFR-mutant NSCLCs harbor non-EGFR L858R or 19del mutations, known as uncommon mutations, such as S768I and G719X [5,37,51,52]. Relative to common EGFR mutations, uncommon EGFR-mutant tumors were likely to express high PD-L1 (≥50%), high TMB, and a high infiltration of CD8+ T cells [37,49,52,53]. Of the uncommon EGFR-mutant NSCLCs with dual high PD-L1 expression and abundant CD8+ T cell infiltration, 36.7% showed a favorable response to ICI therapy [49,53].

2.3. Heavily Pre-Treated EGFR-Mutant NSCLCs Are Likely to Respond to ICI Therapy Relative to Treatment-Naïve EGFR-Mutant NSCLCs

EGFR-TKI treatment results in dynamic changes in host immunity. EGFR-TKI-advanced EGFR-mutant NSCLC patients trended to have concurrent high levels of PD-L1 expression and a high number of CD8+ T cell infiltration [34]. The proportion of EGFR-mutant NSCLCs with high PD-L1 (≥50%) increased from 14% to 28% after EGFR-TKI treatment [54]. Heavily pre-treated EGFR-TKI-advanced EGFR-mutant NSCLCs with high expression of PD-L1 (≥25% of tumor cells) had a better median OS (mOS) than that with low expression of PD-L1 (<25% of tumor cells) (13.3 vs. 9.9 months) after ICI therapy in a Phase II ATLANTIC study [29,55]. Impressively, two of five EGFR-TKI-advanced EGFR-mutant NSCLCs with increased PD-L1 after an EGFR blockade showed a durable response to subsequent ICI therapy [54]. Overall, EGFR-TKI-advanced EGFR-mutant NSCLCs may be the groups responding to ICI therapy. However, ICI therapy immediately followed by EGFR TKI therapy may cause immune-related adverse effects (irAEs), as discussed below.

2.4. IrAEs Observed during ICI Therapy Are Associated with Efficacy

A growing body of literature supports the theory that the occurrence of irAEs during ICI therapy is associated with improved treatment efficacy. A retrospective analysis proved that the 270 metastatic NSCLC patients who experienced irAEs after ICI therapy had improved PFS, overall response rate (ORR), disease control rate (DCR), and OS relative to those who did not experience irAEs (PFS: 5.2 vs. 1.97 months; ORR: 22.9% vs. 5.7%; DCR: 76% vs. 58%; OS: not reached vs. 8.21 months) [56]. Similarly, secondary analysis of the Phase I CA209-003 clinical trial conducted at 13 US medical centers led to the finding that the mOS was significantly longer among patients with irAEs of any grade (19.8 months; 95% CI, 13.8–26.9 months) or grade 3 or more (20.3 months; 95% CI, 12.5–44.9 months) compared with those without treatment-related AEs (5.8 months; 95% CI, 4.6–7.8 months) (p < 0.001 for both comparisons based on hazard ratios) [21]. Another retrospective study found that around 43.6% of 195 advanced NSCLCs treated with ICI therapy experienced irAEs, and those NSCLCs with irAEs had significantly longer mPFS (5.7 s. 2.0 months), PFS (8.5 vs. 4.6 months), mOS (17.8 vs. 4.0 months), and OS (26.8 vs. 11.9 months) than those who did not experience irAEs [57]. In a prospective study with 43 advanced NSCLCs, earlier irAEs were associated with better objective response and disease control rates than those without irAEs after ICI therapy (37% vs. 17% and 74% vs. 29%, respectively) [58]. Another prospective study with 76 advanced NSCLCs also found that NSCLCs who experienced irAEs within two weeks of beginning ICI therapy had significantly longer mPFS than those who did not (5.0 vs. 2.0 months) [59]. However, it is challenging to predict irAEs, and severe irAEs may be life-threatening. A further understanding of irAEs during the application of immunotherapy is necessary.

2.5. Positive Clinical Studies Support the Use of ICI Therapy in EGFR-Mutant NSCLCs

Even though the ORR for KRAS-mutant NSCLCs to ICI therapy was around 20%, 7% of EGFR-mutant NSCLCs responded to single-agent ICI therapy [40]. A female NSCLC patient harboring an EGFR L858R mutation treated with ICI therapy resulted in a prolonged PFS (~23 months) [60]. Anti-PD-1/PD-L1 antibody-based ICI therapy, combined with other checkpoint inhibitors or platinum-based chemotherapy, has been widely applied in advanced lung cancers to achieve further improved outcomes. Yang et al. observed that chemo-immunotherapy was better than immunotherapy alone for EGFR-TKI-advanced EGFR-mutant NSCLCs (mPFS: 3.42 vs. 1.58 months, p = 0.027) [61]. A retrospective study of 122 EGFR-TKI-advanced EGFR-mutant NSCLC patients, especially with EGFR L858R mutation, revealed better mPFS (5.0 vs. 2.2 months) and mOS (14.4 vs. 7 months) in ICI-based combination therapy than that in ICI alone [45]. Furthermore, front-line ICI therapy reached better survival benefits than later-line ICI therapy [45]. In another retrospective study, chemo-immunotherapy also achieved better outcomes than ICI therapy alone for mPFS (4.3 vs. 1.5 months), mOS (14.92 vs. 7.41 months), and ORR (23.1% vs. 3.1%) in the EGFR-TKI-advanced EGFR-mutant NSCLCs, respectively [62]. Patients with EGFR L858R consistently exhibited a trend of longer mPFS (7.6 vs. 5.4 months) and mOS (23.5 vs. 18.0 months) vs. patients with EGFR 19del receiving chemo-immunotherapy [46,62].
VEGF was associated with NSCLC progression, recurrence, and metastasis [63]. Complimentarily with EGFR pathways, VEGF also promoted an immunosuppressive TIME [63], and anti-angiogenic therapy reprogrammed the TIME from immunosuppression to immune-supportive status [64,65]. Anti-angiogenic drugs plus chemotherapy were the most common regimen for EGFR-TKI-advanced NSCLCs [66]. Chemo-immunotherapy achieved a higher ORR than chemo-anti-angiogenesis therapy (29.5% vs. 13%) for EGFR-TKI-advanced NSCLCs [66]. Longer PFS was also associated with earlier anti-angiogenic drug applications in chemo-immunotherapy patients [61]. In a Phase III Impower150 study, chemo-immuno-anti-angiogenesis therapy was superior to either chemo-immunotherapy or chemo-anti-angiogenesis therapy on mPFS (10.2, 6.9, 6.9 months) and mOS (29.4, 19.0, 18.1 months) in a subgroup of EGFR-TKI-advanced EGFR-mutant NSCLCs [67]. However, around 66.7% of chemo-immuno-anti-angiogenesis patients experienced grade 3/4 treatment-related AEs [67]. In a Phase II clinical trial, 40 EGFR-TKI-advanced EGFR-mutant NSCLC patients were enrolled for chemo-immuno-anti-angiogenesis therapy, resulting in impressive mPFS (9.4 months), one-year OS (72.5%), and ORR (62.5%), with only 37.5% reporting irAEs [68].

3. Challenges

3.1. PD-L1 Has Limited Biomarker Roles in Immunotherapy in EGFR-Mutant NSCLCs

Expression of PD-1 on activated T cells, B cells, and natural killer (NK) cells blunted the immune response through interaction with its major ligand PD-L1, expressed on tumor cells and infiltrating immune cells [69,70,71]. Disruption of the PD-1/PD-L1 interaction reactivated the anti-tumor T cell-mediated cell cytotoxicity [69,70,71]. However, researchers did not consistently agree on PD-L1 expression levels in EGFR-mutant NSCLCs. In earlier studies, oncogenic EGFR signaling upregulated PD-L1 expression in EGFR-mutant NSCLC cell lines through the activated PI3K-AKT, MAPK-ERK, and/or JAK-STAT3 pathway [72,73,74,75,76]. EGFR TKI treatment decreased PD-L1 expression [72,73]. Some studies reported no correlation between PD-L1 expression and EGFR mutation status [77,78]. In more recent studies from clinical samples, the EGFR-mutant NSCLC group expressed significantly lower PD-L1 than the EGFR wild-type NSCLC group [36,79,80,81,82,83,84,85,86,87]. A pooled analysis of 15 public studies also suggested that EGFR-mutant NSCLCs had decreased PD-L1 expression [36]. PD-L1 expression was more accentuated at portions with higher PD-L1 expression in EGFR-mutant vs. EGFR wild-type group (51% vs. 68% at TC ≥ 1%, 8% vs. 35% at TC ≥ 25% and 5% vs. 28% at TC ≥ 50%) [42]. The EGFR blockade upregulated PD-L1 expression in EGFR-mutant NSCLCs [34,54,88].
PD-L1 was a predictive and prognostic biomarker for response to immunotherapy in NSCLCs [25]. Several clinical trials reported the association between PD-L1 expression and clinical outcomes in NSCLC patients [25,33,89]. However, the predictive and prognostic roles for PD-L1 in immunotherapy were limited in EGFR-mutant NSCLCs [39]. ICI therapy did not show clinical benefits in TKI-naïve EGFR-mutant NSCLCs, even with high PD-L1 expression. A Phase II trial of ICI therapy in treatment-naïve EGFR-mutant NSCLCs was discontinued due to lack of efficacy despite 73% of enrolled patients with more than 50% PD-L1 expression [33,89]. Patients with low or even undetectable PD-L1 expression also had improved survival with ICI therapy vs. chemotherapy [25]. Cross-comparison is sometimes challenging due to various immunohistochemical (IHC) assays with different scoring systems and cutoff values [90,91], making a universal assay for assessing PD-L1 expression with appropriate cutoff points important.
PD-L1 expression levels might not directly reflect the underlying T cell activity in EGFR-mutant NSCLCs [39]. PD-L1 was expressed in tumor and circulating immune cells, such as dendritic cells and myeloid-derived immune suppressor cells [92,93]. In POPLAR and OAK trials, assessing PD-L1 expression in tumor cells and tumor-infiltrating immune cells led to the finding that higher PD-L1 levels in both tumor cells and tumor-infiltrating immune cells were associated with improved patient survival after ICI therapy [25,94]. Patients with more than 30% PD-L1+CD11b+ myeloid cells before ICI therapy showed a 50% superior response rate [95]. Not only PD-L1 could bind with PD-1 to negatively regulate T cell activity, PD-L2 was another ligand for PD-1 with 2-6-fold higher affinity to PD-1 than PD-L1 [96,97]. EGFR signaling also regulated PD-L2 expression in NSCLCs [98].

3.2. TMB Is Low in EGFR-Mutant NSCLCs

TMB is the total number of gene alterations, including substitutions, insertions, and deletions. As TMB was associated with high levels of neoantigens [99], NSCLC patients with high TMB responded better to ICI therapy [100]. However, EGFR mutations were associated with decreased tumor mutation burden compared with tumors with wild-type EGFR [36,37,101]. Older people had increased TMB [99]. EGFR 19del was commonly found in the young, while EGFR L858R predominated in the elderly [5]. Consistently, lung tumors with EGFR 19del harbored a lower tumor mutation burden than EGFR L858R lung tumors [43,101]. In contrast to NSCLCs harboring common EGFR mutations, patients with uncommon EGFR mutations, especially the G719X mutation, showed the highest TMB (7.5 mutations/Mb), followed by EGFR exon 20 ins (4.6 mutations/Mb), EGFR T790M (4.05 mutations/Mb), EGFR L858R (3.4 mutations/Mb), and EGFR 19del (3.1 mutations/Mb) (p < 0.05) [37]. Like PD-L1, high TMB was detected in responders and non-responders receiving ICI therapy [102], indicating TMB was not the only determinant for ICI response.

3.3. EGFR-Mutant NSCLCs Are Non-Smokers, Generally

Tobacco is a known risk factor for lung cancer. However, PD-L1 positivity was also associated with smoking history [79,80,81], and smokers were more likely to benefit from ICI therapy [103,104,105]. Although EGFR mutations are more enriched in never-smokers, EGFR mutations in NSCLCs were also found in ever-smokers [6,106,107,108]. Compared with common EGFR mutations, uncommon EGFR mutations were significantly associated with smoking [109]. These findings further support the above-discussed findings that the NSCLCs with uncommon EGFR mutations were more likely to respond favorably to ICI therapy than NSCLCs with common EGFR mutations [49,53].

3.4. EGFR-Mutant NSCLCs Have a Lymphocyte-Depleted TIME

Crosstalk between cancer cells and TIME is a hot research topic with the rapid development of immunotherapy in cancers, including lung cancer. Based on the presence or absence of tumor-infiltrating lymphocytes (TILs), there were four different types of TIME in tumors: TIL+PD-L1+, TIL-PD-L1, TIL-PD-L1+, and TIL+PD-L1. However, only TIL+PD-L1+ tumors with lymphocyte infiltration and PD-L1 expression responded to ICI therapy [110]. To better reflect the complex relationship of the tumor, host, and environmental factors, tumors were also classified into the following types: the immune-desert tumor, the immune-excluded tumor, and the inflamed tumor [111]. The immune-desert and immune-excluded tumors were naturally resistant to ICI therapy. EGFR-mutant tumors had a “lymphocyte depletion” phenotype [34,36,38,112,113], characterized by a pronounced lack of the infiltration of CD8+ T cells [34,36,38,114], suggesting an immunosuppressive TIME. Single-cell RNA sequencing further confirmed the low T cell infiltration in the TIME of treatment-naïve EGFR-mutant NSCLCs [115]. Additionally, EGFR-mutant NSCLC tumors had markedly less crosstalk between T cells and other cell types via the PD-1/PD-L1 pathway than EGFR-negative NSCLCs [116].
Regulatory T cells (Tregs), especially the Forkhead box P3 (Foxp3)+ T cells, played essential roles in immune suppression [117]. EGFR-mutant NSCLC tumors showed a high infiltration of Foxp3+CD4+ regulatory T cells [38,118,119]. Retrospective immunohistochemistry analysis of 164 EGFR-mutant and 159 EGFR wild-type tumors revealed that the expression of CD3, CD4, and Foxp3 was significantly higher in EGFR-mutant NSCLC tumors than that in the EGFR wild-type NSCLC tumors [120]. The EGFR blockade increased intratumor CD8+ T cells and decreased Tregs infiltration in the TIME [38,121,122,123,124]. Like Tregs, myeloid-derived suppressor cells (MDSCs), known to suppress immune response [125,126,127], were also elevated in EGFR-mutant NSCLC tumors [124].
Tumors without detectable EGFR expression responded to EGFR inhibition [128], implicating that EGFR blockade potentially influenced the tumor-specific immune responses. Deficient Egfr in murine myeloid cells decreased carcinogenesis, suggesting a tumor-promoting function by myeloid cell-intrinsic EGFR signaling [129]. Macrophages in the TIME expressed EGFR [129,130]. EGF secreted by tumor cells promoted an M2 polarization of tumor-associated macrophages (TAMs), associated with the suppression of cytotoxic T cell function [131]. In contrast to M2-type TAMs, higher infiltrated M1-type TAMs found in NSCLC with uncommon EGFR mutations (G719X and exon 20s) correlated with longer PFS than common EGFR mutations [37].
EGFR-mutant NSCLC cell lines significantly downregulated MHC class I molecule expression compared with the EGFR wild-type NSCLC cell lines in response to IFNγ [132]. PI3K-AKT and MAPK pathways, the primary downstream signaling pathways of EGFR [133,134], also suppressed MHC class I molecule expression [132,135,136,137,138]. The data suggested that the downregulated MHC class I molecules were through abnormal EGFR signaling in EGFR-mutant NSCLCs. Indeed, EGFR inhibition augmented the expression of MHC class I molecules [139,140,141].

3.5. EGFR-Mutant NSCLCs Respond Poorly to ICI Therapy Alone or in Combination

EGFR-mutant NSCLCs generally responded poorly to ICI therapy [30,34]. In the Phase III CheckMate-057 clinical trial, subgroup analysis of the patients with activating EGFR mutations revealed no PFS and OS benefit from ICI therapy [23]. Subgroup analysis of Phase III KEYNOTE-010 clinical trial data showed no improved OS benefit from ICI therapy in EGFR-mutant NSCLCs [27]. Similarly, EGFR-mutant NSCLCs did not achieve prolonged OS from ICI therapy vs. chemotherapy in Phase III OAK clinical trial [25]. A retrospective analysis showed that EGFR mutations were associated with low clinical response to ICI blockade in NSCLCs [34]. It was confirmed in a pooled analysis from three clinical trials (CheckMate-057, KEYNOTE-010, and POPLAR) that the EGFR wild-type but not the EGFR-mutant NSCLCs had prolonged OS [31]. Combining data from five trials (CheckMate-017, CheckMate-057, KEYNOTE-010, OAK, and POPLAR), Lee et al. additionally confirmed no prolonged OS in EGFR-mutant NSCLCs receiving ICI therapy relative to chemotherapy [32]. A Phase II trial was halted due to lack of efficacy and two deaths within six months of enrollment to ICI therapy in treatment-naïve EGFR-mutant patients [33]. One of the two deaths was from pneumonitis [33]. In the Phase II WJOG8515L clinical trial, nivolumab was inferior to the chemotherapy with worse mPFS (1.7 vs. 5.6 months) and ORR (9.6% vs. 36%) in EGFR-TKI-advanced EGFR-mutant NSCLCs without a T790M mutation [142]. In a retrospective study with 58 EGFR-mutant NSCLCs, patients who responded to prior EGFR TKIs for more than ten months displayed significantly shorter PFS to ICI therapy compared with those who responded to prior EGFR TKIs for less than ten months (1.6 vs. 1.9 months, p = 0.009) [143]. Adding ICI therapy to chemotherapy was associated with worse survival than platinum doublet chemotherapy alone in osimertinib-advanced EGFR-mutant NSCLCs [144]. Phase III IMpower130 clinical trial also found no benefit in the EGFR-mutant subgroup treated with ICI therapy and chemotherapy combined vs. chemotherapy alone [145]. Based on all these negative findings, the National Comprehensive Cancer Network (NCCN) clinical practice guidelines of NSCLC (version 4, 2021) did not recommend immunotherapy for treating EGFR-mutant NSCLCs.

3.6. Safety Concerns and Lower Clinical Outcomes Regarding EGFR TKI and ICI Combined for the Treatment of EGFR-Mutant NSCLCs

Compared with chemotherapy, ICI therapy generally correlates with fewer adverse reactions. However, ICI therapy was associated with immune-related adverse events (irAEs), probably due to the disruption of immunologic homeostasis [146]. There is a growing concern that a combination of EGFR TKIs, especially osimertinib or gefitinib, and ICI therapy may be associated with an increased risk of toxicity. In the Phase 1/2 KEYNOTE-021 clinical trial, five of seven untreated stage IIIB/IV EGFR-mutant NSCLC patients (71.4%) treated with ICI therapy plus gefitinib had grade 3/4 liver toxicity, leading to permanent treatment discontinuation in four patients [147]. A lung adenocarcinoma patient bearing EGFR 19del treated with osimertinib following ICI therapy had Stevens–Johnson syndrome and hepatotoxicity [148]. In a Phase Ib TATTON clinical trial, 38.5–60% of EGFR-TKI-advanced EGFR-mutant NSCLCs experienced grade 3/4 irAEs, and 30–40% were discontinued to osimertinib and ICI therapy combined due to irAEs [149]. Concurrent osimertinib and ICI therapy were associated with an increased incidence of irAEs, leading to the early termination of a Phase III CAURAL recruitment [150]. Interstitial lung disease (ILD) was a severe adverse response to EGFR TKIs [151]. Osimertinib treatment that immediately followed prior ICI therapy also caused a high incidence of ILD [152,153]. A meta-analysis of eight studies further concluded that a higher chance of irAEs was observed in EGFR-TKI plus ICI therapy in EGFR-TKI-advanced EGFR-mutant NSCLCs [154].
Other than toxicity concerns, worse clinical outcomes were seen in EGFR-mutant NSCLCs treated with EGFR TKI and ICI combined than those treated with EGFR TKI alone. The Phase Ib TATTON clinical trial showed that osimertinib and ICI combination therapy only achieved 43% ORR in the EGFR-TKI-advanced EGFR-mutant NSCLCs [149]. In the Phase III CAURAL clinical trial, decreased ORR was also seen in the osimertinib plus ICI group vs. osimertinib alone [150]. Similarly, the ORR in gefitinib plus ICI therapy (14.3%) was much worse than the 55% RR in gefitinib alone for EGFR-mutant NSCLC patients [155]. In contrast to gefitinib plus ICI therapy, the untreated stage IIIB/IV EGFR-mutant NSCLCs tolerated erlotinib plus ICI therapy and better ORR (41.7%) in the KEYNOTE-021 [147]. The 41.7% ORR was much lower than erlotinib alone (~70%) [156,157].

3.7. Hyper-Progressive Disease (HPD)

Hyper-progressive disease (HPD), characterized by unexpected fast tumor enlargement, both at rate and volume and early fatality of patients [158,159], was observed in 13.8% of NSCLC patients during treatment with ICI therapy in a retrospective study [160]. By contrast, around 20% of EGFR-mutant NSCLCs showed risk of HPD after ICI therapy [159].

4. Conclusions

So far, ICI-based immunotherapy is ineffective for treatment-naïve EGFR-mutant NSCLC patients. Whether EGFR-TKI-advanced EGFR-mutant NSCLC patients may benefit from the ICI-based immunotherapy is worth further investigation, considering there is no approved effective treatment for this population. IrAEs will be an unmet roadblock during the evaluation. IrAEs may indicate the immune system is awakened. However, it is hard to predict irAEs, and some strong irAEs, if not controlled, may be deadly. A better understanding of the relationship of irAEs and efficacy may be helpful for future clinical monitoring during immunotherapy application. Other than irAEs, many other questions are still unsolved. Who may benefit from the immunotherapy: PD-L1 TPS > 50%, smoking history, high tumor mutation burden, high CD8+ T cells, and/or specific subtypes of EGFR mutations? Immunotherapy is not limited to anti-PD-1/PD-L1 monoclonal antibodies and could go beyond them. Additionally, the combination of ICI-based immunotherapy and several other treatment modalities is under active investigation.

Funding

The review was supported by Emory University Lung Cancer SPORE, P50CA217691, funded by the National Cancer Institute (NCI) of the National Institute of Health. The content is solely the responsibility of the author and does not necessarily represent the official views of the NIH.

Institutional Review Board Statement

The content is solely the responsibility of the author and does not necessarily represent the official views of the NIH.

Informed Consent Statement

All discussed human-related studies were all from published studies, and related published studies were referenced behind each study.

Data Availability Statement

Not applicable.

Conflicts of Interest

Dan Yan is one of the inventors on a patent (number US10709708B2 (to Emory University)) describing the use of MRX-2843 in combination with osimertinib.

References

  1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
  2. Barlesi, F.; Mazieres, J.; Merlio, J.P.; Debieuvre, D.; Mosser, J.; Lena, H.; Ouafik, L.; Besse, B.; Rouquette, I.; Westeel, V.; et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: Results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 2016, 387, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
  3. Graham, R.P.; Treece, A.L.; Lindeman, N.I.; Vasalos, P.; Shan, M.; Jennings, L.J.; Rimm, D.L. Worldwide Frequency of Commonly Detected EGFR Mutations. Arch. Pathol. Lab. Med. 2018, 142, 163–167. [Google Scholar] [CrossRef] [PubMed]
  4. Zhang, Y.L.; Yuan, J.Q.; Wang, K.F.; Fu, X.H.; Han, X.R.; Threapleton, D.; Yang, Z.Y.; Mao, C.; Tang, J.L. The prevalence of EGFR mutation in patients with non-small cell lung cancer: A systematic review and meta-analysis. Oncotarget 2016, 7, 78985–78993. [Google Scholar] [CrossRef] [PubMed]
  5. Evans, M.; O’Sullivan, B.; Smith, M.; Hughes, F.; Mullis, T.; Trim, N.; Taniere, P. Large-Scale EGFR Mutation Testing in Clinical Practice: Analysis of a Series of 18,920 Non-Small Cell Lung Cancer Cases. Pathol. Oncol. Res. POR 2019, 25, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
  6. Shigematsu, H.; Lin, L.; Takahashi, T.; Nomura, M.; Suzuki, M.; Wistuba, I.I.; Fong, K.M.; Lee, H.; Toyooka, S.; Shimizu, N.; et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J. Natl. Cancer Inst. 2005, 97, 339–346. [Google Scholar] [CrossRef] [PubMed]
  7. Paez, J.G.; Janne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500. [Google Scholar] [CrossRef]
  8. Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004, 350, 2129–2139. [Google Scholar] [CrossRef]
  9. Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef]
  10. Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 2010, 362, 2380–2388. [Google Scholar] [CrossRef]
  11. Mitsudomi, T.; Morita, S.; Yatabe, Y.; Negoro, S.; Okamoto, I.; Tsurutani, J.; Seto, T.; Satouchi, M.; Tada, H.; Hirashima, T.; et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): An open label, randomised phase 3 trial. Lancet Oncol. 2010, 11, 121–128. [Google Scholar] [CrossRef] [PubMed]
  12. Zhou, C.; Wu, Y.L.; Chen, G.; Feng, J.; Liu, X.Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011, 12, 735–742. [Google Scholar] [CrossRef] [PubMed]
  13. Wu, Y.L.; Zhou, C.; Liam, C.K.; Wu, G.; Liu, X.; Zhong, Z.; Lu, S.; Cheng, Y.; Han, B.; Chen, L.; et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: Analyses from the phase III, randomized, open-label, ENSURE study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2015, 26, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
  14. Sequist, L.V.; Yang, J.C.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.M.; Boyer, M.; et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 3327–3334. [Google Scholar] [CrossRef] [PubMed]
  15. Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef] [PubMed]
  16. Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef] [PubMed]
  17. Cohen, M.H.; Johnson, J.R.; Chen, Y.F.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Erlotinib (Tarceva) tablets. Oncologist 2005, 10, 461–466. [Google Scholar] [CrossRef]
  18. Janne, P.A.; Yang, J.C.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 1689–1699. [Google Scholar] [CrossRef]
  19. Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 2.2021. J. Natl. Compr. Cancer Netw. JNCCN 2021, 19, 254–266. [Google Scholar] [CrossRef]
  20. Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef]
  21. Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; et al. Five-Year Survival and Correlates Among Patients with Advanced Melanoma, Renal Cell Carcinoma, or Non-Small Cell Lung Cancer Treated With Nivolumab. JAMA Oncol. 2019, 5, 1411–1420. [Google Scholar] [CrossRef]
  22. Brahmer, J.; Reckamp, K.L.; Baas, P.; Crino, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [PubMed]
  23. Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
  24. Gandhi, L.; Rodriguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
  25. Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef] [PubMed]
  26. Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
  27. Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Perez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
  28. Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef]
  29. Garassino, M.C.; Cho, B.C.; Kim, J.H.; Mazieres, J.; Vansteenkiste, J.; Lena, H.; Corral Jaime, J.; Gray, J.E.; Powderly, J.; Chouaid, C.; et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 521–536. [Google Scholar] [CrossRef]
  30. Mazieres, J.; Drilon, A.; Lusque, A.; Mhanna, L.; Cortot, A.B.; Mezquita, L.; Thai, A.A.; Mascaux, C.; Couraud, S.; Veillon, R.; et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: Results from the IMMUNOTARGET registry. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2019, 30, 1321–1328. [Google Scholar] [CrossRef]
  31. Lee, C.K.; Man, J.; Lord, S.; Links, M.; Gebski, V.; Mok, T.; Yang, J.C. Checkpoint Inhibitors in Metastatic EGFR-Mutated Non-Small Cell Lung Cancer-A Meta-Analysis. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2017, 12, 403–407. [Google Scholar] [CrossRef] [PubMed]
  32. Lee, C.K.; Man, J.; Lord, S.; Cooper, W.; Links, M.; Gebski, V.; Herbst, R.S.; Gralla, R.J.; Mok, T.; Yang, J.C. Clinical and Molecular Characteristics Associated with Survival Among Patients Treated With Checkpoint Inhibitors for Advanced Non-Small Cell Lung Carcinoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 210–216. [Google Scholar] [CrossRef] [PubMed]
  33. Lisberg, A.; Cummings, A.; Goldman, J.W.; Bornazyan, K.; Reese, N.; Wang, T.; Coluzzi, P.; Ledezma, B.; Mendenhall, M.; Hunt, J.; et al. A Phase II Study of Pembrolizumab in EGFR-Mutant, PD-L1+, Tyrosine Kinase Inhibitor Naive Patients with Advanced NSCLC. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2018, 13, 1138–1145. [Google Scholar] [CrossRef]
  34. Gainor, J.F.; Shaw, A.T.; Sequist, L.V.; Fu, X.; Azzoli, C.G.; Piotrowska, Z.; Huynh, T.G.; Zhao, L.; Fulton, L.; Schultz, K.R.; et al. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. Clin. Cancer Res. 2016, 22, 4585–4593. [Google Scholar] [CrossRef] [PubMed]
  35. Kim, J.M.; Chen, D.S. Immune escape to PD-L1/PD-1 blockade: Seven steps to success (or failure). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2016, 27, 1492–1504. [Google Scholar] [CrossRef] [PubMed]
  36. Dong, Z.Y.; Zhang, J.T.; Liu, S.Y.; Su, J.; Zhang, C.; Xie, Z.; Zhou, Q.; Tu, H.Y.; Xu, C.R.; Yan, L.X.; et al. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology 2017, 6, e1356145. [Google Scholar] [CrossRef] [PubMed]
  37. Ma, T.; Jiao, J.; Huo, R.; Li, X.; Fang, G.; Zhao, Q.; Liu, W.; Han, X.; Xi, C.; Wang, Y.; et al. PD-L1 expression, tumor mutational burden, and immune cell infiltration in non-small cell lung cancer patients with epithelial growth factor receptor mutations. Front. Oncol. 2022, 12, 922899. [Google Scholar] [CrossRef]
  38. Sugiyama, E.; Togashi, Y.; Takeuchi, Y.; Shinya, S.; Tada, Y.; Kataoka, K.; Tane, K.; Sato, E.; Ishii, G.; Goto, K.; et al. Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-mutated non-small cell lung cancer. Sci. Immunol. 2020, 5, eaav3937. [Google Scholar] [CrossRef]
  39. Toki, M.I.; Mani, N.; Smithy, J.W.; Liu, Y.; Altan, M.; Wasserman, B.; Tuktamyshov, R.; Schalper, K.; Syrigos, K.N.; Rimm, D.L. Immune Marker Profiling and Programmed Death Ligand 1 Expression Across NSCLC Mutations. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2018, 13, 1884–1896. [Google Scholar] [CrossRef]
  40. Guaitoli, G.; Tiseo, M.; Di Maio, M.; Friboulet, L.; Facchinetti, F. Immune checkpoint inhibitors in oncogene-addicted non-small cell lung cancer: A systematic review and meta-analysis. Transl. Lung Cancer Res. 2021, 10, 2890–2916. [Google Scholar] [CrossRef]
  41. Jiang, X.M.; Xu, Y.L.; Huang, M.Y.; Zhang, L.L.; Su, M.X.; Chen, X.; Lu, J.J. Osimertinib (AZD9291) decreases programmed death ligand-1 in EGFR-mutated non-small cell lung cancer cells. Acta Pharmacol. Sin. 2017, 38, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
  42. Brown, H.; Vansteenkiste, J.; Nakagawa, K.; Cobo, M.; John, T.; Barker, C.; Kohlmann, A.; Todd, A.; Saggese, M.; Chmielecki, J.; et al. Programmed Cell Death Ligand 1 Expression in Untreated EGFR Mutated Advanced NSCLC and Response to Osimertinib Versus Comparator in FLAURA. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2020, 15, 138–143. [Google Scholar] [CrossRef] [PubMed]
  43. Hastings, K.; Yu, H.A.; Wei, W.; Sanchez-Vega, F.; DeVeaux, M.; Choi, J.; Rizvi, H.; Lisberg, A.; Truini, A.; Lydon, C.A.; et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2019, 30, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
  44. Zhou, C.; Wang, Z.; Fu, C.; Tao, H.; Liu, C. The efficacy and safety of PD-1 inhibitors for EGFR-mutant non-small cell lung cancer after tyrosine kinase inhibitor failure: A retrospective real-world cohort study. Ann. Transl. Med. 2023, 11, 157. [Google Scholar] [CrossRef] [PubMed]
  45. Tian, T.; Yu, M.; Li, J.; Jiang, M.; Ma, D.; Tang, S.; Lin, Z.; Chen, L.; Gong, Y.; Zhu, J.; et al. Front-Line ICI-Based Combination Therapy Post-TKI Resistance May Improve Survival in NSCLC Patients with EGFR Mutation. Front. Oncol. 2021, 11, 739090. [Google Scholar] [CrossRef] [PubMed]
  46. Jiang, T.; Wang, P.; Zhang, J.; Zhao, Y.; Zhou, J.; Fan, Y.; Shu, Y.; Liu, X.; Zhang, H.; He, J.; et al. Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: A multicenter phase-II trial. Signal. Transduct. Target Ther. 2021, 6, 355. [Google Scholar] [CrossRef] [PubMed]
  47. Chen, C.J.; Liu, Y.P. MERTK Inhibition: Potential as a Treatment Strategy in EGFR Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Pharmaceuticals 2021, 14, 130. [Google Scholar] [CrossRef] [PubMed]
  48. Haratani, K.; Hayashi, H.; Tanaka, T.; Kaneda, H.; Togashi, Y.; Sakai, K.; Hayashi, K.; Tomida, S.; Chiba, Y.; Yonesaka, K.; et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2017, 28, 1532–1539. [Google Scholar] [CrossRef]
  49. Yamada, T.; Hirai, S.; Katayama, Y.; Yoshimura, A.; Shiotsu, S.; Watanabe, S.; Kikuchi, T.; Hirose, K.; Kubota, Y.; Chihara, Y.; et al. Retrospective efficacy analysis of immune checkpoint inhibitors in patients with EGFR-mutated non-small cell lung cancer. Cancer Med. 2019, 8, 1521–1529. [Google Scholar] [CrossRef]
  50. Hata, A.; Katakami, N.; Nanjo, S.; Okuda, C.; Kaji, R.; Masago, K.; Fujita, S.; Yoshida, H.; Zama, K.; Imai, Y.; et al. Programmed death-ligand 1 expression and T790M status in EGFR-mutant non-small cell lung cancer. Lung Cancer 2017, 111, 182–189. [Google Scholar] [CrossRef]
  51. Brindel, A.; Althakfi, W.; Barritault, M.; Watkin, E.; Maury, J.M.; Bringuier, P.P.; Girard, N.; Brevet, M. Uncommon EGFR mutations in lung adenocarcinoma: Features and response to tyrosine kinase inhibitors. J. Thorac. Dis. 2020, 12, 4643–4650. [Google Scholar] [CrossRef] [PubMed]
  52. Miyawaki, E.; Murakami, H.; Mori, K.; Mamesaya, N.; Kawamura, T.; Kobayashi, H.; Omori, S.; Wakuda, K.; Ono, A.; Kenmotsu, H.; et al. PD-L1 expression and response to pembrolizumab in patients with EGFR-mutant non-small cell lung cancer. Jpn. J. Clin. Oncol. 2020, 50, 617–622. [Google Scholar] [CrossRef] [PubMed]
  53. Chen, K.; Cheng, G.; Zhang, F.; Zhu, G.; Xu, Y.; Yu, X.; Huang, Z.; Fan, Y. PD-L1 expression and T cells infiltration in patients with uncommon EGFR-mutant non-small cell lung cancer and the response to immunotherapy. Lung Cancer 2020, 142, 98–105. [Google Scholar] [CrossRef] [PubMed]
  54. Isomoto, K.; Haratani, K.; Hayashi, H.; Shimizu, S.; Tomida, S.; Niwa, T.; Yokoyama, T.; Fukuda, Y.; Chiba, Y.; Kato, R.; et al. Impact of EGFR-TKI Treatment on the Tumor Immune Microenvironment in EGFR Mutation-Positive Non-Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 2037–2046. [Google Scholar] [CrossRef]
  55. Garassino, M.C.; Cho, B.C.; Kim, J.H.; Mazieres, J.; Vansteenkiste, J.; Lena, H.; Jaime, J.C.; Gray, J.E.; Powderly, J.; Chouaid, C.; et al. Final overall survival and safety update for durvalumab in third- or later-line advanced NSCLC: The phase II ATLANTIC study. Lung Cancer 2020, 147, 137–142. [Google Scholar] [CrossRef]
  56. Grangeon, M.; Tomasini, P.; Chaleat, S.; Jeanson, A.; Souquet-Bressand, M.; Khobta, N.; Bermudez, J.; Trigui, Y.; Greillier, L.; Blanchon, M.; et al. Association Between Immune-related Adverse Events and Efficacy of Immune Checkpoint Inhibitors in Non-small-cell Lung Cancer. Clin. Lung Cancer 2019, 20, 201–207. [Google Scholar] [CrossRef]
  57. Ricciuti, B.; Genova, C.; De Giglio, A.; Bassanelli, M.; Dal Bello, M.G.; Metro, G.; Brambilla, M.; Baglivo, S.; Grossi, F.; Chiari, R. Impact of immune-related adverse events on survival in patients with advanced non-small cell lung cancer treated with nivolumab: Long-term outcomes from a multi-institutional analysis. J. Cancer Res. Clin. Oncol. 2019, 145, 479–485. [Google Scholar] [CrossRef]
  58. Teraoka, S.; Fujimoto, D.; Morimoto, T.; Kawachi, H.; Ito, M.; Sato, Y.; Nagata, K.; Nakagawa, A.; Otsuka, K.; Uehara, K.; et al. Early Immune-Related Adverse Events and Association with Outcome in Advanced Non-Small Cell Lung Cancer Patients Treated with Nivolumab: A Prospective Cohort Study. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2017, 12, 1798–1805. [Google Scholar] [CrossRef]
  59. Hosoya, K.; Fujimoto, D.; Morimoto, T.; Kumagai, T.; Tamiya, A.; Taniguchi, Y.; Yokoyama, T.; Ishida, T.; Hirano, K.; Matsumoto, H.; et al. Association Between Early Immune-related Adverse Events and Clinical Outcomes in Patients with Non-Small Cell Lung Cancer Treated With Immune Checkpoint Inhibitors. Clin. Lung Cancer 2020, 21, e315–e328. [Google Scholar] [CrossRef]
  60. Peng, J.; Zhao, X.; Zhao, K.; Meng, X. Case Report: Long Progression-Free Survival of Immunotherapy for Lung Adenocarcinoma with Epidermal Growth Factor Receptor Mutation. Front. Oncol. 2021, 11, 731429. [Google Scholar] [CrossRef]
  61. Yang, L.; Hao, X.; Hu, X.; Wang, Z.; Yang, K.; Mi, Y.; Yang, Y.; Xu, H.; Yang, G.; Wang, Y. Superior efficacy of immunotherapy-based combinations over monotherapy for EGFR-mutant non-small cell lung cancer acquired resistance to EGFR-TKIs. Thorac. Cancer 2020, 11, 3501–3509. [Google Scholar] [CrossRef]
  62. Chen, Y.; Yang, Z.; Wang, Y.; Hu, M.; Zhang, B.; Zhang, Y.; Qian, F.; Zhang, W.; Han, B. Pembrolizumab Plus Chemotherapy or Anlotinib vs. Pembrolizumab Alone in Patients with Previously Treated EGFR-Mutant NSCLC. Front. Oncol. 2021, 11, 671228. [Google Scholar] [CrossRef]
  63. Zhao, Y.; Guo, S.; Deng, J.; Shen, J.; Du, F.; Wu, X.; Chen, Y.; Li, M.; Chen, M.; Li, X.; et al. VEGF/VEGFR-Targeted Therapy and Immunotherapy in Non-small Cell Lung Cancer: Targeting the Tumor Microenvironment. Int. J. Biol. Sci. 2022, 18, 3845–3858. [Google Scholar] [CrossRef] [PubMed]
  64. Choi, S.H.; Yoo, S.S.; Lee, S.Y.; Park, J.Y. Anti-angiogenesis revisited: Reshaping the treatment landscape of advanced non-small cell lung cancer. Arch. Pharm. Res. 2022, 45, 263–279. [Google Scholar] [CrossRef] [PubMed]
  65. Ren, S.; Xiong, X.; You, H.; Shen, J.; Zhou, P. The Combination of Immune Checkpoint Blockade and Angiogenesis Inhibitors in the Treatment of Advanced Non-Small Cell Lung Cancer. Front. Immunol. 2021, 12, 689132. [Google Scholar] [CrossRef] [PubMed]
  66. Yu, X.; Li, J.; Ye, L.; Zhao, J.; Xie, M.; Zhou, J.; Shen, Y.; Zhou, F.; Wu, Y.; Han, C.; et al. Real-world outcomes of chemo-antiangiogenesis versus chemo-immunotherapy combinations in EGFR-mutant advanced non-small cell lung cancer patients after failure of EGFR-TKI therapy. Transl. Lung Cancer Res. 2021, 10, 3782–3792. [Google Scholar] [CrossRef] [PubMed]
  67. Nogami, N.; Barlesi, F.; Socinski, M.A.; Reck, M.; Thomas, C.A.; Cappuzzo, F.; Mok, T.S.K.; Finley, G.; Aerts, J.G.; Orlandi, F.; et al. IMpower150 Final Exploratory Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in Key NSCLC Patient Subgroups with EGFR Mutations or Metastases in the Liver or Brain. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2022, 17, 309–323. [Google Scholar] [CrossRef] [PubMed]
  68. Lam, T.C.; Tsang, K.C.; Choi, H.C.; Lee, V.H.; Lam, K.O.; Chiang, C.L.; So, T.H.; Chan, W.W.; Nyaw, S.F.; Lim, F.; et al. Combination atezolizumab, bevacizumab, pemetrexed and carboplatin for metastatic EGFR mutated NSCLC after TKI failure. Lung Cancer 2021, 159, 18–26. [Google Scholar] [CrossRef] [PubMed]
  69. Latchman, Y.E.; Liang, S.C.; Wu, Y.; Chernova, T.; Sobel, R.A.; Klemm, M.; Kuchroo, V.K.; Freeman, G.J.; Sharpe, A.H. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl. Acad. Sci. USA 2004, 101, 10691–10696. [Google Scholar] [CrossRef] [PubMed]
  70. Keir, M.E.; Liang, S.C.; Guleria, I.; Latchman, Y.E.; Qipo, A.; Albacker, L.A.; Koulmanda, M.; Freeman, G.J.; Sayegh, M.H.; Sharpe, A.H. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 2006, 203, 883–895. [Google Scholar] [CrossRef]
  71. Fife, B.T.; Pauken, K.E.; Eagar, T.N.; Obu, T.; Wu, J.; Tang, Q.; Azuma, M.; Krummel, M.F.; Bluestone, J.A. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 2009, 10, 1185–1192. [Google Scholar] [CrossRef]
  72. Akbay, E.A.; Koyama, S.; Carretero, J.; Altabef, A.; Tchaicha, J.H.; Christensen, C.L.; Mikse, O.R.; Cherniack, A.D.; Beauchamp, E.M.; Pugh, T.J.; et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013, 3, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
  73. Chen, N.; Fang, W.; Zhan, J.; Hong, S.; Tang, Y.; Kang, S.; Zhang, Y.; He, X.; Zhou, T.; Qin, T.; et al. Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2015, 10, 910–923. [Google Scholar] [CrossRef] [PubMed]
  74. Azuma, K.; Ota, K.; Kawahara, A.; Hattori, S.; Iwama, E.; Harada, T.; Matsumoto, K.; Takayama, K.; Takamori, S.; Kage, M.; et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2014, 25, 1935–1940. [Google Scholar] [CrossRef] [PubMed]
  75. Lastwika, K.J.; Wilson, W., 3rd; Li, Q.K.; Norris, J.; Xu, H.; Ghazarian, S.R.; Kitagawa, H.; Kawabata, S.; Taube, J.M.; Yao, S.; et al. Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer. Cancer Res. 2016, 76, 227–238. [Google Scholar] [CrossRef] [PubMed]
  76. Zhang, N.; Zeng, Y.; Du, W.; Zhu, J.; Shen, D.; Liu, Z.; Huang, J.A. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int. J. Oncol. 2016, 49, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
  77. Cooper, W.A.; Tran, T.; Vilain, R.E.; Madore, J.; Selinger, C.I.; Kohonen-Corish, M.; Yip, P.; Yu, B.; O’Toole, S.A.; McCaughan, B.C.; et al. PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer 2015, 89, 181–188. [Google Scholar] [CrossRef] [PubMed]
  78. Schmidt, L.H.; Kummel, A.; Gorlich, D.; Mohr, M.; Brockling, S.; Mikesch, J.H.; Grunewald, I.; Marra, A.; Schultheis, A.M.; Wardelmann, E.; et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE 2015, 10, e0136023. [Google Scholar] [CrossRef] [PubMed]
  79. Inoue, Y.; Yoshimura, K.; Mori, K.; Kurabe, N.; Kahyo, T.; Mori, H.; Kawase, A.; Tanahashi, M.; Ogawa, H.; Inui, N.; et al. Clinical significance of PD-L1 and PD-L2 copy number gains in non-small-cell lung cancer. Oncotarget 2016, 7, 32113–32128. [Google Scholar] [CrossRef]
  80. Cha, Y.J.; Kim, H.R.; Lee, C.Y.; Cho, B.C.; Shim, H.S. Clinicopathological and prognostic significance of programmed cell death ligand-1 expression in lung adenocarcinoma and its relationship with p53 status. Lung Cancer 2016, 97, 73–80. [Google Scholar] [CrossRef]
  81. Takada, K.; Okamoto, T.; Shoji, F.; Shimokawa, M.; Akamine, T.; Takamori, S.; Katsura, M.; Suzuki, Y.; Fujishita, T.; Toyokawa, G.; et al. Clinical Significance of PD-L1 Protein Expression in Surgically Resected Primary Lung Adenocarcinoma. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2016, 11, 1879–1890. [Google Scholar] [CrossRef] [PubMed]
  82. Tsao, M.S.; Le Teuff, G.; Shepherd, F.A.; Landais, C.; Hainaut, P.; Filipits, M.; Pirker, R.; Le Chevalier, T.; Graziano, S.; Kratze, R.; et al. PD-L1 protein expression assessed by immunohistochemistry is neither prognostic nor predictive of benefit from adjuvant chemotherapy in resected non-small cell lung cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2017, 28, 882–889. [Google Scholar] [CrossRef] [PubMed]
  83. Yang, H.; Zhu, J.; Xiao, R.; Liu, Y.; Yu, F.; Cai, L.; Qiu, M.; He, F. EGFR mutation status in non-small cell lung cancer receiving PD-1/PD-L1 inhibitors and its correlation with PD-L1 expression: A meta-analysis. Cancer Immunol. Immunother. 2022, 71, 1001–1016. [Google Scholar] [CrossRef] [PubMed]
  84. Ji, M.; Liu, Y.; Li, Q.; Li, X.; Ning, Z.; Zhao, W.; Shi, H.; Jiang, J.; Wu, C. PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations. Cancer Biol. Ther. 2016, 17, 407–413. [Google Scholar] [CrossRef] [PubMed]
  85. Li, J.; Chen, Y.; Shi, X.; Le, X.; Feng, F.; Chen, J.; Zhou, C.; Chen, Y.; Wen, S.; Zeng, H.; et al. A systematic and genome-wide correlation meta-analysis of PD-L1 expression and targetable NSCLC driver genes. J. Thorac. Dis. 2017, 9, 2560–2571. [Google Scholar] [CrossRef]
  86. Takada, K.; Toyokawa, G.; Tagawa, T.; Kohashi, K.; Shimokawa, M.; Akamine, T.; Takamori, S.; Hirai, F.; Shoji, F.; Okamoto, T.; et al. PD-L1 expression according to the EGFR status in primary lung adenocarcinoma. Lung Cancer 2018, 116, 1–6. [Google Scholar] [CrossRef] [PubMed]
  87. Lee, J.; Park, C.K.; Yoon, H.K.; Sa, Y.J.; Woo, I.S.; Kim, H.R.; Kim, S.Y.; Kim, T.J. PD-L1 expression in ROS1-rearranged non-small cell lung cancer: A study using simultaneous genotypic screening of EGFR, ALK, and ROS1. Thorac. Cancer 2019, 10, 103–110. [Google Scholar] [CrossRef] [PubMed]
  88. Han, J.J.; Kim, D.W.; Koh, J.; Keam, B.; Kim, T.M.; Jeon, Y.K.; Lee, S.H.; Chung, D.H.; Heo, D.S. Change in PD-L1 Expression After Acquiring Resistance to Gefitinib in EGFR-Mutant Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2016, 17, 263–270.e2. [Google Scholar] [CrossRef]
  89. Zhao, Q.; Zhang, X.; Ma, Q.; Luo, N.; Liu, Z.; Wang, R.; He, Y.; Li, L. Case Report: An “Immune-Cold” EGFR Mutant NSCLC With Strong PD-L1 Expression Shows Resistance to Chemo-Immunotherapy. Front. Oncol. 2022, 12, 765997. [Google Scholar] [CrossRef]
  90. Kerr, K.M.; Hirsch, F.R. Programmed Death Ligand-1 Immunohistochemistry: Friend or Foe? Arch. Pathol. Lab. Med. 2016, 140, 326–331. [Google Scholar] [CrossRef]
  91. Ratcliffe, M.J.; Sharpe, A.; Midha, A.; Barker, C.; Scott, M.; Scorer, P.; Al-Masri, H.; Rebelatto, M.C.; Walker, J. Agreement between Programmed Cell Death Ligand-1 Diagnostic Assays across Multiple Protein Expression Cutoffs in Non-Small Cell Lung Cancer. Clin. Cancer Res. 2017, 23, 3585–3591. [Google Scholar] [CrossRef] [PubMed]
  92. Karwacz, K.; Bricogne, C.; MacDonald, D.; Arce, F.; Bennett, C.L.; Collins, M.; Escors, D. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol. Med. 2011, 3, 581–592. [Google Scholar] [CrossRef] [PubMed]
  93. Gato-Canas, M.; Martinez de Morentin, X.; Blanco-Luquin, I.; Fernandez-Irigoyen, J.; Zudaire, I.; Liechtenstein, T.; Arasanz, H.; Lozano, T.; Casares, N.; Chaikuad, A.; et al. A core of kinase-regulated interactomes defines the neoplastic MDSC lineage. Oncotarget 2015, 6, 27160–27175. [Google Scholar] [CrossRef] [PubMed]
  94. Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
  95. Bocanegra, A.; Fernandez-Hinojal, G.; Zuazo-Ibarra, M.; Arasanz, H.; Garcia-Granda, M.J.; Hernandez, C.; Ibanez, M.; Hernandez-Marin, B.; Martinez-Aguillo, M.; Lecumberri, M.J.; et al. PD-L1 Expression in Systemic Immune Cell Populations as a Potential Predictive Biomarker of Responses to PD-L1/PD-1 Blockade Therapy in Lung Cancer. Int. J. Mol. Sci. 2019, 20, 1631. [Google Scholar] [CrossRef] [PubMed]
  96. Latchman, Y.; Wood, C.R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A.J.; Brown, J.A.; Nunes, R.; et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2001, 2, 261–268. [Google Scholar] [CrossRef] [PubMed]
  97. Tang, S.; Kim, P.S. A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery. Proc. Natl. Acad. Sci. USA 2019, 116, 24500–24506. [Google Scholar] [CrossRef] [PubMed]
  98. Shibahara, D.; Tanaka, K.; Iwama, E.; Kubo, N.; Ota, K.; Azuma, K.; Harada, T.; Fujita, J.; Nakanishi, Y.; Okamoto, I. Intrinsic and Extrinsic Regulation of PD-L2 Expression in Oncogene-Driven Non-Small Cell Lung Cancer. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2018, 13, 926–937. [Google Scholar] [CrossRef]
  99. Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef]
  100. Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef]
  101. Offin, M.; Rizvi, H.; Tenet, M.; Ni, A.; Sanchez-Vega, F.; Li, B.T.; Drilon, A.; Kris, M.G.; Rudin, C.M.; Schultz, N.; et al. Tumor Mutation Burden and Efficacy of EGFR-Tyrosine Kinase Inhibitors in Patients with EGFR-Mutant Lung Cancers. Clin. Cancer Res. 2019, 25, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
  102. Yang, R.K.; Qing, Y.; Jelloul, F.Z.; Routbort, M.J.; Wang, P.; Shaw, K.; Zhang, J.; Lee, J.; Medeiros, L.J.; Kopetz, S.; et al. Identification of biomarkers of immune checkpoint blockade efficacy in recurrent or refractory solid tumor malignancies. Oncotarget 2020, 11, 600–618. [Google Scholar] [CrossRef] [PubMed]
  103. Mo, J.; Hu, X.; Gu, L.; Chen, B.; Khadaroo, P.A.; Shen, Z.; Dong, L.; Lv, Y.; Chitumba, M.N.; Liu, J. Smokers or non-smokers: Who benefits more from immune checkpoint inhibitors in treatment of malignancies? An up-to-date meta-analysis. World J. Surg. Oncol 2020, 18, 15. [Google Scholar] [CrossRef] [PubMed]
  104. Corke, L.K.; Li, J.J.N.; Leighl, N.B.; Eng, L. Tobacco Use and Response to Immune Checkpoint Inhibitor Therapy in Non-Small Cell Lung Cancer. Curr. Oncol. 2022, 29, 6260–6276. [Google Scholar] [CrossRef] [PubMed]
  105. Ng, T.L.; Liu, Y.; Dimou, A.; Patil, T.; Aisner, D.L.; Dong, Z.; Jiang, T.; Su, C.; Wu, C.; Ren, S.; et al. Predictive value of oncogenic driver subtype, programmed death-1 ligand (PD-L1) score, and smoking status on the efficacy of PD-1/PD-L1 inhibitors in patients with oncogene-driven non-small cell lung cancer. Cancer 2019, 125, 1038–1049. [Google Scholar] [CrossRef] [PubMed]
  106. Saito, M.; Shiraishi, K.; Kunitoh, H.; Takenoshita, S.; Yokota, J.; Kohno, T. Gene aberrations for precision medicine against lung adenocarcinoma. Cancer Sci. 2016, 107, 713–720. [Google Scholar] [CrossRef] [PubMed]
  107. Dogan, S.; Shen, R.; Ang, D.C.; Johnson, M.L.; D’Angelo, S.P.; Paik, P.K.; Brzostowski, E.B.; Riely, G.J.; Kris, M.G.; Zakowski, M.F.; et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: Higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin. Cancer Res. 2012, 18, 6169–6177. [Google Scholar] [CrossRef]
  108. Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef]
  109. Lohinai, Z.; Hoda, M.A.; Fabian, K.; Ostoros, G.; Raso, E.; Barbai, T.; Timar, J.; Kovalszky, I.; Cserepes, M.; Rozsas, A.; et al. Distinct Epidemiology and Clinical Consequence of Classic Versus Rare EGFR Mutations in Lung Adenocarcinoma. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2015, 10, 738–746. [Google Scholar] [CrossRef]
  110. Teng, M.W.; Ngiow, S.F.; Ribas, A.; Smyth, M.J. Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Res. 2015, 75, 2139–2145. [Google Scholar] [CrossRef]
  111. Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef] [PubMed]
  112. Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The Immune Landscape of Cancer. Immunity 2018, 48, 812–830.e14. [Google Scholar] [CrossRef] [PubMed]
  113. MacDonald, F.; Zaiss, D.M.W. The Immune System’s Contribution to the Clinical Efficacy of EGFR Antagonist Treatment. Front. Pharmacol. 2017, 8, 575. [Google Scholar] [CrossRef] [PubMed]
  114. Taube, J.M.; Galon, J.; Sholl, L.M.; Rodig, S.J.; Cottrell, T.R.; Giraldo, N.A.; Baras, A.S.; Patel, S.S.; Anders, R.A.; Rimm, D.L.; et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod. Pathol. 2018, 31, 214–234. [Google Scholar] [CrossRef] [PubMed]
  115. Maynard, A.; McCoach, C.E.; Rotow, J.K.; Harris, L.; Haderk, F.; Kerr, D.L.; Yu, E.A.; Schenk, E.L.; Tan, W.; Zee, A.; et al. Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing. Cell 2020, 182, 1232–1251.e22. [Google Scholar] [CrossRef] [PubMed]
  116. Yang, L.; He, Y.T.; Dong, S.; Wei, X.W.; Chen, Z.H.; Zhang, B.; Chen, W.D.; Yang, X.R.; Wang, F.; Shang, X.M.; et al. Single-cell transcriptome analysis revealed a suppressive tumor immune microenvironment in EGFR mutant lung adenocarcinoma. J. Immunother. Cancer 2022, 10, e003534. [Google Scholar] [CrossRef] [PubMed]
  117. Hori, S.; Nomura, T.; Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
  118. Zaiss, D.M.; van Loosdregt, J.; Gorlani, A.; Bekker, C.P.; Grone, A.; Sibilia, M.; van Bergen en Henegouwen, P.M.; Roovers, R.C.; Coffer, P.J.; Sijts, A.J. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 2013, 38, 275–284. [Google Scholar] [CrossRef]
  119. Mascia, F.; Schloemann, D.T.; Cataisson, C.; McKinnon, K.M.; Krymskaya, L.; Wolcott, K.M.; Yuspa, S.H. Cell autonomous or systemic EGFR blockade alters the immune-environment in squamous cell carcinomas. Int. J. Cancer 2016, 139, 2593–2597. [Google Scholar] [CrossRef]
  120. Luo, J.W.; Guo, Y.H.; Wu, F.Y.; Li, X.F.; Sun, X.C.; Wang, J.L.; Zhou, C.C. Differences in Immunological Landscape between EGFR-Mutated and Wild-Type Lung Adenocarcinoma. Dis. Markers 2021, 2021, 3776854. [Google Scholar] [CrossRef]
  121. Selenz, C.; Compes, A.; Nill, M.; Borchmann, S.; Odenthal, M.; Florin, A.; Bragelmann, J.; Buttner, R.; Meder, L.; Ullrich, R.T. EGFR Inhibition Strongly Modulates the Tumour Immune Microenvironment in EGFR-Driven Non-Small-Cell Lung Cancer. Cancers 2022, 14, 3943. [Google Scholar] [CrossRef] [PubMed]
  122. Ayeni, D.; Miller, B.; Kuhlmann, A.; Ho, P.C.; Robles-Oteiza, C.; Gaefele, M.; Levy, S.; de Miguel, F.J.; Perry, C.; Guan, T.; et al. Tumor regression mediated by oncogene withdrawal or erlotinib stimulates infiltration of inflammatory immune cells in EGFR mutant lung tumors. J. Immunother. Cancer 2019, 7, 172. [Google Scholar] [CrossRef] [PubMed]
  123. Venugopalan, A.; Lee, M.J.; Niu, G.; Medina-Echeverz, J.; Tomita, Y.; Lizak, M.J.; Cultraro, C.M.; Simpson, R.M.; Chen, X.; Trepel, J.B.; et al. EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models. Oncotarget 2016, 7, 54137–54156. [Google Scholar] [CrossRef] [PubMed]
  124. Jia, Y.; Li, X.; Jiang, T.; Zhao, S.; Zhao, C.; Zhang, L.; Liu, X.; Shi, J.; Qiao, M.; Luo, J.; et al. EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: Implications for combination therapies. Int. J. Cancer 2019, 145, 1432–1444. [Google Scholar] [CrossRef] [PubMed]
  125. Yu, J.; Du, W.; Yan, F.; Wang, Y.; Li, H.; Cao, S.; Yu, W.; Shen, C.; Liu, J.; Ren, X. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J. Immunol. 2013, 190, 3783–3797. [Google Scholar] [CrossRef] [PubMed]
  126. Almand, B.; Clark, J.I.; Nikitina, E.; van Beynen, J.; English, N.R.; Knight, S.C.; Carbone, D.P.; Gabrilovich, D.I. Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer. J. Immunol. 2001, 166, 678–689. [Google Scholar] [CrossRef] [PubMed]
  127. Suzuki, E.; Kapoor, V.; Jassar, A.S.; Kaiser, L.R.; Albelda, S.M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 2005, 11, 6713–6721. [Google Scholar] [CrossRef] [PubMed]
  128. Chung, K.Y.; Shia, J.; Kemeny, N.E.; Shah, M.; Schwartz, G.K.; Tse, A.; Hamilton, A.; Pan, D.; Schrag, D.; Schwartz, L.; et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 1803–1810. [Google Scholar] [CrossRef]
  129. Srivatsa, S.; Paul, M.C.; Cardone, C.; Holcmann, M.; Amberg, N.; Pathria, P.; Diamanti, M.A.; Linder, M.; Timelthaler, G.; Dienes, H.P.; et al. EGFR in Tumor-Associated Myeloid Cells Promotes Development of Colorectal Cancer in Mice and Associates With Outcomes of Patients. Gastroenterology 2017, 153, 178–190.e10. [Google Scholar] [CrossRef]
  130. Lanaya, H.; Natarajan, A.; Komposch, K.; Li, L.; Amberg, N.; Chen, L.; Wculek, S.K.; Hammer, M.; Zenz, R.; Peck-Radosavljevic, M.; et al. EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat. Cell Biol. 2014, 16, 972–977. [Google Scholar] [CrossRef]
  131. Lian, G.; Chen, S.; Ouyang, M.; Li, F.; Chen, L.; Yang, J. Colon Cancer Cell Secretes EGF to Promote M2 Polarization of TAM Through EGFR/PI3K/AKT/mTOR Pathway. Technol. Cancer Res. Treat. 2019, 18, 1533033819849068. [Google Scholar] [CrossRef] [PubMed]
  132. Watanabe, S.; Hayashi, H.; Haratani, K.; Shimizu, S.; Tanizaki, J.; Sakai, K.; Kawakami, H.; Yonesaka, K.; Tsurutani, J.; Togashi, Y.; et al. Mutational activation of the epidermal growth factor receptor down-regulates major histocompatibility complex class I expression via the extracellular signal-regulated kinase in non-small cell lung cancer. Cancer Sci. 2019, 110, 52–60. [Google Scholar] [CrossRef] [PubMed]
  133. Yan, D.; Parker, R.E.; Wang, X.; Frye, S.V.; Earp, H.S., 3rd; DeRyckere, D.; Graham, D.K. MERTK Promotes Resistance to Irreversible EGFR Tyrosine Kinase Inhibitors in Non-small Cell Lung Cancers Expressing Wild-type EGFR Family Members. Clin. Cancer Res. 2018, 24, 6523–6535. [Google Scholar] [CrossRef]
  134. Yan, D.; Huelse, J.M.; Kireev, D.; Tan, Z.; Chen, L.; Goyal, S.; Wang, X.; Frye, S.V.; Behera, M.; Schneider, F.; et al. MERTK activation drives osimertinib resistance in EGFR-mutant non-small cell lung cancer. J. Clin. Investig. 2022, 132, e150517. [Google Scholar] [CrossRef] [PubMed]
  135. Chandrasekaran, S.; Sasaki, M.; Scharer, C.D.; Kissick, H.T.; Patterson, D.G.; Magliocca, K.R.; Seykora, J.T.; Sapkota, B.; Gutman, D.A.; Cooper, L.A.; et al. Phosphoinositide 3-Kinase Signaling Can Modulate MHC Class I and II Expression. Mol. Cancer Res. MCR 2019, 17, 2395–2409. [Google Scholar] [CrossRef] [PubMed]
  136. Marijt, K.A.; Sluijter, M.; Blijleven, L.; Tolmeijer, S.H.; Scheeren, F.A.; van der Burg, S.H.; van Hall, T. Metabolic stress in cancer cells induces immune escape through a PI3K-dependent blockade of IFNgamma receptor signaling. J. Immunother. Cancer 2019, 7, 152. [Google Scholar] [CrossRef] [PubMed]
  137. Sivaram, N.; McLaughlin, P.A.; Han, H.V.; Petrenko, O.; Jiang, Y.P.; Ballou, L.M.; Pham, K.; Liu, C.; van der Velden, A.W.; Lin, R.Z. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J. Clin. Investig. 2019, 129, 3264–3276. [Google Scholar] [CrossRef]
  138. Mimura, K.; Shiraishi, K.; Mueller, A.; Izawa, S.; Kua, L.F.; So, J.; Yong, W.P.; Fujii, H.; Seliger, B.; Kiessling, R.; et al. The MAPK pathway is a predominant regulator of HLA-A expression in esophageal and gastric cancer. J. Immunol. 2013, 191, 6261–6272. [Google Scholar] [CrossRef]
  139. Pollack, B.P. EGFR inhibitors, MHC expression and immune responses: Can EGFR inhibitors be used as immune response modifiers? Oncoimmunology 2012, 1, 71–74. [Google Scholar] [CrossRef]
  140. Brea, E.J.; Oh, C.Y.; Manchado, E.; Budhu, S.; Gejman, R.S.; Mo, G.; Mondello, P.; Han, J.E.; Jarvis, C.A.; Ulmert, D.; et al. Kinase Regulation of Human MHC Class I Molecule Expression on Cancer Cells. Cancer Immunol. Res. 2016, 4, 936–947. [Google Scholar] [CrossRef]
  141. Pollack, B.P.; Sapkota, B.; Cartee, T.V. Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin. Cancer Res. 2011, 17, 4400–4413. [Google Scholar] [CrossRef] [PubMed]
  142. Hayashi, H.; Sugawara, S.; Fukuda, Y.; Fujimoto, D.; Miura, S.; Ota, K.; Ozawa, Y.; Hara, S.; Tanizaki, J.; Azuma, K.; et al. A Randomized Phase II Study Comparing Nivolumab with Carboplatin-Pemetrexed for EGFR-Mutated NSCLC with Resistance to EGFR Tyrosine Kinase Inhibitors (WJOG8515L). Clin. Cancer Res. 2022, 28, 893–902. [Google Scholar] [CrossRef] [PubMed]
  143. Ichihara, E.; Harada, D.; Inoue, K.; Shibayama, T.; Hosokawa, S.; Kishino, D.; Harita, S.; Ochi, N.; Oda, N.; Hara, N.; et al. Characteristics of patients with EGFR-mutant non-small-cell lung cancer who benefited from immune checkpoint inhibitors. Cancer Immunol. Immunother. 2021, 70, 101–106. [Google Scholar] [CrossRef] [PubMed]
  144. White, M.N.; Piper-Vallillo, A.J.; Gardner, R.M.; Cunanan, K.; Neal, J.W.; Das, M.; Padda, S.K.; Ramchandran, K.; Chen, T.T.; Sequist, L.V.; et al. Chemotherapy Plus Immunotherapy Versus Chemotherapy Plus Bevacizumab Versus Chemotherapy Alone in EGFR-Mutant NSCLC After Progression on Osimertinib. Clin. Lung Cancer 2022, 23, e210–e221. [Google Scholar] [CrossRef] [PubMed]
  145. West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, H.G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef]
  146. Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef] [PubMed]
  147. Yang, J.C.; Gadgeel, S.M.; Sequist, L.V.; Wu, C.L.; Papadimitrakopoulou, V.A.; Su, W.C.; Fiore, J.; Saraf, S.; Raftopoulos, H.; Patnaik, A. Pembrolizumab in Combination with Erlotinib or Gefitinib as First-Line Therapy for Advanced NSCLC With Sensitizing EGFR Mutation. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2019, 14, 553–559. [Google Scholar] [CrossRef] [PubMed]
  148. Gianni, C.; Bronte, G.; Delmonte, A.; Burgio, M.A.; Andrikou, K.; Monti, M.; Menna, C.; Frassineti, G.L.; Crino, L. Case Report: Stevens-Johnson Syndrome and Hepatotoxicity Induced by Osimertinib Sequential to Pembrolizumab in a Patient With EGFR-Mutated Lung Adenocarcinoma. Front. Pharmacol. 2021, 12, 672233. [Google Scholar] [CrossRef]
  149. Oxnard, G.R.; Yang, J.C.; Yu, H.; Kim, S.W.; Saka, H.; Horn, L.; Goto, K.; Ohe, Y.; Mann, H.; Thress, K.S.; et al. TATTON: A multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2020, 31, 507–516. [Google Scholar] [CrossRef]
  150. Yang, J.C.; Shepherd, F.A.; Kim, D.W.; Lee, G.W.; Lee, J.S.; Chang, G.C.; Lee, S.S.; Wei, Y.F.; Lee, Y.G.; Laus, G.; et al. Osimertinib Plus Durvalumab versus Osimertinib Monotherapy in EGFR T790M-Positive NSCLC following Previous EGFR TKI Therapy: CAURAL Brief Report. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2019, 14, 933–939. [Google Scholar] [CrossRef]
  151. Inoue, A.; Saijo, Y.; Maemondo, M.; Gomi, K.; Tokue, Y.; Kimura, Y.; Ebina, M.; Kikuchi, T.; Moriya, T.; Nukiwa, T. Severe acute interstitial pneumonia and gefitinib. Lancet 2003, 361, 137–139. [Google Scholar] [CrossRef]
  152. Kotake, M.; Murakami, H.; Kenmotsu, H.; Naito, T.; Takahashi, T. High incidence of interstitial lung disease following practical use of osimertinib in patients who had undergone immediate prior nivolumab therapy. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2017, 28, 669–670. [Google Scholar] [CrossRef]
  153. Schoenfeld, A.J.; Arbour, K.C.; Rizvi, H.; Iqbal, A.N.; Gadgeel, S.M.; Girshman, J.; Kris, M.G.; Riely, G.J.; Yu, H.A.; Hellmann, M.D. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2019, 30, 839–844. [Google Scholar] [CrossRef] [PubMed]
  154. Chan, D.W.; Choi, H.C.; Lee, V.H. Treatment-Related Adverse Events of Combination EGFR Tyrosine Kinase Inhibitor and Immune Checkpoint Inhibitor in EGFR-Mutant Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 2157. [Google Scholar] [CrossRef] [PubMed]
  155. Sequist, L.V.; Martins, R.G.; Spigel, D.; Grunberg, S.M.; Spira, A.; Janne, P.A.; Joshi, V.A.; McCollum, D.; Evans, T.L.; Muzikansky, A.; et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
  156. Park, K.; Yu, C.J.; Kim, S.W.; Lin, M.C.; Sriuranpong, V.; Tsai, C.M.; Lee, J.S.; Kang, J.H.; Chan, K.C.; Perez-Moreno, P.; et al. First-Line Erlotinib Therapy Until and Beyond Response Evaluation Criteria in Solid Tumors Progression in Asian Patients with Epidermal Growth Factor Receptor Mutation-Positive Non-Small-Cell Lung Cancer: The ASPIRATION Study. JAMA Oncol. 2016, 2, 305–312. [Google Scholar] [CrossRef] [PubMed]
  157. Lim, S.H.; Lee, J.Y.; Sun, J.M.; Ahn, J.S.; Park, K.; Ahn, M.J. Comparison of clinical outcomes following gefitinib and erlotinib treatment in non-small-cell lung cancer patients harboring an epidermal growth factor receptor mutation in either exon 19 or 21. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2014, 9, 506–511. [Google Scholar] [CrossRef] [PubMed]
  158. Fuentes-Antras, J.; Provencio, M.; Diaz-Rubio, E. Hyperprogression as a distinct outcome after immunotherapy. Cancer Treat. Rev. 2018, 70, 16–21. [Google Scholar] [CrossRef] [PubMed]
  159. Wang, X.; Wang, F.; Zhong, M.; Yarden, Y.; Fu, L. The biomarkers of hyperprogressive disease in PD-1/PD-L1 blockage therapy. Mol. Cancer 2020, 19, 81. [Google Scholar] [CrossRef]
  160. Ferrara, R.; Mezquita, L.; Texier, M.; Lahmar, J.; Audigier-Valette, C.; Tessonnier, L.; Mazieres, J.; Zalcman, G.; Brosseau, S.; Le Moulec, S.; et al. Hyperprogressive Disease in Patients with Advanced Non-Small Cell Lung Cancer Treated With PD-1/PD-L1 Inhibitors or With Single-Agent Chemotherapy. JAMA Oncol. 2018, 4, 1543–1552. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yan, D. Hope and Challenges: Immunotherapy in EGFR-Mutant NSCLC Patients. Biomedicines 2023, 11, 2916. https://doi.org/10.3390/biomedicines11112916

AMA Style

Yan D. Hope and Challenges: Immunotherapy in EGFR-Mutant NSCLC Patients. Biomedicines. 2023; 11(11):2916. https://doi.org/10.3390/biomedicines11112916

Chicago/Turabian Style

Yan, Dan. 2023. "Hope and Challenges: Immunotherapy in EGFR-Mutant NSCLC Patients" Biomedicines 11, no. 11: 2916. https://doi.org/10.3390/biomedicines11112916

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop