Effect of Celecoxib and Infliximab against Multiple Organ Damage Induced by Sepsis in Rats: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Design
2.2. Induction of Sepsis by CLP
2.3. Survival Experiment
2.4. Blood Collection, Tissue Isolation, and Preparation
2.5. Histopathological Examination
2.6. Assessment of Microvascular Permeability and Pulmonary Edema
2.7. Assessment of Total Protein in BALF
2.8. Assessment of Kidney Function
2.9. Assessment of Liver Function
2.10. Assessment of Oxidative Stress Markers and Antioxidant Defense Activity in Lung, Liver, and Kidney Homogenates
2.11. Determination of Serum Inflammatory Markers
2.12. Statistical Analysis
3. Results
3.1. Celecoxib and Infliximab Improve Survival in Septic Rats
3.2. Celecoxib and Infliximab Ameliorate CLP-Induced Oxidative Stress
3.3. Celecoxib and Infliximab Attenuate CLP-Induced Inflammatory Signals
3.4. Protective Effect of Celecoxib and Infliximab against Sepsis-Induced Acute Lung Injury (ALI)
3.5. Protective Effect of Celecoxib and Infliximab against Sepsis-Induced Acute Hepatic Injury (AHI)
3.6. Protective Effect of Celecoxib and Infliximab against Sepsis-Induced Acute Kidney Injury (AKI)
3.7. Analysis of Correlation between Different Study Parameters and Lung Injury Score
3.8. Analysis of Correlation between Different Study Parameters and Liver Injury Score
3.9. Analysis of Correlation between Different Study Parameters and Kidney Injury Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, C.; Jaimes, F. Focus: Death: Organ Dysfunction in Sepsis: An Ominous Trajectory From Infection To Death. Yale J. Biol. Med. 2019, 92, 629. [Google Scholar] [PubMed]
- Carcillo, J.A.; Shakoory, B. Cytokine storm and sepsis-induced multiple organ dysfunction syndrome. In Cytokine Storm Syndrome; Springer: Berlin/Heidelberg, Germany, 2019; pp. 451–464. [Google Scholar]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. The Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Joffre, J.; Hellman, J. Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxid. Redox Signal. 2021, 35, 1291–1307. [Google Scholar] [CrossRef] [PubMed]
- Toro-Pérez, J.; Rodrigo, R. Contribution of oxidative stress in the mechanisms of postoperative complications and multiple organ dysfunction syndrome. Redox Rep. 2021, 26, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Becker Jr, E.; Bone, N.B.; Johnson, M.S.; Craver, J.; Zong, W.-X.; Darley-Usmar, V.M.; Zmijewski, J.W.; Zhang, J. ZKSCAN3 in severe bacterial lung infection and sepsis-induced immunosuppression. Lab. Investig. 2021, 101, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019, 7, 2050312119835043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, T.; Levin, J. Sepsis and Septic Shock: A Review of Definitions, Pathogenesis, and Treatment. In Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems; Springer: Cham, The Netherlands, 2019; pp. 807–835. [Google Scholar] [CrossRef]
- Ali, T.; Bronze, M.S.; Kaitha, S.; Mahmood, S.; Ftaisi; Stone, J. Clinical use of anti-TNF therapy and increased risk of infections. Drug, Heal. Patient Saf. 2013, 5, 79–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adib-Conquy, M.; Cavaillon, J.-M. Stress molecules in sepsis and systemic inflammatory response syndrome. FEBS Lett. 2007, 581, 3723–3733. [Google Scholar] [CrossRef] [Green Version]
- Ozer, E.K.; Goktas, M.T.; Kilinc, I.; Toker, A.; Bariskaner, H.; Ugurluoglu, C.; Iskit, A.B. Infliximab alleviates the mortality, mesenteric hypoperfusion, aortic dysfunction, and multiple organ damage in septic rats. Can. J. Physiol. Pharmacol. 2017, 95, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Ozer, E.K.; Goktas, M.T.; Kilinc, I.; Bariskaner, H.; Ugurluoglu, C.; Iskit, A.B. Celecoxib administration reduced mortality, mesenteric hypoperfusion, aortic dysfunction and multiple organ injury in septic rats. Biomed. Pharmacother. 2017, 86, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Nedeva, C.; Menassa, J.; Puthalakath, H. Sepsis: Inflammation Is a Necessary Evil. Front. Cell Dev. Biol. 2019, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, M.S.; De Moraes, A.G. New Decade, Old Debate: Blocking the Cytokine Pathways in Infection-Induced Cytokine Cascade. Crit. Care Explor. 2021, 3, e0364. [Google Scholar] [CrossRef]
- Schulte, W.; Bernhagen, J.; Bucala, R. Cytokines in Sepsis: Potent Immunoregulators and Potential Therapeutic Targets—An Updated View. Mediat. Inflamm. 2013, 2013, 165974. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, S.; Vardon-Bounes, F.; Merlet-Dupuy, V.; Conil, J.-M.; Buléon, M.; Fourcade, O.; Tack, I.; Minville, V. Sepsis modeling in mice: Ligation length is a major severity factor in cecal ligation and puncture. Intensiv. Care Med. Exp. 2016, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dejager, L.; Pinheiro, I.; Dejonckheere, E.; Libert, C. Cecal ligation and puncture: The gold standard model for polymicrobial sepsis? Trends Microbiol. 2011, 19, 198–208. [Google Scholar] [CrossRef]
- Noguchi, M.; Kimoto, A.; Kobayashi, S.; Yoshino, T.; Miyata, K.; Sasamata, M. Effect of celecoxib, a cyclooxygenase-2 inhibitor, on the pathophysiology of adjuvant arthritis in rat. Eur. J. Pharmacol. 2005, 513, 229–235. [Google Scholar] [CrossRef]
- Triantafillidis, J.K.; Papalois, A.E.; Parasi, A.; Anagnostakis, E.; Burnazos, S.; Gikas, A.; Merikas, E.G.; Douzinas, E.; Karagianni, M.; Sotiriou, H. Favorable response to subcutaneous administration of infliximab in rats with experimental colitis. World J. Gastroenterol. 2005, 11, 6843–6847. [Google Scholar] [CrossRef]
- Deitch, E.A. Animal models of sepsis and shock: A review and lessons learned. Shock 1998, 9, 1–11. [Google Scholar] [CrossRef]
- Morton, D.; Griffiths, P. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Veter-Rec. 1985, 116, 431–436. [Google Scholar] [CrossRef]
- Liang, H.; Ding, X.; Yu, Y.; Zhang, H.; Wang, L.; Kan, Q.; Ma, S.; Guan, F.; Sun, T. Adipose-derived mesenchymal stem cells ameliorate acute liver injury in rat model of CLP induced-sepsis via sTNFR1. Exp. Cell Res. 2019, 383, 111465. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Yao, W.; Ji, H.; Yuan, D.; Gao, X.; Sha, W.; Wang, F.; Huang, P.; Hei, Z. Dexmedetomidine restores septic renal function via promoting inflammation resolution in a rat sepsis model. Life Sci. 2018, 204, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Ibrahim, Y.F.; Moussa, R.A.; Bayoumi, A.M.; Ahmed, A.-S.F. Tocilizumab attenuates acute lung and kidney injuries and improves survival in a rat model of sepsis via down-regulation of NF-κB/JNK: A possible role of P-glycoprotein. Inflammopharmacology 2020, 28, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, X.; Han, L.; Ye, F.; Liu, M.; Fan, W.; Zhang, K.; Kong, Y.; Zhang, J.; Shi, L.; et al. Pterostilbene alleviates polymicrobial sepsis-induced liver injury: Possible role of SIRT1 signaling. Int. Immunopharmacol. 2017, 49, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Li, M. Protective effect of Astragaloside IV against sepsis-induced acute lung injury in rats. Saudi Pharm. J. 2016, 24, 341–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Lu, R.; Chen, J.; Xie, M.; Zhao, X.; Kong, L. S100A9 blockade prevents lipopolysaccharide-induced lung injury via suppressing the NLRP3 pathway. Respir. Res. 2021, 22, 1–11. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, F.; Liu, A.; Li, Z.; Zheng, F.; Liu, Q.; Yang, L.; Chen, K.; Wang, Y.; Zhang, Z.; et al. Activation of CB2 receptor inhibits pyroptosis and subsequently ameliorates cecal ligation and puncture-induced sepsis. Int. Immunopharmacol. 2021, 99, 108038. [Google Scholar] [CrossRef]
- George, R.; KINGSLEY, R. Determination of serum total protein, albumin, and globulin by the biuret reaction. J. Biol. Chem. 1939, 131, 197–200. [Google Scholar]
- Schirmeister, J. Determination of creatinine in serum. Dtsch. Med. Wschr. 1964, 89, 1940. [Google Scholar]
- Fawcett, J.; Scott, J. Determination of urea. J. Clin. Path 1960, 13, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Mussap, M.; Vestra, M.D.; Fioretto, P.; Saller, A.; Varagnolo, M.; Nosadini, R.; Plebani, M. Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Kidney Int. 2002, 61, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Reitman, S.; Frankel, S. A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.; Aust, S. Microsomal lipid peroxidation. Methods Enzym. 1978, 52, 302–310. [Google Scholar]
- Griess, P. Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt “Ueber einige Azoverbindungen”. Ber. Der Dtsch. Chem. Ges. 1879, 12, 426–428. [Google Scholar] [CrossRef] [Green Version]
- Marklund, S.; Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Burtis, C.A.; Ashwood, E.R. Tietz textbook of clinical chemistry. Philadelphia 1999, 1999, 1654–1655. [Google Scholar]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 1996. [Google Scholar]
- Rhee, C.; Klompas, M. Conducting Sepsis Surveillance by Applying Sepsis-3 Criteria to Electronic Health Record Data: Promises and Potential Pitfalls. Crit. Care Med. 2021, 49, 1983–1986. [Google Scholar] [CrossRef]
- Qi, D.; Peng, M. Early Hemoglobin Status as a Predictor of Long-Term Mortality for Sepsis Patients in Intensive Care Units. Shock 2020, 55, 215–223. [Google Scholar] [CrossRef]
- Remick, D.G.; Call, D.R.; Ebong, S.J.; Newcomb, D.E.; Nybom, P.; Nemzek, J.A.; Bolgos, G.E. Combination immunotherapy with soluble tumor necrosis factor receptors plus interleukin 1 receptor antagonist decreases sepsis mortality. Crit. Care Med. 2001, 29, 473–481. [Google Scholar] [CrossRef]
- Ozer, E.K.; Goktas, M.T.; Toker, A.; Pehlivan, S.; Bariskaner, H.; Ugurluoglu, C.; Iskit, A.B. Thymoquinone protects against the sepsis induced mortality, mesenteric hypoperfusion, aortic dysfunction and multiple organ damage in rats. Pharmacol. Rep. 2017, 69, 683–690. [Google Scholar] [CrossRef]
- Hollenberg, S.M.; Broussard, M.; Osman, J.; Parrillo, J.E. Increased Microvascular Reactivity and Improved Mortality in Septic Mice Lacking Inducible Nitric Oxide Synthase. Circ. Res. 2000, 86, 774–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamese, M.; Erol, H.S.; Albayrak, M.; Guvendi, G.F.; Aydin, E.; Karamese, S.A. Anti-oxidant and anti-inflammatory effects of apigenin in a rat model of sepsis: An immunological, biochemical, and histopathological study. Immunopharmacol. Immunotoxicol. 2016, 38, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Galley, H.F. Oxidative stress and mitochondrial dysfunction in sepsis. Br. J. Anaesth. 2011, 107, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M.; Yang, W.-L.; Wang, P. ENDOPLASMIC RETICULUM STRESS IN SEPSIS. Shock 2015, 44, 294–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasco, C.F.; Watanabe, M.; Fonseca, C.D.d.; Vattimo, M.d.F.F. Sepsis-induced acute kidney injury: Kidney protection effects by antioxidants. Rev. Bras. De Enferm. 2018, 71, 1921–1927. [Google Scholar] [CrossRef]
- Aydin, S.; Sahin, T.T.; Bacanli, M.; Taner, G.; Basaran, A.A.; Aydin, M.; Basaran, N. Resveratrol Protects Sepsis-Induced Oxidative DNA Damage in Liver and Kidney of Rats. Balk. Med J. 2016, 33, 594–601. [Google Scholar] [CrossRef]
- Yu, Y.; Tang, D.; Kang, R. Oxidative stress-mediated HMGB1 biology. Front. Physiol. 2015, 6, 93. [Google Scholar] [CrossRef] [Green Version]
- Fujishima, S.; Gando, S.; Daizoh, S.; Kushimoto, S.; Ogura, H.; Mayumi, T.; Takuma, K.; Kotani, J.; Yamashita, N.; Tsuruta, R.; et al. Infection site is predictive of outcome in acute lung injury associated with severe sepsis and septic shock. Respirology 2016, 21, 898–904. [Google Scholar] [CrossRef]
- Poukkanen, M.; Vaara, S.T.; Pettilä, V.; Kaukonen, K.M.; Korhonen, A.M.; Hovilehto, S.; Inkinen, O.; LARU-SOMPA, R.; Kaminski, T.; Reinikainen, M. Acute kidney injury in patients with severe sepsis in F innish I ntensive C are U nits. Acta Anaesthesiol. Scand. 2013, 57, 863–872. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Uchino, S.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; Gibney, N.; et al. Septic Acute Kidney Injury in Critically Ill Patients: Clinical Characteristics and Outcomes. Clin. J. Am. Soc. Nephrol. 2007, 2, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Al-Kadi, A.; El-Daly, M.; El-Tahawy, N.F.G.; Khalifa, M.M.A.; Ahmed, A.F. Angiotensin aldosterone inhibitors improve survival and ameliorate kidney injury induced by sepsis through suppression of inflammation and apoptosis. Fundam. Clin. Pharmacol. 2021, 36, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Aboyoussef, A.M.; Mohammad, M.K.; Abo-Saif, A.A.; Messiha, B.A. Granisetron attenuates liver injury and inflammation in a rat model of cecal ligation and puncture-induced sepsis. J. Pharmacol. Sci. 2021, 147, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Abraham, E. Neutrophils and acute lung injury. Crit. Care Med. 2003, 31, S195–S199. [Google Scholar] [CrossRef] [PubMed]
- Leem, A.Y.; Park, M.S.; Park, B.H.; Jung, W.J.; Chung, K.S.; Kim, S.Y.; Kim, E.Y.; Jung, J.Y.; Kang, Y.A.; Kim, Y.S.; et al. Value of Serum Cystatin C Measurement in the Diagnosis of Sepsis-Induced Kidney Injury and Prediction of Renal Function Recovery. Yonsei Med. J. 2017, 58, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Zhang, L.; Liu, Y.; Yang, M.; Wang, N.; Wang, K.; Ou, D.; Liu, M.; Chen, G.; Liu, K. Use of blood urea nitrogen, creatinine, interleukin-6, granulocyte–macrophage colony stimulating factor in combination to predict the severity and outcome of abdominal sepsis in rats. Inflamm. Res. 2012, 61, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, F.; Gol, A.; Dabiri, S.; Javadi, A. Preventive effect of garlic juice on renal reperfusion injury. Iran. J. Kidney Dis. 2011, 5. [Google Scholar]
- Kirbas, A.; Cure, M.C.; Kalkan, Y.; Cure, E.; Tumkaya, L.; Sahin, O.Z.; Yuce, S.; Kizilkaya, B.; Pergel, A. Effect of infliximab on renal injury due to methotrexate in rat. Iran. J. Kidney Dis. 2015, 9, 221. [Google Scholar]
- Aydin, I.; Kalkan, Y.; Ozer, E.; Yucel, A.F.; Pergel, A.; Cüre, E.; Cure, M.C.; Sahin, D.A. The protective effect of infliximab on cisplatin-induced intestinal tissue toxicity. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2076–2083. [Google Scholar]
- Şahin, T.D.; Gocmez, S.S.; Duruksu, G.; Yazir, Y.; Utkan, T. Infliximab prevents dysfunction of the vas deferens by suppressing inflammation and oxidative stress in rats with chronic stress. Life Sci. 2020, 250, 117545. [Google Scholar] [CrossRef]
- Altintas, N.; Erboga, M.; Aktas, C.; Bilir, B.; Aydin, M.; Sengul, A.; Ates, Z.; Topcu, B.; Gurel, A. Protective Effect of Infliximab, a Tumor Necrosis Factor-Alfa Inhibitor, on Bleomycin-Induced Lung Fibrosis in Rats. Inflammation 2015, 39, 65–78. [Google Scholar] [CrossRef]
- Pergel, A.; Kanter, M.; Yucel, A.F.; Aydin, I.; Erboga, M.; Guzel, A. Anti-inflammatory and antioxidant effects of infliximab in a rat model of intestinal ischemia/reperfusion injury. Toxicol. Ind. Heal. 2011, 28, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Guzel, A.; Kanter, M.; Guzel, A.; Pergel, A.; Erboga, M. Anti-inflammatory and antioxidant effects of infliximab on acute lung injury in a rat model of intestinal ischemia/reperfusion. Histochem. J. 2012, 43, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Short, S.S.; Wang, J.; Castle, S.L.; Fernandez, G.E.; Smiley, N.; Zobel, M.J.; Pontarelli, E.M.; Papillon, S.C.; Grishin, A.V.; Ford, H.R. Low doses of celecoxib attenuate gut barrier failure during experimental peritonitis. Lab. Investig. 2013, 93, 1265–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, T.; Narumiya, S. Prostanoids as regulators of innate and adaptive immunity. Adv. Immunol. 2012, 116, 143–174. [Google Scholar] [PubMed]
- Morteau, O.; Morham, S.G.; Sellon, R.; Dieleman, L.A.; Langenbach, R.; Smithies, O.; Sartor, R.B. Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. J. Clin. Investig. 2000, 105, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.; Jiang, Z.; Wang, Z.; Wang, L. Celecoxib Attenuates Cartilage Matrix Damage in Arthritis Rats by Inhibiting NF-κ B. J. Biomater. Tissue Eng. 2020, 10, 531–537. [Google Scholar] [CrossRef]
- Tang, S.; Huang, Z.; Jiang, J.; Gao, J.; Zhao, C.; Tai, Y.; Ma, X.; Zhang, L.; Ye, Y.; Gan, C.; et al. Celecoxib ameliorates liver cirrhosis via reducing inflammation and oxidative stress along spleen-liver axis in rats. Life Sci. 2021, 272, 119203. [Google Scholar] [CrossRef] [PubMed]
- Zatz, R.; Fujihara, C.K. Cyclooxygenase-2 inhibitors: Will they help us prevent diabetic nephropathy? Kidney Int. 2002, 62, 1091–1092. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.-F.; Wang, C.J.; Moeckel, G.W.; Zhang, M.-Z.; Mckanna, J.A.; Harris, R.C. Cyclooxygenase-2 inhibitor blocks expression of mediators of renal injury in a model of diabetes and hypertension1. Kidney Int. 2002, 62, 929–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Kashef, D.H.; El-Sheakh, A.R. Hepatoprotective effect of celecoxib against tamoxifen-induced liver injury via inhibiting ASK-1/JNK pathway in female rats. Life Sci. 2019, 231, 116573. [Google Scholar] [CrossRef]
- Suddek, G.M.; El-Kenawi, A.E.; Abdel-Aziz, A.; El-Kashef, H.A. Celecoxib, a Selective Cyclooxygenase-2 Inhibitor, Attenuates Renal Injury in a Rat Model of Cisplatin-Induced Nephrotoxicity. Chemotherapy 2011, 57, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Malek, H.A.; Saleh, D.M. Cyclooxygenase-2 inhibitor celecoxib in a rat model of hindlimb ischemia reperfusion. Can. J. Physiol. Pharmacol. 2009, 87, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Martín, M.M.; Abreu-González, P.; Domínguez-Rodríguez, A.; Labarta, L.; Díaz, C.; Solé-Violán, J.; Ferreres, J.; León, J.M.B.; Jiménez-Sosa, A.; et al. Prognostic Value of Malondialdehyde Serum Levels in Severe Sepsis: A Multicenter Study. PLoS ONE 2013, 8, e53741. [Google Scholar] [CrossRef] [PubMed]
- Senbel, A.; AbdelMoneim, L.; Omar, A. Celecoxib modulates nitric oxide and reactive oxygen species in kidney ischemia/reperfusion injury and rat aorta model of hypoxia/reoxygenation. Vasc. Pharmacol. 2014, 62, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Léon, K.; Moisan, C.; Amerand, A.; Poupon, G.; L’Her, E. Effect of induced mild hypothermia on two pro-inflammatory cytokines and oxidative parameters during experimental acute sepsis. Redox Rep. 2013, 18, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Seemann, S.; Zohles, F.; Lupp, A. Comprehensive comparison of three different animal models for systemic inflammation. J. Biomed. Sci. 2017, 24, 60. [Google Scholar] [CrossRef]
Groups | SOD Activity (u/mg Protein) | GSH Level (nmol/mg Protein) | MDA Level (nmol/mg Protein) | NOX Level (nmol/mg Protein) |
---|---|---|---|---|
SHAM | 12.96± 0.69 | 38.38 ± 3.91 | 0.29 ± 0.01 | 1.20 ± 0.17 |
CLP | 2.87 ± 0.35 # | 14.38 ±0.85 # | 0.45 ± 0.03 # | 3.28 ± 0.33 # |
CLP + CLX | 9.02 ± 1.36 * | 28.4 ± 1.91 * | 0. 29 ± 0.04 * | 1.42 ± 0.28 * |
CLP + IFX | 8.76 ± 0.60 * | 28.65 ± 1.40 * | 0.32 ± 0.02 * | 2.00 ± 0.22 * |
Groups | SOD Activity (u/mg Protein) | GSH Level (nmol/mg Protein) | MDA Level (nmol/mg Protein) | NOX Level (nmol/mg Protein) |
---|---|---|---|---|
SHAM | 6.89 ± 0.39 | 9.74 ± 0.67 | 0.13 ± 0.01 | 0.14 ± 0.01 |
CLP | 2.00 ± 0.26 # | 3.21 ± 0.18 # | 0.20 ± 0.01 # | 0.20 ± 0.01 # |
CLP + CLX | 3.85 ± 0.14 * | 6.77 ± 0.27 * | 0.13 ± 0.01 * | 0.14 ± 0.01 * |
CLP + IFX | 4.19 ± 0.36 * | 7.42 ± 0.83 * | 0.15 ± 0.01 * | 0.15 ± 0.01 * |
Groups | SOD Activity (u/mg Protein) | GSH Level (nmol/mg Protein) | MDA Level (nmol/mg Protein) | NOX Level (nmol/mg Protein) |
---|---|---|---|---|
SHAM | 7.41 ± 1.26 | 11.83 ± 0.79 | 0.24 ± 0.01 | 0.4 ± 0.02 |
CLP | 0.54 ± 0.11 # | 6.15 ± 0.30 # | 0.37 ± 0.02 # | 1.73 ± 0.31 # |
CLP + CLX | 4.45 ± 1.11 * | 10.10 ± 1.42 * | 0.26 ± 0.01 * | 0.94 ± 0.11 * |
CLP + IFX | 3.72 ± 0.41 * | 9.92 ± 0.60 * | 0.29 ± 0.01 * | 1.00 ± 0.11 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senousy, S.R.; El-Daly, M.; Ibrahim, A.R.N.; Khalifa, M.M.A.; Ahmed, A.-S.F. Effect of Celecoxib and Infliximab against Multiple Organ Damage Induced by Sepsis in Rats: A Comparative Study. Biomedicines 2022, 10, 1613. https://doi.org/10.3390/biomedicines10071613
Senousy SR, El-Daly M, Ibrahim ARN, Khalifa MMA, Ahmed A-SF. Effect of Celecoxib and Infliximab against Multiple Organ Damage Induced by Sepsis in Rats: A Comparative Study. Biomedicines. 2022; 10(7):1613. https://doi.org/10.3390/biomedicines10071613
Chicago/Turabian StyleSenousy, Shaymaa Ramzy, Mahmoud El-Daly, Ahmed R. N. Ibrahim, Mohamed Montaser A. Khalifa, and Al-Shaimaa F. Ahmed. 2022. "Effect of Celecoxib and Infliximab against Multiple Organ Damage Induced by Sepsis in Rats: A Comparative Study" Biomedicines 10, no. 7: 1613. https://doi.org/10.3390/biomedicines10071613
APA StyleSenousy, S. R., El-Daly, M., Ibrahim, A. R. N., Khalifa, M. M. A., & Ahmed, A.-S. F. (2022). Effect of Celecoxib and Infliximab against Multiple Organ Damage Induced by Sepsis in Rats: A Comparative Study. Biomedicines, 10(7), 1613. https://doi.org/10.3390/biomedicines10071613