High Diagnostic Accuracy of a Novel Lateral Flow Assay for the Point-of-Care Detection of SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compliance with Reporting Standards
2.2. Overall Study Design and Procedures
2.3. Index Test
2.4. Reference Test
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loeffelholz, M.J.; Tang, Y.W. Detection of SARS-CoV-2 at the point of care. Bioanalysis 2021, 13, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Kevadiya, B.D.; Machhi, J.; Herskovitz, J.; Oleynikov, M.D.; Blomberg, W.R.; Bajwa, N.; Soni, D.; Das, S.; Hasan, M.; Patel, M.; et al. Diagnostics for SARS-CoV-2 infections. Nat. Mater. 2021, 20, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, J.; Deeks, J.J.; Berhane, S.; Taylor, M.; Adriano, A.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2021, 3, CD013705. [Google Scholar] [PubMed]
- Teymouri, M.; Mollazadeh, S.; Mortazavi, H.; Naderi Ghale-Noie, Z.; Keyvani, V.; Aghababaei, F.; Hamblin, M.R.; Abbaszadeh-Goudarzi, G.; Pourghadamyari, H.; Hashemian, S.M.R.; et al. Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathol. Res. Pract. 2021, 221, 153443. [Google Scholar] [CrossRef] [PubMed]
- Carter, L.J.; Garner, L.V.; Smoot, J.W.; Li, Y.; Zhou, Q.; Saveson, C.J.; Sasso, J.M.; Gregg, A.C.; Soares, D.J.; Beskid, T.R.; et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci. 2020, 6, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Filchakova, O.; Dossym, D.; Ilyas, A.; Kuanysheva, T.; Abdizhamil, A.; Bukasov, R. Review of COVID-19 testing and diagnostic methods. Talanta 2022, 244, 123409. [Google Scholar] [CrossRef]
- Bruzzone, B.; De Pace, V.; Caligiuri, P.; Ricucci, V.; Guarona, G.; Pennati, B.M.; Boccotti, S.; Orsi, A.; Domnich, A.; Da Rin, G.; et al. Comparative diagnostic performance of rapid antigen detection tests for COVID-19 in a hospital setting. Int. J. Infect. Dis. 2021, 107, 215–218. [Google Scholar] [CrossRef]
- Santiago, I. Trends and innovations in biosensors for COVID-19 mass testing. Chembiochem 2020, 21, 2880–2889. [Google Scholar] [CrossRef]
- Hsiao, W.W.; Le, T.N.; Pham, D.M.; Ko, H.H.; Chang, H.C.; Lee, C.C.; Sharma, N.; Lee, C.K.; Chiang, W.H. Recent advances in novel lateral flow technologies for detection of COVID-19. Biosensors 2021, 11, 295. [Google Scholar]
- Parvu, V.; Gary, D.S.; Mann, J.; Lin, Y.C.; Mills, D.; Cooper, L.; Andrews, J.C.; Manabe, Y.C.; Pekosz, A.; Cooper, C.K. Factors that influence the reported sensitivity of rapid antigen testing for SARS-CoV-2. Front. Microbiol. 2021, 12, 714242. [Google Scholar] [CrossRef]
- Mistry, D.A.; Wang, J.Y.; Moeser, M.E.; Starkey, T.; Lee, L.Y.W. A systematic review of the sensitivity and specificity of lateral flow devices in the detection of SARS-CoV-2. BMC Infect. Dis. 2021, 21, 828. [Google Scholar] [CrossRef] [PubMed]
- Kierkegaard, P.; Hicks, T.; Allen, A.J.; Yang, Y.; Hayward, G.; Glogowska, M.; Nicholson, B.D.; Buckle, P. CONDOR Steering Committee. Strategies to implement SARS-CoV-2 point-of-care testing into primary care settings: A qualitative secondary analysis guided by the Behaviour Change Wheel. Implement. Sci. Commun. 2021, 2, 139. [Google Scholar] [CrossRef] [PubMed]
- Bohn, M.K.; Lippi, G.; Horvath, A.R.; Erasmus, R.; Grimmler, M.; Gramegna, M.; Mancini, N.; Mueller, R.; Rawlinson, W.D.; Menezes, M.E.; et al. IFCC interim guidelines on rapid point-of-care antigen testing for SARS-CoV-2 detection in asymptomatic and symptomatic individuals. Clin. Chem. Lab. Med. 2021, 59, 1507–1515. [Google Scholar] [CrossRef]
- European Commission. EU Health Preparedness: A Common List of COVID-19 Rapid Antigen Tests; A Common Standardised Set of Data to Be Included in COVID-19 Test Result Certificates; and A Common List of COVID-19 Laboratory Based Antigenic Assays. Available online: https://ec.europa.eu/health/system/files/2022-05/covid-19_rat_common-list_en.pdf (accessed on 27 May 2022).
- Scheiblauer, H.; Filomena, A.; Nitsche, A.; Puyskens, A.; Corman, V.M.; Drosten, C.; Zwirglmaier, K.; Lange, C.; Emmerich, P.; Müller, M.; et al. Comparative sensitivity evaluation for 122 CE-marked rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021. Eurosurveillance 2021, 26, 2100441. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.F.; Selvam, K.; Jeffry, A.J.N.; Salmi, M.F.; Najib, M.A.; Norhayati, M.N.; Aziah, I. Performance of rapid antigen tests for COVID-19 diagnosis: A systematic review and meta-analysis. Diagnostics 2022, 12, 110. [Google Scholar] [CrossRef]
- Domnich, A.; Orsi, A.; Trombetta, C.S.; Costa, E.; Guarona, G.; Lucente, M.; Ricucci, V.; Bruzzone, B.; Icardi, G. Comparative diagnostic accuracy of the STANDARD M10 assay for the molecular diagnosis of SARS-CoV-2 in the point-of-care and critical care settings. J. Clin. Med. 2022, 11, 2465. [Google Scholar] [CrossRef]
- NDFOS. Rapid Antigen Diagnosis Leaflet. Available online: http://www.ndfos.com/en/sub/business/bio/diagnosis/immune.php (accessed on 27 May 2022).
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; de Vet, H.C.; et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 2016, 6, e012799. [Google Scholar] [CrossRef]
- Foundation for Innovative New Diagnostics (FIND). Comparative Evaluation of Lateral Flow Assay Tests that Directly Detect Antigens of SARS-CoV-2. Available online: https://www.finddx.org/wp-content/uploads/2020/04/20200421-COVID-Ag-RDT-Evaluation-Synopsis.pdf (accessed on 27 May 2022).
- Oguri, S.; Fujisawa, S.; Kamada, K.; Nakakubo, S.; Yamashita, Y.; Nakamura, J.; Horii, H.; Sato, K.; Nishida, M.; Teshima, T.; et al. Effect of varying storage conditions on diagnostic test outcomes of SARS-CoV-2. J. Infect. 2021, 83, 119–145. [Google Scholar] [CrossRef]
- Domnich, A.; De Pace, V.; Pennati, B.M.; Caligiuri, P.; Varesano, S.; Bruzzone, B.; Orsi, A. Evaluation of extraction-free RT-qPCR methods for SARS-CoV-2 diagnostics. Arch. Virol. 2021, 166, 2825–2828. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Options for the Use of Rapid Antigen Tests for COVID-19 in the EU/EEA—First Update. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Options-for-the-use-of-rapid-antigen-tests-for-COVID-19-first-update.pdf (accessed on 27 May 2022).
- Liotti, F.M.; Menchinelli, G.; Marchetti, S.; Morandotti, G.A.; Sanguinetti, M.; Posteraro, B.; Cattani, P. Evaluation of three commercial assays for SARS-CoV-2 molecular detection in upper respiratory tract samples. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 269–277. [Google Scholar] [CrossRef]
- OpenEpi: Open Source Epidemiologic Statistics for Public Health. Available online: www.openepi.com (accessed on 27 May 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 27 May 2022).
- World Health Organization (WHO). Antigen-Detection in the Diagnosis of SARS-CoV-2 Infection. Available online: https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays (accessed on 27 May 2022).
- Hayer, J.; Kasapic, D.; Zemmrich, C. Real-world clinical performance of commercial SARS-CoV-2 rapid antigen tests in suspected COVID-19: A systematic meta-analysis of available data as of November 20, 2020. Int. J. Infect. Dis. 2021, 108, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Brümmer, L.E.; Katzenschlager, S.; Gaeddert, M.; Erdmann, C.; Schmitz, S.; Bota, M.; Grilli, M.; Larmann, J.; Weigand, M.A.; Pollock, N.R.; et al. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis. PLoS Med. 2021, 18, e1003735. [Google Scholar] [CrossRef] [PubMed]
- Khandker, S.S.; Nik Hashim, N.H.H.; Deris, Z.Z.; Shueb, R.H.; Islam, M.A. Diagnostic accuracy of rapid antigen test kits for detecting SARS-CoV-2: A systematic review and Meta-Analysis of 17,171 Suspected COVID-19 Patients. J. Clin. Med. 2021, 10, 3493. [Google Scholar] [CrossRef] [PubMed]
- Hay, J.A.; Kennedy-Shaffer, L.; Kanjilal, S.; Lennon, N.J.; Gabriel, S.B.; Lipsitch, M.; Mina, M.J. Estimating epidemiologic dynamics from cross-sectional viral load distributions. Science 2021, 373, eabh0635. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, V.; Negro, A.; Pirotti, T.; Trenti, T. Estimate false-negative RT-PCR rates for SARS-CoV-2. A systematic review and meta-analysis. Eur. J. Clin. Investig. 2022, 52, e13706. [Google Scholar] [CrossRef]
- Ramdas, K.; Darzi, A.; Jain, S. ‘Test, re-test, re-test’: Using inaccurate tests to greatly increase the accuracy of COVID-19 testing. Nat. Med. 2020, 26, 810–811. [Google Scholar] [CrossRef]
- Stankiewicz Karita, H.C.; Dong, T.Q.; Johnston, C.; Neuzil, K.M.; Paasche-Orlow, M.K.; Kissinger, P.J.; Bershteyn, A.; Thorpe, L.E.; Deming, M.; Kottkamp, A.; et al. Trajectory of viral RNA load among persons with incident SARS-CoV-2 G614 infection (Wuhan strain) in association with COVID-19 symptom onset and severity. JAMA Netw. Open 2022, 5, e2142796. [Google Scholar] [CrossRef]
- Contreras, C.; Newby, J.M.; Hillen, T. Personalized virus load curves for acute viral infections. Viruses 2021, 13, 1815. [Google Scholar] [CrossRef]
Accuracy Parameter | Estimate, % | 95% CI |
---|---|---|
Overall accuracy | 96.3 | 93.9–97.1 |
Sensitivity | 85.0 | 76.7–90.7 |
Specificity | 100 | 98.7–100 |
Cycle Threshold (n) | Estimate, % | 95% CI |
---|---|---|
<25 (59) | 100 | 93.9–100 |
25–29.9 (25) | 72.0 | 52.4–85.7 |
≥30 (16) | 50.0 | 28.0–72.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giberti, I.; Costa, E.; Domnich, A.; Ricucci, V.; De Pace, V.; Garzillo, G.; Guarona, G.; Icardi, G. High Diagnostic Accuracy of a Novel Lateral Flow Assay for the Point-of-Care Detection of SARS-CoV-2. Biomedicines 2022, 10, 1558. https://doi.org/10.3390/biomedicines10071558
Giberti I, Costa E, Domnich A, Ricucci V, De Pace V, Garzillo G, Guarona G, Icardi G. High Diagnostic Accuracy of a Novel Lateral Flow Assay for the Point-of-Care Detection of SARS-CoV-2. Biomedicines. 2022; 10(7):1558. https://doi.org/10.3390/biomedicines10071558
Chicago/Turabian StyleGiberti, Irene, Elisabetta Costa, Alexander Domnich, Valentina Ricucci, Vanessa De Pace, Giada Garzillo, Giulia Guarona, and Giancarlo Icardi. 2022. "High Diagnostic Accuracy of a Novel Lateral Flow Assay for the Point-of-Care Detection of SARS-CoV-2" Biomedicines 10, no. 7: 1558. https://doi.org/10.3390/biomedicines10071558
APA StyleGiberti, I., Costa, E., Domnich, A., Ricucci, V., De Pace, V., Garzillo, G., Guarona, G., & Icardi, G. (2022). High Diagnostic Accuracy of a Novel Lateral Flow Assay for the Point-of-Care Detection of SARS-CoV-2. Biomedicines, 10(7), 1558. https://doi.org/10.3390/biomedicines10071558