Heat Accumulation in Implant Inter-Osteotomy Areas—An Experimental In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size and Calibration
2.2. Experimental Setup
2.3. Thermal Analysis
2.4. Statistical Analysis
3. Results
3.1. Coronal Temperature for 7 mm and 14 mm Inter-Osteotomy Separations
3.2. Middle Temperature for 7 mm and 14 mm Inter-Osteotomy Separations
3.3. Apical Temperatures for 7 mm and 14 mm Inter-Osteotomy Separations
3.4. Statistical Comparisons
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moraschini, V.; Poubel, L.; Ferreira, V.; Barboza Edos, S. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int. J. Oral. Maxillofac. Surg. 2015, 44, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Benington, I.; Biagioni, P.; Briggs, J.; Sheridan, S.; Lamey, P. Thermal changes observed at implant sites during internal and external irrigation. Clin. Oral. Implants Res. 2002, 13, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.; Bettach, R.; Taschieri, S.; Boukhris, G.; Corbella, S.; Del Fabbro, M. Temperature Changes in Cortical Bone after Implant Site Preparation Using a Single Bur versus Multiple Drilling Steps: An In Vitro Investigation. Clin. Implant Dent. Relat. Res. 2015, 17, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Kotsakis, G.; Romanos, G. Biological mechanisms underlying complications related to implant site preparation. Periodontol. 2000 2022, 88, 52–63. [Google Scholar] [CrossRef]
- Akhbar, M.; Sulong, A. Surgical Drill Bit Design and Thermomechanical Damage in Bone Drilling: A Review. Ann. Biomed. Eng. 2021, 49, 29–56. [Google Scholar] [CrossRef]
- Hochscheidt, C.; Shimizu, R.; Andrighetto, A.; Moura, L.; Golin, A.; Hochscheidt, R. Thermal variation during osteotomy with different dental implant drills: A standardized study in bovine ribs. Implant Dent. 2017, 26, 73–79. [Google Scholar] [CrossRef]
- Gungormus, M.; Neda, G.; Erbasar, H. Transient Heat Transfer in Dental Implants for Thermal Necrosis-Aided Implant Removal: A 3D Finite Element Analysis. J. Oral. Implantol. 2019, 45, 196–201. [Google Scholar] [CrossRef]
- Palmisano, A.; Tai, B.; Belmont, B.; Irwin, T.; Shih, A.; Holmes, J. Comparison of cortical bone drilling induced heat production among common drilling tools. J. Orthop. Trauma. 2015, 29, e188–e193. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Zhang, J.; Peng, W.; Liao, W. Numerical and Experimental Analyses on the Temperature Distribution in the Dental Implant Preparation Area when Using a Surgical Guide. J. Prosthodont. 2018, 27, 42–51. [Google Scholar] [CrossRef]
- Augustin, G.; Davila, S.; Udiljak, T.; Vedrina, D.; Bagatin, D. Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: Preliminary report. Arch. Orthop. Trauma Surg. 2009, 129, 703–709. [Google Scholar] [CrossRef]
- Gehrke, S.; Aramburú, J.; Pérez-Albacete, C.; Ramirez-Fernandez, M.; Sánchez de Val, J.M.; Calvo-Guirado, J. The influence of drill length and irrigation system on heat production during osteotomy preparation for dental implants: An ex vivo study. Clin. Oral. Implants Res. 2018, 29, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Chavez, C.; Park, J. Parameters affecting mechanical and thermal responses in bone drilling: A review. J. Biomech. 2018, 71, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Golahmadi, A.; Khan, D.; Mylonas, G.; Marcus, H. Tool-tissue forces in surgery: A systematic review. Ann. Med. Surg. 2021, 65, 102268. [Google Scholar] [CrossRef] [PubMed]
- Timon, C.; Keady, C. Thermal Osteonecrosis Caused by Bone Drilling in Orthopedic Surgery: A Literature Review. Cureus 2019, 11, e5226. [Google Scholar] [CrossRef] [Green Version]
- Sindel, A.; Dereci, Ö.; Hatipoğlu, M.; Altay, M.; Özalp, Ö.; Öztürk, A. The effects of irrigation volume to the heat generation during implant surgery. Med. Oral. Patol. Oral. Cir. Bucal 2017, 22, e506–e511. [Google Scholar] [CrossRef]
- Ashry, A.; Elattar, M.; Elsamni, O.; Soliman, I. Effect of Guiding Sleeve Design on Intraosseous Heat Generation During Implant Site Preparation (In Vitro Study). J. Prosthodont. 2022, 31, 147–154. [Google Scholar] [CrossRef]
- Alhroob, K.; Alsabbagh, M.; Alsabbagh, A. Effect of the use of a surgical guide on heat generation during implant placement: A comparative in vitro study. Dent. Med. Probl. 2021, 58, 55–59. [Google Scholar] [CrossRef]
- Delgado-Ruiz, R.; Velasco Ortega, E.; Romanosm, G.; Gerhkem, S.; Newen, I.; Calvo-Guirado, J. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study. Clin. Oral. Investig. 2018, 22, 349–359. [Google Scholar] [CrossRef]
- Di Stefano, D.; Arosio, P. Correlation Between Bone Density and Instantaneous Torque at Implant Site Preparation: A Validation on Polyurethane Foam Blocks of a Device Assessing Density of Jawbones. Int. J. Oral. Maxillofac. Implants 2016, 31, e128–e135. [Google Scholar] [CrossRef]
- Palmisano, A.; Tai, B.; Belmont, B.; Irwin, T.; Shih, A.; Holmes, J. Heat accumulation during sequential cortical bone drilling. J. Orthop. Res. 2016, 34, 463–470. [Google Scholar] [CrossRef]
- Cseke, A.; Heinemann, R. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials. Med. Eng. Phys. 2018, 51, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Horak, Z.; Dvorak, K.; Zarybnicka, L.; Vojackova, H.; Dvorakova, J.; Vilimek, M. Experimental Measurements of Mechanical Properties of PUR Foam Used for Testing Medical Devices and Instruments Depending on Temperature, Density and Strain Rate. Materials 2020, 13, 4560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fang, W.; Li, Y.; Tao, W. Experimental study of the thermal conductivity of polyurethane foams. Appl. Thermal. Eng. 2017, 115, 528–538. [Google Scholar] [CrossRef]
- Szalma, J.; Lovász, B.; Vajta, L.; Soós, B.; Lempel, E.; Möhlhenrich, S. The influence of the chosen in vitro bone simulation model on intraosseous temperatures and drilling times. Sci. Rep. 2019, 9, 11817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernabeu-Mira, J.; Soto-Peñaloza, D.; Peñarrocha-Diago, M.; Camacho-Alonso, F.; Rivas-Ballester, R.; Peñarrocha-Oltra, D. Low-speed drilling without irrigation versus conventional drilling for dental implant osteotomy preparation: A systematic review. Clin. Oral. Investig. 2021, 25, 4251–4267. [Google Scholar] [CrossRef]
- Lee, J.; Gozen, B.; Ozdoganlar, O. Modeling and experimentation of bone drilling forces. J. Biomech. 2012, 45, 1076–1083. [Google Scholar] [CrossRef]
- Lughmani, W.; Bouazza-Marouf, K.; Ashcroft, I. Drilling in cortical bone: A finite element model and experimental investigations. J. Mech. Behav. Biomed. Mater. 2015, 42, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Shakouri, E.; Sadeghi, M.; Maerefat, M.; Shajari, S. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone. Proc. Inst. Mech. Eng. H 2014, 228, 330–341. [Google Scholar] [CrossRef]
- Trisi, P.; Berardini, M.; Falco, A.; Podaliri Vulpiani, M.; Perfetti, G. Insufficient irrigation induces peri-implant bone resorption: An in vivo histologic analysis in sheep. Clin. Oral. Implants Res. 2014, 25, 696–701. [Google Scholar] [CrossRef]
- Yoshida, K.; Uoshima, K.; Oda, K.; Maeda, T. Influence of heat stress to matrix on bone formation. Clin. Oral. Implants Res. 2009, 20, 782–790. [Google Scholar] [CrossRef]
- Piattelli, A.; Piattelli, M.; Mangano, C.; Scarano, A. A histologic evaluation of eight cases of failed dental implants: Is bone overheating the most probable cause? Biomaterials 1998, 19, 683–690. [Google Scholar] [CrossRef]
- Reingewirtz, Y.; Szmukler-Moncler, S.; Senger, B. Influence of different parameters on bone heating and drilling time in implantology. Clin. Oral. Implants Res. 1997, 8, 189–197. [Google Scholar] [CrossRef]
- Islam, M.; Wang, X. Effect of coring conditions on temperature rise in bone. Biomed. Mater. Eng. 2017, 28, 201–211. [Google Scholar] [CrossRef]
- Gholampour, S.; Deh, H. The effect of spatial distances between holes and time delays between bone drillings based on examination of heat accumulation and risk of bone thermal necrosis. Biomed. Eng. Online 2019, 18, 65. [Google Scholar] [CrossRef] [Green Version]
- Heydari, H.; Kazerooni, N.C.; Zolfaghari, M.; Ghoreishi, M.; Tahmasbi, V. Analytical and experimental study of effective parameters on process temperature during cortical bone drilling. Proc. Inst. Mech. Eng. H. 2018, 232, 871–883. [Google Scholar] [CrossRef]
- Tarnow, D.; Cho, S.; Wallace, S. The effect of inter-implant distance on the height of inter-implant bone crest. J. Periodontol. 2000, 71, 546–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanauskaite, A.; Sader, R. Esthetic complications in implant dentistry. Periodontol. 2000 2022, 88, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Gastaldo, J.; Cury, P.; Sendyk, W. Effect of the vertical and horizontal distances between adjacent implants and between a tooth and an implant on the incidence of interproximal papilla. J. Periodontol. 2004, 75, 1242–1246. [Google Scholar] [CrossRef]
- Traini, T.; Novaes, A.; Piattelli, A.; Papalexiou, V.; Muglia, V. The relationship between interimplant distances and vascularization of the interimplant bone. Clin. Oral. Implants Res. 2010, 21, 822–829. [Google Scholar] [CrossRef] [PubMed]
Inter-Osteotomy Distance and Time. Coronal Area | Sample Size | Mean | Standard Deviation | 95% CI |
---|---|---|---|---|
D7CT0 | 15 | 21.133 | 0.713 | (15.976, 26.290) |
D7CT20 | 15 | 26.03 | 4.97 | (20.87, 31.19) |
D7CT40 | 15 | 39.08 | 11.90 | (33.92, 44.23) |
D7CT60 | 15 | 58.86 | 19.32 | (53.70, 64.01) |
D7CT80 | 15 | 59.74 | 18.51 | (54.59, 64.90) |
D7CT100 | 15 | 54.07 | 18.19 | (48.91, 59.22) |
D14CT0 | 15 | 22.040 | 1.679 | (16.883, 27.197) |
D14CT20 | 15 | 22.597 | 1.084 | (17.440, 27.754) |
D14CT40 | 15 | 22.655 | 0.835 | (17.498, 27.812) |
D14CT60 | 15 | 25.195 | 1.837 | (20.038, 30.352) |
D14CT80 | 15 | 25.692 | 2.034 | (20.535, 30.849) |
D14CT100 | 15 | 28.307 | 1.520 | (23.150, 33.464) |
Inter-Osteotomy Distance and Time. Middle Area | Sample Size | Mean | Standard Deviation | 95% CI |
---|---|---|---|---|
D7MT0 | 15 | 20.816 | 0.484 | (17.158, 24.475) |
D7M20 | 15 | 20.980 | 0.496 | (17.322, 24.638) |
D7MT40 | 15 | 26.90 | 4.91 | (23.24, 30.55) |
D7MT60 | 15 | 40.74 | 10.61 | (37.08, 44.40) |
D7MT80 | 15 | 43.42 | 13.13 | (39.77, 47.08) |
D7MT100 | 15 | 52.60 | 17.39 | (48.94, 56.26) |
D14MT0 | 15 | 21.223 | 0.450 | (17.565, 24.881) |
D14MT20 | 15 | 21.344 | 0.609 | (17.686, 25.002) |
D14MT40 | 15 | 21.376 | 0.452 | (17.718, 25.034) |
D14MT60 | 15 | 22.284 | 0.732 | (18.626, 25.943) |
D14MT80 | 15 | 22.524 | 0.707 | (18.866, 26.182) |
D14MT100 | 15 | 28.252 | 1.972 | (24.594, 31.910) |
Inter-Osteotomy Distance and Time. Apical Area | Sample Size | Mean | Standard Deviation | 95% CI |
---|---|---|---|---|
D7AT0 | 15 | 20.740 | 0.523 | (19.757, 21.723) |
D7AT20 | 15 | 20.843 | 0.529 | (19.860, 21.826) |
D7AT40 | 15 | 21.132 | 0.658 | (20.148, 22.115) |
D7AT60 | 15 | 23.194 | 1.820 | (22.211, 24.177) |
D7AT80 | 15 | 24.131 | 3.247 | (23.148, 25.114) |
D7AT100 | 15 | 28.89 | 5.34 | (27.91, 29.88) |
D14AT0 | 15 | 21.092 | 0.387 | (20.109, 22.075) |
D14AT20 | 15 | 21.112 | 0.387 | (20.128, 22.095) |
D14AT40 | 15 | 21.148 | 0.392 | (20.165, 22.131) |
D14AT60 | 15 | 21.2436 | 0.3480 | (20.2604, 22.2268) |
D14AT80 | 15 | 21.2933 | 0.3576 | (20.3101, 22.2765) |
D14AT100 | 15 | 23.025 | 0.790 | (22.041, 24.008) |
Coronal Groups Comparison | Difference of Means | SE of Difference | 95% CI | T-Value | Adjusted p Value |
---|---|---|---|---|---|
D14CT0–D7CT0 | 0.91 | 3.69 | (−6.39, 8.20) | 0.25 | 0.806 |
D14CT20–D7CT20 | −3.43 | 3.69 | (−10.72, 3.86) | −0.93 | 0.354 |
D14CT40–D7CT40 | −16.42 | 3.69 | (−23.72, −9.13) | −4.45 | 0.000 * |
D14CT60–D7CT60 | −33.66 | 3.69 | (−40.95, −26.37) | −9.11 | 0.000 * |
D14CT80–D7CT80 | −34.05 | 3.69 | (−41.34, −26.76) | −9.22 | 0.000 * |
D14CT100–D7CT100 | −25.76 | 3.69 | (−33.05, −18.47) | −6.97 | 0.000 * |
Middle Groups Comparison | Difference of Means | SE of Difference | 95% CI | T-Value | Adjusted p Value |
---|---|---|---|---|---|
D14MT0–D7MT0 | 0.41 | 2.62 | (−4.77, 5.58) | 0.16 | 0.877 |
D14MT20–D7M20 | 0.36 | 2.62 | (−4.81, 5.54) | 0.14 | 0.890 |
D14MT40–D7MT40 | −5.52 | 2.62 | (−10.69, −0.35) | −2.11 | 0.037 * |
D14MT40–D7MT60 | −19.36 | 2.62 | (−24.54, −14.19) | −7.39 | 0.000 * |
D14MT80–D7MT80 | −20.90 | 2.62 | (−26.07, −15.73) | −7.98 | 0.000 * |
D14MT100–D7MT100 | −24.35 | 2.62 | (−29.52, −19.17) | −9.29 | 0.000 * |
Apical Groups Comparison | Difference of Means | SE of Difference | 95% CI | T-Value | Adjusted p Value |
---|---|---|---|---|---|
D14AT0–D7AT0 | 0.352 | 0.704 | (−1.038, 1.743) | 0.50 | 0.618 |
D14AT20–D7AT20 | 0.268 | 0.704 | (−1.122, 1.659) | 0.38 | 0.704 |
D14AT40–D7AT40 | 0.017 | 0.704 | (−1.374, 1.407) | 0.02 | 0.981 |
D14AT60–D7AT60 | −1.950 | 0.704 | (−3.341, −0.560) | −2.77 | 0.006 * |
D14AT80–D7AT80 | −2.838 | 0.704 | (−4.228, −1.447) | −4.03 | 0.00 * |
D14AT100–D7AT100 | −5.869 | 0.704 | (−7.260, −4.479) | −8.33 | 0.00 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Tanner, A.; Romanos, G.; Delgado-Ruiz, R. Heat Accumulation in Implant Inter-Osteotomy Areas—An Experimental In Vitro Study. Biomedicines 2023, 11, 9. https://doi.org/10.3390/biomedicines11010009
Li S, Tanner A, Romanos G, Delgado-Ruiz R. Heat Accumulation in Implant Inter-Osteotomy Areas—An Experimental In Vitro Study. Biomedicines. 2023; 11(1):9. https://doi.org/10.3390/biomedicines11010009
Chicago/Turabian StyleLi, Shanlin, Adam Tanner, Georgios Romanos, and Rafael Delgado-Ruiz. 2023. "Heat Accumulation in Implant Inter-Osteotomy Areas—An Experimental In Vitro Study" Biomedicines 11, no. 1: 9. https://doi.org/10.3390/biomedicines11010009