Reduced Blood Pressure Dipping Is A Risk Factor for the Progression of Chronic Kidney Disease in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Baseline Clinical and Anthropometric Parameters
2.3. Ambulatory Blood Pressure Monitoring
2.4. Follow-Up
2.5. Endpoints
2.6. Statistical Analysis
2.7. Ethical Issues
3. Results
3.1. Characteristics of the Examined Group
3.2. Annualized eGFR Decrease
3.3. Progression of CKD by at Least One Stage
3.4. Fast CKD Progression
3.5. KRT Initiation
3.6. Mean Arterial Pressure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Shroff, R.; Ledermann, S. Long-term outcome of chronic dialysis in children. Pediatr. Nephrol. 2009, 24, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Ku, E.; McCulloch, C.E.; Ahearn, P.; Grimes, B.A.; Mitsnefes, M.M. trends in cardiovascular mortality among a cohort of children and young adults starting dialysis in 1995 to 2015. JAMA Netw. Open 2020, 3, e2016197. [Google Scholar] [CrossRef]
- Chesnaye, N.C.; Schaefer, F.; Groothoff, J.W.; Bonthuis, M.; Reusz, G.; Heaf, J.G.; Lewis, M.; Maurer, E.; Paripović, D.; Zagozdzon, I.; et al. Mortality risk in European children with end-stage renal disease on dialysis. Kidney Int. 2016, 89, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Staples, A.O.; Greenbaum, L.A.; Smith, J.M.; Gipson, D.S.; Filler, G.; Warady, B.A.; Martz, K.; Wong, C.S. Association between clinical risk factors and progression of chronic kidney disease in children. Clin. J. Am. Soc. Nephrol. 2010, 5, 2172–2179. [Google Scholar] [CrossRef]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic kidney disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Tsai, W.C.; Wu, H.Y.; Peng, Y.S.; Ko, M.J.; Wu, M.S.; Hung, K.Y.; Wu, K.D.; Chu, T.S.; Chien, K.L. Risk factors for development and progression of chronic kidney disease: A systematic review and exploratory meta-analysis. Medicine 2016, 95, e3013. [Google Scholar] [CrossRef]
- Wühl, E.; Trivelli, A.; Picca, S.; Litwin, M.; Peco-Antic, A.; Zurowska, A.; Testa, S.; Jankauskiene, A.; Emre, S.; Caldas-Afonso, A.; et al. Strict blood-pressure control and progression of renal failure in children. N. Engl. J. Med. 2009, 361, 1639–1650. [Google Scholar] [CrossRef]
- Flynn, J.T.; Carroll, M.K.; Ng, D.K.; Furth, S.L.; Warady, B.A. Achieved clinic blood pressure level and chronic kidney disease progression in children: A report from the chronic kidney disease in children cohort. Pediatr. Nephrol. 2021, 36, 1551–1559. [Google Scholar] [CrossRef]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H.; Knoll, G.A.; Muntner, P.; Pecoits-Filho, R.; Sarnak, M.J.; et al. KDIGO 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef]
- Lurbe, E.; Agabiti-Rosei, E.; Cruickshank, J.K.; Dominiczak, A.; Erdine, S.; Hirth, A.; Invitti, C.; Litwin, M.; Mancia, G.; Pall, D.; et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 2016, 34, 1887–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, J.T.; Daniels, S.R.; Hayman, L.L.; Maahs, D.M.; McCrindle, B.W.; Mitsnefes, M.; Zachariah, J.P.; Urbina, E.M. Update: Ambulatory blood pressure monitoring in children and adolescents: A scientific statement from the American Heart Association. Hypertension 2014, 63, 1116–1135. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, G.S.; Giovas, P.P.; Kollias, A.; Rarra, V.C.; Papagiannis, J.; Georgakopoulos, D.; Vazeou, A. Relationship of home blood pressure with target-organ damage in children and adolescents. Hypertens. Res. 2011, 34, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.G.; Dolan, E.; Gao, P.J.; Guo, H.F.; Nawrot, T.; Stanton, A.V.; Zhu, D.L.; O’Brien, E.; Staessen, J.A. Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension 2006, 47, 359–364. [Google Scholar] [CrossRef]
- Samuels, J.; Ng, D.; Flynn, J.T.; Mitsnefes, M.; Poffenbarger, T.; Warady, B.A.; Furth, S. Ambulatory blood pressure patterns in children with chronic kidney disease. Hypertension 2012, 60, 43–50. [Google Scholar] [CrossRef]
- Ida, T.; Kusaba, T.; Kado, H.; Taniguchi, T.; Hatta, T.; Matoba, S.; Tamagaki, K. Ambulatory blood pressure monitoring-based analysis of long-term outcomes for kidney disease progression. Sci. Rep. 2019, 9, 19296. [Google Scholar] [CrossRef]
- Wang, C.; Ye, Z.; Li, Y.; Zhang, J.; Zhang, Q.; Ma, X.; Peng, H.; Lou, T. Prognostic value of reverse dipper blood pressure pattern in chronic kidney disease patients not undergoing dialysis: Prospective cohort study. Sci. Rep. 2016, 6, 34932. [Google Scholar] [CrossRef]
- Sahutoglu, T.; Sakaci, T. Diastolic blood pressure variability in 24 hour-ABPM and outcomes of chronic kidney disease. Clin. Nephrol. 2018, 90, 46–52. [Google Scholar] [CrossRef]
- Harambat, J.; Bonthuis, M.; Groothoff, J.W.; Schaefer, F.; Tizard, E.J.; Verrina, E.; van Stralen, K.J.; Jager, K.J. Lessons learned from the ESPN/ERA-EDTA Registry. Pediatr. Nephrol. 2016, 31, 2055–2064. [Google Scholar] [CrossRef]
- Kułaga, Z.; Litwin, M.; Tkaczyk, M.; Palczewska, I.; Zajączkowska, M.; Zwolińska, D.; Krynicki, T.; Wasilewska, A.; Moczulska, A.; Morawiec-Knysak, A.; et al. Polish 2010 growth references for school-aged children and adolescents. Eur. J. Pediatr. 2011, 170, 599–609. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wühl, E.; Witte, K.; Soergel, M.; Mehls, O.; Schaefer, F. Distribution of 24-h ambulatory blood pressure in children: Normalized reference values and role of body dimensions. J. Hypertens. 2002, 20, 1995–2007. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.V.; Reidy, K.J.; Le, T.H.; David, V.; Winkler, C.; Xu, Y.; Warady, B.; Furth, S.; Kaskel, F.; Melamed, M.L. Association of GSTM1 deletion with progression of CKD in children: Findings from the chronic kidney disease in children (CKiD) study. Am. J. Kidney Dis. 2021, 80, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, M.; Nowicki, M.; Bałasz-Chmielewska, I.; Boguszewska-Baçzkowska, H.; Drozdz, D.; Kołłataj, B.; Jarmoliński, T.; Jobs, K.; Kiliś-Pstrusińska, K.; Leszczyńska, B.; et al. Hypertension in dialysed children: The prevalence and therapeutic approach in Poland—A nationwide survey. Nephrol. Dial. Transplant. 2006, 21, 736–742. [Google Scholar] [CrossRef]
- Mitsnefes, M.M. Cardiovascular disease risk factors in chronic kidney disease in children. Semin. Nephrol. 2021, 41, 434–438. [Google Scholar] [CrossRef]
- Shroff, R.; Dégi, A.; Kerti, A.; Kis, E.; Cseprekál, O.; Tory, K.; Szabó, A.J.; Reusz, G.S. Cardiovascular risk assessment in children with chronic kidney disease. Pediatr. Nephrol. 2013, 28, 875–884. [Google Scholar] [CrossRef]
- Fathallah-Shaykh, S.A.; Flynn, J.T.; Pierce, C.B.; Abraham, A.G.; Blydt-Hansen, T.D.; Massengill, S.F.; Moxey-Mims, M.M.; Warady, B.A.; Furth, S.L.; Wong, C.S. Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin. J. Am. Soc. Nephrol. 2015, 10, 571–577. [Google Scholar] [CrossRef]
- Mitsnefes, M.M.; Kimball, T.R.; Daniels, S.R. Office and ambulatory blood pressure elevation in children with chronic renal failure. Pediatr. Nephrol. 2003, 18, 145–149. [Google Scholar] [CrossRef]
- Jeong, J.H.; Fonkoue, I.T.; Quyyumi, A.A.; DaCosta, D.; Park, J. Nocturnal blood pressure is associated with sympathetic nerve activity in patients with chronic kidney disease. Physiol. Rep. 2020, 8, e14602. [Google Scholar] [CrossRef]
- Ohashi, N.; Isobe, S.; Ishigaki, S.; Aoki, T.; Matsuyama, T.; Sato, T.; Fujikura, T.; Kato, A.; Yasuda, H. Increased heart rate is associated with intrarenal renin-angiotensin system activation in chronic kidney disease patients. Clin. Exp. Nephrol. 2019, 23, 1109–1118. [Google Scholar] [CrossRef]
- Hansen, T.W.; Li, Y.; Boggia, J.; Thijs, L.; Richart, T.; Staessen, J.A. Predictive role of the nighttime blood pressure. Hypertension 2011, 57, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Ren, H.; Xie, J.; Wang, W.; Li, Y.; Gao, P.; Chen, N. Association of nighttime masked uncontrolled hypertension with left ventricular hypertrophy and kidney function among patients with chronic kidney disease not receiving dialysis. JAMA Netw. Open 2022, 5, e2214460. [Google Scholar] [CrossRef]
- Düzova, A.; Karabay Bayazit, A.; Canpolat, N.; Niemirska, A.; Kaplan Bulut, I.; Azukaitis, K.; Karagoz, T.; Oguz, B.; Erdem, S.; Anarat, A.; et al. Isolated nocturnal and isolated daytime hypertension associate with altered cardiovascular morphology and function in children with chronic kidney disease: Findings from the Cardiovascular Comorbidity in Children with Chronic Kidney Disease study. J. Hypertens. 2019, 37, 2247–2255. [Google Scholar] [CrossRef]
- Bakhoum, C.Y.; Katz, R.; Samuels, J.A.; Al-Rousan, T.; Furth, S.L.; Ix, J.H.; Garimella, P.S. Nocturnal dipping and left ventricular mass index in the chronic kidney disease in children cohort. Clin. J. Am. Soc. Nephrol. 2022, 17, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Kado, H.; Kusaba, T.; Matoba, S.; Hatta, T.; Tamagaki, K. Normotensive non-dipping blood pressure profile does not predict the risk of chronic kidney disease progression. Hypertens. Res. 2019, 42, 354–361. [Google Scholar] [CrossRef]
- Dionne, J.M.; Turik, M.M.; Hurley, R.M. Blood pressure abnormalities in children with chronic kidney disease. Blood Press. Monit. 2008, 13, 205–209. [Google Scholar] [CrossRef]
- Warady, B.A.; Abraham, A.G.; Schwartz, G.J.; Wong, C.S.; Muñoz, A.; Betoko, A.; Mitsnefes, M.; Kaskel, F.; Greenbaum, L.A.; Mak, R.H.; et al. Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: The chronic kidney disease in children (CKiD) cohort. Am. J. Kidney Dis. 2015, 65, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Ardissino, G.; Testa, S.; Daccò, V.; Viganò, S.; Taioli, E.; Claris-Appiani, A.; Procaccio, M.; Avolio, L.; Ciofani, A.; Dello Strologo, L.; et al. Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy. Data from the Ital Kid Project. Pediatr. Nephrol. 2004, 19, 172–177. [Google Scholar] [CrossRef]
- Sharma, S.; Smyth, B. From proteinuria to fibrosis: An update on pathophysiology and treatment options. Kidney Blood Press. Res. 2021, 46, 411–420. [Google Scholar] [CrossRef]
- Mian, A.N.; Schwartz, G.J. Measurement and Estimation of Glomerular Filtration Rate in Children. Adv. Chronic Kidney Dis. 2017, 24, 348–356. [Google Scholar] [CrossRef]
Parameter | Initial Values | p |
---|---|---|
Boys/girls | 38/17 | 0.005 |
Age (years) | 14.0 (9.9–15.6) | - |
eGFR (mL/min/1.73 m2) | 66.0 (42.8–75.3) | - |
Height Z-score | −0.2 ± 1.3 | - |
Weight Z-score | 0.3 (−0.4–0.8) | |
BMI Z-score | 0.4 (−0.2–0.9) | - |
Etiology of CKD (n, %) | ||
CAKUT | 22 (40.0%) | <0.001 |
Hereditary diseases | 12 (21.8%) | |
AKI (HUS included) | 9 (16.4%) | |
Glomerular diseases | 7 (12.7%) | |
Cystic kidney diseases | 3 (5.5%) | |
Other * | 2 (3.6%) |
Initial | After Follow-Up | |
---|---|---|
Presence of hypertension (n, %) | 38 (69.1%) | 40 (72.7%) |
Antihypertensive medications | ||
Ca blockers | 23 | 28 |
ACEI/ARB | 24 | 34 |
Beta blockers | 6 | 10 |
Alpha blockers | 4 | 5 |
Diuretics | 2 | 2 |
Presence of proteinuria (n, %) | 18 (32.7%) 131.5 | 22 (40.0%) 104.5 |
Proteinuria (mg/dL) | (36.5–202.3) | (49.8–212.8) |
ABPM Parameter | Measurement [Mean ± SD/Median (IQR)] | Correlation with eGFR Slope * | |
---|---|---|---|
R | p | ||
SBP 24 h (mm Hg) | 120.9 ± 8.7 | 0.11 | 0.433 |
SBP 24 h z-score | 1.3 ± 1.3 | 0.01 | 0.966 |
DBP 24 h (mm Hg) | 69.6 ± 7.9 | 0.14 | 0.317 |
DBP 24 h z-score | 0.4 ± 1.4 | 0.11 | 0.442 |
MAP 24 h (mm Hg) | 86.9 ± 7.4 | 0.14 | 0.320 |
MAP 24 h z-score | 1.0 ± 1.3 | 0.05 | 0.739 |
SBPL 24 h (%) | 23.0 (10.0–44.0) | 0.02 | 0.866 |
DBPL 24 h (%) | 12.0 (5.0–35.0) | 0.02 | 0.911 |
PP 24 h (mm Hg) | 51.2 ± 7.8 | −0.02 | 0.913 |
HR 24 h (bpm) | 81.2 ± 12.0 | −0.13 | 0.350 |
HR 24 h z-score | −0.3 ± 1.2 | −0.07 | 0.634 |
SBPa (mm Hg) | 124.7 ± 8.9 | 0.05 | 0.705 |
SBPa z-score | 1.0 ± 1.2 | −0.06 | 0.671 |
DBPa (mm Hg) | 72.0 (66.0–78.0) | 0.05 | 0.731 |
DBPa z-score | 0.0 (−1.9–1.0) | 0.04 | 0.752 |
MAPa (mm Hg) | 90.3 ± 7.7 | 0.11 | 0.422 |
MAPa z-score | 0.7 ± 1.2 | 0.04 | 0.762 |
PPa (mm Hg) | 51.0 ± 47.0 | 0.04 | 0.753 |
HRa (bpm) | 85.0 ± 77.0 | −0.14 | 0.298 |
HRa z-score | −0.8 ± 1.3 | −0.01 | 0.954 |
SBPLa (%) | 22.0 (8.0–46.0) | −0.05 | 0.743 |
DBPLa (%) | 12.0 (3.0–30.0) | −0.03 | 0.822 |
SBPr (mm Hg) | 110.0 ± 8.8 | 0.27 | 0.045 |
SBPr z-score | 1.2 ± 1.2 | 0.15 | 0.268 |
DBPr (mm Hg) | 60.2 ± 8.0 | 0.26 | 0.057 |
DBPr z-score | 0.7 ± 1.5 | 0.24 | 0.074 |
MAPr (mm Hg) | 76.8 ± 7.4 | 0.29 | 0.032 |
MAPr z-score | 0.9 ± 1.2 | 0.26 | 0.056 |
PPr (mm Hg) | 50.0 ± 45.0 | 0.10 | 0.449 |
HRr (bpm) | 70.4 ± 10.9 | −0.12 | 0.376 |
HRr z-score | 0.0 ± 1.0 | −0.09 | 0.522 |
SBPLr (%) | 25.0 (0.0–53.0) | 0.15 | 0.275 |
DBPLr (%) | 12.0 (0.0–45.0) | 0.12 | 0.368 |
DIP sys (%) | 11.8 ± 4.2 | −0.37 | 0.006 |
DIP dia (%) | 17.5 ± 6.6 | −0.29 | 0.034 |
Parameter | AUC (95% CI) | p | Cut-Off Value | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
DIP sys (%) | 0.764 (0.641–0.887) | <0.001 | 12.7 | 91.1 | 54.8 |
DIP dia (%) | 0.754 (0.628–0.880) | <0.001 | 22.2 | 100 | 45.2 |
SBPr (mm Hg) | 0.671 (0.528–0.813) | 0.019 | 110 | 70.8 | 58.1 |
MAPr (mm Hg) | 0.677 (0.533–0.822) | 0.016 | 79 | 62.5 | 71.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deja, A.; Skrzypczyk, P.; Leszczyńska, B.; Pańczyk-Tomaszewska, M. Reduced Blood Pressure Dipping Is A Risk Factor for the Progression of Chronic Kidney Disease in Children. Biomedicines 2022, 10, 2171. https://doi.org/10.3390/biomedicines10092171
Deja A, Skrzypczyk P, Leszczyńska B, Pańczyk-Tomaszewska M. Reduced Blood Pressure Dipping Is A Risk Factor for the Progression of Chronic Kidney Disease in Children. Biomedicines. 2022; 10(9):2171. https://doi.org/10.3390/biomedicines10092171
Chicago/Turabian StyleDeja, Anna, Piotr Skrzypczyk, Beata Leszczyńska, and Małgorzata Pańczyk-Tomaszewska. 2022. "Reduced Blood Pressure Dipping Is A Risk Factor for the Progression of Chronic Kidney Disease in Children" Biomedicines 10, no. 9: 2171. https://doi.org/10.3390/biomedicines10092171
APA StyleDeja, A., Skrzypczyk, P., Leszczyńska, B., & Pańczyk-Tomaszewska, M. (2022). Reduced Blood Pressure Dipping Is A Risk Factor for the Progression of Chronic Kidney Disease in Children. Biomedicines, 10(9), 2171. https://doi.org/10.3390/biomedicines10092171