Glycemic Variability in Type 1 Diabetes Mellitus Pregnancies—Novel Parameters in Predicting Large-for-Gestational-Age Neonates: A Prospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Protocol and Study Cohort
2.2. GV and CGM Data
2.3. Study Outcomes
2.4. Statistical Analysis
3. Results
3.1. Pregnancy Outcomes
3.2. GV Parameters and LGA
3.3. CGM Parameters
4. Discussion
4.1. Glycemic Variability and the Risk for LGA
4.2. Continuous Glucose Monitoring Parameters and LGA
4.3. Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GV | glycemic variability |
T1DM | type 1 diabetes mellitus |
T2DM | type 2 diabetes mellitus |
CGM | continuous glucose monitoring |
LGA | large-for-gestational-age neonates |
MDII | multiple daily insulin injection |
CSII | continuous subcutaneous insulin infusion |
%CV | percentage coefficient of variation (%CV) |
SD | standard deviation of mean glucose |
CONGA | continuous overlapping net glycemic action |
LI | lability index |
MAGE | mean amplitude of glucose excursions |
MAG | mean absolute glucose |
MODD | mean of daily differences |
LBGI | low blood glucose index |
HBGI | high blood glucose index |
ADRR | average daily risk range |
GRADE | glycemic risk assessment diabetic equation |
References
- McGrath, R.T.; Glastras, S.J.; Hocking, S.L.; Fulcher, G.R. Large-for-Gestational-Age Neonates in Type 1 Diabetes and Pregnancy: Contribution of Factors Beyond Hyperglycemia. Diabetes Care 2018, 41, 1821–1828. [Google Scholar] [CrossRef] [PubMed]
- Mackin, S.T.; on behalf of the SDRN Epidemiology Group; Nelson, S.M.; Kerssens, J.J.; Wood, R.; Wild, S.; Colhoun, H.M.; Leese, G.P.; Philip, S.; Lindsay, R.S. Diabetes and pregnancy: National trends over a 15 year period. Diabetologia 2018, 61, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Stogianni, A.; Lendahls, L.; Landin-Olsson, M.; Thunander, M. Obstetric and perinatal outcomes in pregnancies complicated by diabetes, and control pregnancies, in Kronoberg, Sweden. BMC Pregnancy Childbirth 2019, 19, 159. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.; Naem, E.; Taha, F.; Konje, J.C.; Abou-Samra, A.B. Outcomes of type 1 diabetes mellitus in pregnancy; effect of excessive gestational weight gain and hyperglycaemia on fetal growth. Diabetes Metab. Syndr. 2019, 13, 84–88. [Google Scholar] [CrossRef]
- Abell, S.K.; Boyle, J.A.; De Courten, B.; Knight, M.; Ranasinha, S.; Regan, J.; Soldatos, G.; Wallace, E.M.; Zoungas, S.; Teede, H.J. Contemporary type 1 diabetes pregnancy outcomes: Impact of obesity and glycaemic control. Med. J. Aust. 2016, 205, 162–167. [Google Scholar] [CrossRef]
- Morrens, A.; Verhaeghe, J.; Vanhole, C.; Devlieger, R.; Mathieu, C.; Benhalima, K. Risk factors for large-for-gestational age infants in pregnant women with type 1 diabetes. BMC Pregnancy Childbirth 2016, 16, 162. [Google Scholar] [CrossRef]
- Ladfors, L.; Shaat, N.; Wiberg, N.; Katasarou, A.; Berntorp, K.; Kristensen, K. Fetal overgrowth in women with type 1 and type 2 diabetes mellitus. PLoS ONE 2017, 12, e0187917. [Google Scholar] [CrossRef]
- Alexander, L.D.; Tomlinson, G.; Feig, D.S. Predictors of Large-for-Gestational-Age Birthweight Among Pregnant Women with Type 1 and Type 2 Diabetes: A Retrospective Cohort Study. Can. J. Diabetes 2019, 43, 560–566. [Google Scholar] [CrossRef]
- Lemaitre, M.; Ternynck, C.; Bourry, J.; Baudoux, F.; Subtil, D.; Vambergue, A. Association Between HbA1c Levels on Adverse Pregnancy Outcomes During Pregnancy in Patients with Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2022, 107, e1117–e1125. [Google Scholar] [CrossRef]
- Kristensen, K.; Ögge, L.E.; Sengpiel, V.; Kjölhede, K.; Dotevall, A.; Elfvin, A.; Knop, F.K.; Wiberg, N.; Katsarou, A.; Shaat, N.; et al. Continuous glucose monitoring in pregnant women with type 1 diabetes: An observational cohort study of 186 pregnancies. Diabetologia 2019, 62, 1143–1153. [Google Scholar] [CrossRef] [Green Version]
- McGrath, R.T.; Glastras, S.J.; Seeho, S.K.; Scott, E.S.; Fulcher, G.R.; Hocking, S.L. Association Between Glycemic Variability, HbA1c, and Large-for-Gestational-Age Neonates in Women with Type 1 Diabetes. Diabetes Care 2017, 40, e98–e100. [Google Scholar] [CrossRef]
- Murphy, H.R. Continuous glucose monitoring targets in type 1 diabetes pregnancy: Every 5% time in range matters. Diabetologia 2019, 62, 1123–1128. [Google Scholar] [CrossRef]
- Ashwal, E.; Miron, E.; Hadar, E.; Wiznitzer, A.; Toledano, Y. The impact of glucose variability on fetal growth in Type 1 diabetes patients. Am. J. Obstet. Gynecol. 2018, 218, S575. [Google Scholar] [CrossRef]
- Herranz, L.; Pallardo, L.F.; Hillman, N.; Martin-Vaquero, P.; Villarroel, A.; Fernandez, A. Maternal third trimester hyperglycaemic excursions predict large-for-gestational-age infants in type 1 diabetic pregnancy. Diabetes Res. Clin. Pract. 2007, 75, 42–46. [Google Scholar] [CrossRef]
- Kyne-Grzebalski, D.; Wood, L.; Marshall, S.M.; Taylor, R. Episodic hyperglycaemia in pregnant women with well-controlled Type 1 diabetes mellitus: A major potential factor underlying macrosomia. Diabet. Med. 1999, 16, 702–706. [Google Scholar] [CrossRef]
- Feig, D.S.; Donovan, L.E.; Corcoy, R.; Murphy, K.E.; Amiel, S.A.; Hunt, K.F.; Asztalos, E.; Barrett, J.F.R.; Sanchez, J.J.; de Leiva, A.; et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): A multicentre international randomised controlled trial. Lancet 2017, 390, 2347–2359, Erratum in Lancet 2017, 390, 2346. [Google Scholar] [CrossRef]
- Law, G.R.; Ellison, G.T.; Secher, A.L.; Damm, P.; Mathiesen, E.R.; Temple, R.; Murphy, H.R.; Scott, E.M. Analysis of Continuous Glucose Monitoring in Pregnant Women with Diabetes: Distinct Temporal Patterns of Glucose Associated with Large-for-Gestational-Age Infants. Diabetes Care 2015, 38, 1319–1325. [Google Scholar] [CrossRef]
- Dalfrà, M.G.; Sartore, G.; Di Cianni, G.; Mello, G.; Lencioni, C.; Ottanelli, S.; Sposato, J.; Valgimigli, F.; Scuffi, C.; Scalese, M.; et al. Glucose Variability in Diabetic Pregnancy. Diabetes Technol. Ther. 2011, 13, 853–859. [Google Scholar] [CrossRef]
- Gupta, R.; Khoury, J.; Altaye, M.; Dolan, L.; Szczesniak, R.D. Glycemic Excursions in Type 1 Diabetes in Pregnancy: A Semiparametric Statistical Approach to Identify Sensitive Time Points during Gestation. J. Diabetes Res. 2017, 2017, 2852913. [Google Scholar] [CrossRef]
- Mulla, B.M.; Noor, N.; James-Todd, T.; Isganaitis, E.; Takoudes, T.C.; Curran, A.; Warren, C.E.; O’Brien, K.E.; Brown, F.M. Continuous Glucose Monitoring, Glycemic Variability, and Excessive Fetal Growth in Pregnancies Complicated by Type 1 Diabetes. Diabetes Technol. Ther. 2018, 20, 413–419. [Google Scholar] [CrossRef]
- Hoek-Hogchem, R.; Bovenberg, S.; Dekker, P.; Birnie, E.; Veeze, H.J.; Duvekot, H.J.; Galjaard, S.; Aanstoot, H.-J. Effects of peri-conception and pregnancy glycemic variability on pregnancy and perinatal complications in type 1 diabetes: A pilot study. Exp. Clin. Endocrinol. Diabetes 2022. published online ahead of print. [Google Scholar] [CrossRef]
- Sibiak, R.; Mrzewka-Rogacz, B.; Mantaj, U.; Gutaj, P.; Wender-Ozegowska, E. Parameters of Glycemic Variability as Predictors of LGA in Pregnant Women with Well-Controlled Type 1 Diabetes (T1D). Diabetes 2021, 70, 96-OR. [Google Scholar] [CrossRef]
- Sibiak, R.; Gutaj, P.; Mrzewka-Rogacz, B.; Mantaj, U.; Wender-Ozegowska, E. Novel Continuous Glucose Monitoring Metrics and Large-for-Gestational-Age Risk: An Exploratory Retrospective Cohort Study in Pregnancies with Type 1 Diabetes. Diabetes Technol. Ther. 2022, 24, 42–53. [Google Scholar] [CrossRef]
- Polsky, S.; Pyle, L.; Garcetti, R.; Joshee, P.; Demmitt, J.K.; Vigers, T.B.; Snell-Bergeon, J.K. Associations between Indices of Glycemic Variability (GV) and Gestational Outcomes among Pregnant Women with Type 1 Diabetes (T1D). Diabetes 2019, 68, 1406. [Google Scholar] [CrossRef]
- Scott, E.M.; Murphy, H.R.; Kristensen, K.H.; Feig, D.S.; Kjölhede, K.; Englund-Ögge, L.; Berntorp, K.E.; Law, G.R. Continuous Glucose Monitoring Metrics and Birth Weight: Informing Management of Type 1 Diabetes Throughout Pregnancy. Diabetes Care 2022, 45, 1724–1734. [Google Scholar] [CrossRef] [PubMed]
- Service, F.J. Glucose Variability. Diabetes 2013, 62, 1398–1404. [Google Scholar] [CrossRef]
- Ceriello, A. Glucose Variability and Diabetic Complications: Is It Time to Treat? Diabetes Care 2020, 43, 1169–1171. [Google Scholar] [CrossRef] [PubMed]
- Monnier, L.; Colette, C.; Owens, D. The application of simple metrics in the assessment of glycaemic variability. Diabetes Metab. 2018, 44, 313–319. [Google Scholar] [CrossRef]
- Suh, S.; Kim, J.H. Glycemic Variability: How Do We Measure It and Why Is It Important? Diabetes Metab. J. 2015, 39, 273–282. [Google Scholar] [CrossRef]
- Kovatchev, B. Glycemic Variability: Risk Factors, Assessment, and Control. J. Diabetes Sci. Technol. 2019, 13, 627–635. [Google Scholar] [CrossRef]
- Czerwoniuk, D.; Fendler, W.; Walenciak, L.; Mlynarski, W. GlyCulator: A Glycemic Variability Calculation Tool for Continuous Glucose Monitoring Data. J. Diabetes Sci. Technol. 2011, 5, 447–451. [Google Scholar] [CrossRef]
- Hill, N.R.; Oliver, N.S.; Choudhary, P.; Levy, J.C.; Hindmarsh, P.; Matthews, D.R. Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. Diabetes Technol. Ther. 2011, 13, 921–928. [Google Scholar] [CrossRef]
- Rodbard, D. Glucose Variability: A Review of Clinical Applications and Research Developments. Diabetes Technol. Ther. 2018, 20, S25–S215. [Google Scholar] [CrossRef]
- Bergenstal, R.M. Continuous glucose monitoring: Transforming diabetes management step by step. Lancet 2018, 391, 1334–1336. [Google Scholar] [CrossRef]
- Gómez, A.M.; Muñoz, O.M.; Marin, A.; Fonseca, M.C.; Rondon, M.; Gómez, M.A.R.; Sanko, A.; Lujan, D.; Jaramillo, M.A.G.; Vargas, F.L. Different Indexes of Glycemic Variability as Identifiers of Patients with Risk of Hypoglycemia in Type 2 Diabetes Mellitus. J. Diabetes Sci. Technol. 2018, 12, 1007–1015. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Signoriello, S.; Maio, A.; Chiodini, P.; Bellastella, G.; Scappaticcio, L.; Longo, M.; Giugliano, D.; Esposito, K. Effects of Continuous Glucose Monitoring on Metrics of Glycemic Control in Diabetes: A Systematic Review with Meta-analysis of Randomized Controlled Trials. Diabetes Care 2020, 43, 1146–1156. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, B.; Huang, S.; Zhu, C.; Bian, M. Glycemic variability: Adverse clinical outcomes and how to improve it? Cardiovasc. Diabetol. 2020, 19, 102. [Google Scholar] [CrossRef]
- Kovatchev, B.P.; Otto, E.; Cox, D.; Gonder-Frederick, L.; Clarke, W. Evaluation of a New Measure of Blood Glucose Variability in Diabetes. Diabetes Care 2006, 29, 2433–2438. [Google Scholar] [CrossRef]
- Crenier, L.; Abou-Elias, C.; Corvilain, B. Glucose Variability Assessed by Low Blood Glucose Index Is Predictive of Hypoglycemic Events in Patients with Type 1 Diabetes Switched to Pump Therapy. Diabetes Care 2013, 36, 2148–2153. [Google Scholar] [CrossRef]
- Chehregosha, H.; Khamseh, M.E.; Malek, M.; Hosseinpanah, F.; Ismail-Beigi, F. A View Beyond HbA1c: Role of Continuous Glucose Monitoring. Diabetes Ther. 2019, 10, 853–863. [Google Scholar] [CrossRef] [Green Version]
- Beyond A1C Writing Group Need for Regulatory Change to Incorporate Beyond A1C Glycemic Metrics. Diabetes Care 2018, 41, e92–e94. [CrossRef] [PubMed]
- El-Laboudi, A.H.; Godsland, I.F.; Johnston, D.G.; Oliver, N.S. Measures of Glycemic Variability in Type 1 Diabetes and the Effect of Real-Time Continuous Glucose Monitoring. Diabetes Technol. Ther. 2016, 18, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [PubMed]
- Kolcić, I.; Polasek, O.; Pfeifer, D.; Smolej-Narancić, N.; Ilijić, M.; Bljajić, D.; Biloglav, Z.; Ivanisević, M.; Delmis, J. Birth weight of healthy newborns in Zagreb area, Croatia. Coll. Antropol. 2005, 29, 257–262. [Google Scholar]
- Carver, T.D.; Anderson, S.M.; Aldoretta, P.W.; Hay, W.W., Jr. Effect of low-level basal plus marked “pulsatile” hyperglycemia on insulin secretion in fetal sheep. Am. J. Physiol. 1996, 271 Pt 1, E865–E871. [Google Scholar] [CrossRef]
- Desoye, G.; Nolan, C. The fetal glucose steal: An underappreciated phenomenon in diabetic pregnancy. Diabetologia 2016, 59, 1089–1094. [Google Scholar] [CrossRef]
- Damm, P.; Mersebach, H.; Råstam, J.; Kaaja, R.; Hod, M.; McCance, D.R.; Mathiesen, E.R. Poor pregnancy outcome in women with type 1 diabetes is predicted by elevated HbA1c and spikes of high glucose values in the third trimester. J. Matern. Fetal. Neonatal Med. 2014, 27, 149–154. [Google Scholar] [CrossRef] [Green Version]
Pregnancy Outcomes | Total | LGA | No-LGA |
---|---|---|---|
LGA/% | 36.4 | / | / |
Birth percentile | 66.2 ± 27.6 | 92.4 ± 8.0 | 51.1 ± 23.2 |
Birth weight/grams | 3399 ± 680 | 4029 ± 385 | 3040 ± 535 |
Birth length/centimeters | 49 ± 3 | 50.5 ± 1.4 | 47.7 ± 2.5 |
Week of delivery | 37(±2) + 3(±2) | 37(±0.8) + 3(±1.9) | 36(±1.9) + 2(±2.0) |
Macrosomia/% | 17 | 100% | 0% |
Gestational weight gain/kilograms | 13 ± 5 | 13.4 ± 4.3 | 12.1 ± 5.7 |
Maternal adverse outcomes | 15% (10/66) | 70% | 30% |
Neonatal adverse outcomes | 8% (5/66) | 60% | 40% |
GV Parameters | Total | LGA | no-LGA | p-Value |
---|---|---|---|---|
First trimester | ||||
%CV | 40.5 (35.9–44.8) | 39.0 (37.2–42.6) | 42.3 (34.3–45.9) | 0.71 |
SD | 2.7 (2.3–3.2) | 3.0 (2.6–3.3) | 2.5 (2.2–3.1) | 0.01 |
CONGA | 5.1 (4.2–5.5) | 5.5 (5.1–6.5) | 4.6 (4.1–5.3) | <0.01 |
LI | 12.1 (8.8–17.3) | 14.9 (11.0–19.3) | 10.4 (8.1–16.1) | 0.02 |
MAG | 6.3 (5.5–7.2) | 6.9 (6.1–8.0) | 6.2 (5.4–7.0) | 0.11 |
MODD | 2.7 (2.4–3.5) | 3.1 (2.6–3.7) | 2.5 (2.2–3.4) | 0.01 |
HBGI | 5.2 (3.9–7.8) | 7.1 (5.2–9.8) | 4.6 (3.6–6.8) | <0.01 |
LBGI | 6.5 (4.5–9.1) | 5.0 (4.0–7.6) | 7.9 (4.7–9.2) | 0.11 |
ADRR | 23.5 (18.0–31.4) | 28.4 (23.5–38.5) | 21.6 (16.3–30.0) | <0.01 |
M-value | 11.3 (7.3–16.1) | 9.5 (7.5–16.3) | 13.3 (6.4–16.3) | 0.77 |
J-index | 29.8 (22.9–39.0) | 36.3 (30.1–47.6) | 26.5 (20.7–35.5) | <0.01 |
Second trimester | ||||
%CV | 37.9 (34.7–43.0) | 37.5 (36.0–40.0) | 38.9 (33.1–43.4) | 0.69 |
SD | 2.3 (2.0–2.8) | 2.5 (2.2–2.8) | 2.2 (1.8–2.8) | 0.23 |
CONGA | 4.6 (4.2–5.3) | 4.7(4.3–5.3) | 4.5 (3.8–5.3) | 0.35 |
LI | 8.4 (6.3–12.6) | 9.3 (7.9–12.8) | 7.9 (6.0–12.2) | 0.21 |
MAG | 5.5 (4.8–6.2) | 5.6 (5.0–6.4) | 5.2 (4.5–6.2) | 0.33 |
MODD | 2.4 (2.1–3.1) | 2.6 (2.3–3.1) | 2.3 (2.0–3.1) | 0.22 |
HBGI | 3.9 (2.7–5.9) | 4.2 (3.1–6.3) | 3.5 (2.5–5.4) | 0.31 |
LBGI | 6.4 (4.4–9.4) | 6.0 (4.6–7.9) | 7.0 (4.2–9.8) | 0.69 |
ADRR | 18.2 (13.3–26.2) | 20.2 (14.0–27.0) | 17.4 (11.7–23.2) | 0.26 |
M-value | 9.5 (6.4–14.8) | 8.4 (7.1–11.4) | 10.7 (5.4–17.6) | 0.51 |
J-index | 24.1 (18.6–33.3) | 24.5 (21.3–34.3) | 23.6 (16.6–31.4) | 0.18 |
Third trimester | ||||
%CV | 33.2 (29.5–38.3) | 32.5 (29.4–35.7) | 34.1 (29.5–39.7) | 0.50 |
SD | 2.1 (1.7–2.5) | 2.1 (1.9–2.6) | 2.0 (1.6–2.4) | 0.26 |
CONGA | 4.7 (4.3–5.4) | 5.1 (4.4–5.8) | 4.5 (4.1–5.4) | 0.04 |
LI | 7.0 (4.7–8.9) | 8.2 (6.5–10.7) | 5.9 (4.3–8.8) | 0.81 |
MAG | 4.6 (4.0–5.3) | 4.8 (4.5–5.3) | 4.4 (3.7–5.1) | 0.11 |
MODD | 2.1 (1.8–2.6) | 2.3 (2.1–2.8) | 2.0 (1.7–2.5) | 0.06 |
HBGI | 3.4 (2.2–4.9) | 3.4 (2.9–6.0) | 3.3 (1.8–4.6) | 0.19 |
LBGI | 4.4 (3.1–7.4) | 4.2 (3.0–5.1) | 5.0 (3.2–8.8) | 0.14 |
ADRR | 15.2 (11.0–19.9) | 17.3 (13.9–24.1) | 12.3 (7.8–19.8) | 0.04 |
M-value | 6.5 (4.5–11.1) | 6.1 (4.4–9.0) | 8.1 (4.4–15.9) | 0.12 |
J-index | 24.0 (17.8–29.3) | 25.8 (21.3–33.9) | 21.1 (17.0–27.4) | 0.04 |
GV Parameters | p-Value | OR (CI) |
---|---|---|
First trimester | ||
J-index | 0.03 | 1.33 (1.02, 1.73) |
Second trimester | ||
J-index | 0.03 | 3.18 (1.12, 9.07) |
M-value | 0.01 | 0.52 (0.32, 0.85) |
%CV | 0.04 | 3.24 (1.02, 10.27) |
Third trimester | ||
J-index | 0.02 | 1.37 (1.03, 1.82) |
HBGI | <0.01 | 1.48 (1.05, 2.09) |
ADRR | 0.02 | 1.31 (1.02, 1.67) |
CGM Parameters | Total | LGA | no-LGA | p-Value |
---|---|---|---|---|
First trimester | ||||
GMI/% | 6.4 (6.0–6.9) | 6.5 (6.0–7.0) | 6.3 (5.9–6.7) | 0.41 |
Mean glucose/mmol/L | 7.2 (6.2–8.3) | 7.5 (6.2–8.7) | 6.9 (6.0–7.9) | 0.24 |
TAR/% | 36.5 (25.0–48.7) | 39.5 (26.5–52.5) | 31.5 (23.2–44.5) | 0.18 |
TIR/% | 55.0 (44.0–63.0) | 53.0 (41.7–59.2) | 56.5 (46.0–65.2) | 0.26 |
TBR/% | 7.5 (3.2–16.0) | 6.5 (3.7–11.5) | 8.5 (3.0–18.5) | 0.56 |
Very low glucose/% | 3.0 (1.0–8.0) | 2.0 (1.0–6.0) | 5.5 (1.0–9.0) | 0.27 |
Very high glucose/% | 2.0 (1.0–7.5) | 3.0 (1.5–7.5) | 1.5 (1.0–8.2) | 0.50 |
Second trimester | ||||
GMI/% | 5.9 (5.7–6.2) | 6.0 (5.8–6.3) | 5.9 (5.5–6.2) | 0.09 |
Mean glucose/mmol/L | 6.0 (5.6–6.7) | 6.3 (5.8–7.0) | 6.0 (5.1–6.7) | 0.09 |
TAR/% | 20 (15.0–31.7) | 22.5 (18.7–33.7) | 17.5 (9.7–28.2) | 0.04 |
TIR/% | 64 (54.2–68.7) | 64.5 (55.7–67.0) | 63.0 (53.7–69.5) | 0.98 |
TBR/% | 10.0 (6.0–21.5) | 9.5 (6.0–15.0) | 14.0 (6.0–24.2) | 0.15 |
Very low glucose/% | 5.0 (2.0–9.5) | 4.0 (2.0–7.5) | 7.0 (1.2–14.0) | 0.13 |
Very high glucose/% | 0.0 (0.0–1.0) | 1.0 (0.0–1.5) | 0.0 (0.0–1.0) | 0.36 |
Third trimester | ||||
GMI/% | 6.1 (5.6–6.3) | 6.3 (5.9–6.6) | 5.8 (5.4–6.3) | <0.01 |
Mean glucose/mmol/L | 6.6 (5.5–7.1) | 7.0 (6.1–7.7) | 6.0 (5.2–7.0) | 0.01 |
TAR/% | 26.0 (10.5–34.5) | 26.0 (19.0–47.0) | 19.0 (9.0–32.0) | 0.02 |
TIR/% | 66.0 (56.5–73.5) | 66.0 (52.0–74.0) | 66.0 (57.0–72.2) | 0.81 |
TBR/% | 6.0 (3.0–12.5) | 4.0 (3.0–8.0) | 10.0 (3.0–21.5) | 0.04 |
Very low glucose/% | 2.0 (1.0–6.0) | 2.0 (1.0–3.0) | 3.0 (0.5–11.5) | 0.19 |
Very high glucose/% | 0.0 (0.0–1.0) | 0.0 (0.0–2.0) | 0.0 (0.0–1.0) | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leksic, G.; Baretić, M.; Gudelj, L.; Radic, M.; Milicic, I.; Ivanišević, M.; Jurisic-Erzen, D. Glycemic Variability in Type 1 Diabetes Mellitus Pregnancies—Novel Parameters in Predicting Large-for-Gestational-Age Neonates: A Prospective Cohort Study. Biomedicines 2022, 10, 2175. https://doi.org/10.3390/biomedicines10092175
Leksic G, Baretić M, Gudelj L, Radic M, Milicic I, Ivanišević M, Jurisic-Erzen D. Glycemic Variability in Type 1 Diabetes Mellitus Pregnancies—Novel Parameters in Predicting Large-for-Gestational-Age Neonates: A Prospective Cohort Study. Biomedicines. 2022; 10(9):2175. https://doi.org/10.3390/biomedicines10092175
Chicago/Turabian StyleLeksic, Gloria, Maja Baretić, Lara Gudelj, Marija Radic, Iva Milicic, Marina Ivanišević, and Dubravka Jurisic-Erzen. 2022. "Glycemic Variability in Type 1 Diabetes Mellitus Pregnancies—Novel Parameters in Predicting Large-for-Gestational-Age Neonates: A Prospective Cohort Study" Biomedicines 10, no. 9: 2175. https://doi.org/10.3390/biomedicines10092175