Klebsiella pneumoniae Susceptibility to Carbapenem/Relebactam Combinations: Influence of Inoculum Density and Carbapenem-to-Inhibitor Concentration Ratio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antimicrobial Agents and Bacterial Strains
2.2. Susceptibility Testing
3. Results
3.1. Susceptibility Testing with Single Imipenem and Doripenem
3.2. Susceptibility Testing with Imipenem and Doripenem at Fixed Relebactam Concentration (Method 1)
3.3. Susceptibility Testing at PK-Based Carbapenem-to-Relebactam Concentration Ratio (Method 2)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrei, S.; Droc, G.; Stefan, G. FDA approved antibacterial drugs: 2018–2019. Discoveries 2019, 31, e102. [Google Scholar] [CrossRef]
- Thakare, R.; Dasgupta, A.; Chopra, S. Imipenem/cilastatin sodium/relebactam fixed combination to treat urinary infections and complicated intra-abdominal bacterial infections. Drugs Today 2020, 56, 241–255. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-antibiotic-treat-hospital-acquired-bacterial-pneumonia-and-ventilator-associated (accessed on 21 April 2022).
- Galani, I.; Souli, M.; Nafplioti, K.; Adamou, P.; Karaiskos, I.; Giamarellou, H.; Antoniadou, A. Study Collaborators. In vitro activity of imipenem-relebactam against non-MBL carbapenemase-producing Klebsiella pneumoniae isolated in Greek hospitals in 2015–2016. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1143–1150. [Google Scholar] [CrossRef]
- Kurihara, D.; Matsumoto, S.; Kishi, N.; Ishii, Y.; Mori, M. In vitro antibacterial activity of imipenem/relebactam against clinical isolates in Japan. Microbiol. Spectr. 2022, 13, e0223521. [Google Scholar] [CrossRef]
- Lob, S.; Hackel, M.; Chen, W.-T.; Khoo, Y.; Balwani, K.; Young, K.; Motyl, M.; Sahm, D.F. In vitro activity of imipenem/relebactam against Klebsiella pneumoniae and Pseudomonas aeruginosa from patients in icus in the Asia/Pacific region—SMART 2015–2018. Open Forum Infect. Dis. 2020, 7 (Suppl. S1), S789. [Google Scholar] [CrossRef]
- Lenhard, J.R.; Bulman, Z.P. Inoculum effect of β-lactam antibiotics. J. Antimicrob. Chemother. 2019, 74, 2825–2843. [Google Scholar] [CrossRef]
- Ogawa, Y.; Nakano, R.; Kasahara, K.; Mizuno, T.; Hirai, N.; Nakano, A.; Suzuki, Y.; Kakuta, N.; Masui, T.; Yano, H.; et al. Comparison of the inoculum size effects of antibiotics on IMP-6 β-lactamase-producing Enterobacteriaceae co-harboring plasmid-mediated quinolone resistance genes. PLoS ONE 2019, 14, e0225210. [Google Scholar] [CrossRef]
- Udekwu, K.I.; Parrish, N.; Ankomah, P.; Baquero, F.; Levin, B.R. Functional relationship between bacterial cell density and the efficacy of antibiotics. J. Antimicrob. Chemother. 2009, 63, 745–757. [Google Scholar] [CrossRef]
- Smelter, D.; McCrone, S.; Rose, W. Cefazolin inoculum effect predicts reduced susceptibility to other antibiotics and patient outcomes in MSSA endovascular infections. Open Forum Infect. Dis. 2020, 7 (Suppl. S1), S617. [Google Scholar] [CrossRef]
- Miller, W.R.; Seas, C.; Carvajal, L.P.; Diaz, L.; Echeverri, A.M.; Ferro, C.; Rios, R.; Porras, P.; Luna, C.; Gotuzzo, E.; et al. The cefazolin inoculum effect is associated with increased mortality in methicillin-susceptible Staphylococcus aureus bacteremia. Open Forum Infect. Dis. 2018, 5, ofy123. [Google Scholar] [CrossRef]
- Harada, Y.; Morinaga, Y.; Kaku, N.; Nakamura, S.; Uno, N.; Hasegawa, H.; Izumikawa, K.; Kohno, S.; Yanagihara, K. In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clin. Microbiol. Infect. 2014, 20, O831–O839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Filimonova, A.V.; Golikova, M.V.; Strukova, E.N.; Portnoy, Y.A.; Kuznetsova, A.A.; Zinner, S.H. Predicting the effects of carbapenem/carbapenemase inhibitor combinations against KPC-producing Klebsiella pneumoniae in time-kill experiments: Alternative versus traditional approaches to MIC determination. Antibiotics 2021, 10, 1520. [Google Scholar] [CrossRef] [PubMed]
- Golikova, M.V.; Strukova, E.N.; Portnoy, Y.A.; Dovzhenko, S.A.; Kobrin, M.B.; Zinner, S.H.; Firsov, A.A. Predicting effects of antibiotic combinations using MICs determined at pharmacokinetically derived concentration ratios: In vitro model studies with linezolid- and rifampicin-exposed Staphylococcus aureus. J. Chemother. 2017, 5, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Golikova, M.V.; Strukova, E.N.; Portnoy, Y.A.; Zinner, S.H.; Firsov, A.A. Predicting the antistaphylococcal effects of daptomycin-rifampicin combinations in an in vitro dynamic model. J. Antibiot. 2020, 73, 101–107. [Google Scholar] [CrossRef]
- Golikova, M.V.; Strukova, E.N.; Portnoy, Y.A.; Zinner, S.H.; Firsov, A.A. Verification of a novel approach to predicting effects of antibiotic combinations: In vitro dynamic model study with daptomycin and gentamicin against Staphylococcus aureus. Antibiotics 2020, 9, 538. [Google Scholar] [CrossRef]
- Golikova, M.V.; Strukova, E.N.; Alieva, K.N.; Portnoy, Y.A.; Filimonova, A.V.; Zinner, S.H.; Firsov, A.A. A pharmacokinetically-based approach to predict anti-mutant efficacy of combined doripenem and levofloxacin therapy in in vitro model studies with Pseudomonas aeruginosa. In Proceedings of the 31th European Congress of Clinical Microbiology & Infectious Diseases, Vienna, Austria, 9–12 July 2021; p. #833. [Google Scholar]
- Van der Zwaluw, K.; de Haan, A.; Pluister, G.N.; Bootsma, H.J.; de Neeling, A.J.; Schouls, L.M. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS ONE 2015, 10, e0123690. [Google Scholar] [CrossRef] [Green Version]
- Cirillo, I.; Vaccaro, N.; Turner, K.; Solanki, B.; Natarajan, J.; Redman, R. Pharmacokinetics, safety, and tolerability of doripenem after 0.5-, 1-, and 4-hour infusions in healthy volunteers. J. Clin. Pharmacol. 2009, 49, 798–806. [Google Scholar] [CrossRef]
- Rhee, E.G.; Rizk, M.L.; Calder, N.; Nefliu, M.; Warrington, S.J.; Schwartz, M.S.; Mangin, E.; Boundy, K.; Bhagunde, P.; Colon-Gonzalez, F.; et al. Pharmacokinetics, safety, and tolerability of single and multiple doses of relebactam, a β-lactamase inhibitor, in combination with imipenem and cilastatin in healthy participants. Antimicrob. Agents Chemother. 2018, 62, e00280-18. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Adams-Sapper, S.; Nolen, S.; Donzelli, G.F.; Lal, M.; Chen, K.; Justo da Silva, L.H.; Moreira, B.M.; Riley, L.W. Rapid induction of high-level carbapenem resistance in heteroresistant KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2015, 59, 3281–3289. [Google Scholar] [CrossRef] [Green Version]
- Roth, A.L.; Thomson, K.S.; Lister, P.D.; Hanson, N.D. Production of KPC-2 alone does not always result in β-lactam MICs representing resistance in gram-negative pathogens. J. Clin. Microbiol. 2012, 50, 4183–4184. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, E.J.; Citron, D.M.; Cherubin, C.E. Comparison of the inoculum effects of members of the family Enterobacteriaceae on cefoxitin and other cephalosporins, beta-lactamase inhibitor combinations, and the penicillin-derived components of these combinations. Antimicrob. Agents Chemother. 1991, 35, 560–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Cerero, L.; Picón, E.; Morillo, C.; Hernández, J.R.; Docobo, F.; Pachón, J.; Rodríguez-Baño, J.; Pascual, A. Comparative assessment of inoculum effects on the antimicrobial activity of amoxycillin-clavulanate and piperacillin-tazobactam with extended-spectrum beta-lactamase-producing and extended-spectrum beta-lactamase-non-producing Escherichia coli isolates. Clin. Microbiol. Infect. 2010, 16, 132–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, K.S.; Moland, E.S. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2001, 45, 3548–3554. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Chen, B.Y.; Tian, S.F.; Chu, Y.Z. The inoculum effect of antibiotics against CTX-M-extended-spectrum β-lactamase-producing Escherichia coli. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.P.; Kirby, J.E. The inoculum effect in the era of multidrug resistance: Minor differences in inoculum have dramatic effect on mic determination. Antimicrob. Agents Chemother. 2018, 62, e00433-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, M.; Kim, T.; Park, J.H.; Bae, S.; Sung, H.; Kim, M.-N.; Jung, J.; Kim, M.J.; Kim, S.-H.; Lee, S.-O.; et al. In vitro activities of ceftazidime–avibactam and aztreonam–avibactam at different inoculum sizes of extended-spectrum β-lactam-resistant Enterobacterales blood isolates. Antibiotics 2021, 10, 1492. [Google Scholar] [CrossRef]
- Queenan, A.M.; Foleno, B.; Gownley, C.; Wira, E.; Bush, K. Effects of inoculum and beta-lactamase activity in AmpC- and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. J. Clin. Microbiol. 2004, 42, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Gaibani, P.; Bussini, L.; Amadesi, S.; Bartoletti, M.; Bovo, F.; Lazzarotto, T.; Viale, P.; Ambretti, S. Successful treatment of bloodstream infection due to a KPC-producing Klebsiella pneumoniae resistant to imipenem/relebactam in a hematological patient. Microorganisms 2022, 10, 778. [Google Scholar] [CrossRef]
- Fasciana, T.; Ciammaruconi, A.; Gentile, B.; Di Carlo, P.; Virruso, R.; Tricoli, M.R.; Palma, D.M.; Pitarresi, G.L.; Lista, F.; Giammanco, A. Draft Genome Sequence and Biofilm Production of a Carbapenemase-Producing Klebsiella pneumoniae (KpR405) Sequence Type 405 Strain Isolated in Italy. Antibiotics 2021, 10, 560. [Google Scholar] [CrossRef]
K. pneumoniae Strain | Imipenem | Doripenem | ||||
---|---|---|---|---|---|---|
MICSI | MICHI | MICHI/MICSI | MICSI | MICHI | MICHI/MICSI | |
14 | 16 | 512 | 32 * | 16 | 64 | 4 |
16 | 64 | 256 | 4 | 128 | 128 | 1 |
BAA-1705 | 8 | 256 | 32 * | 8 | 64 | 8 * |
BAA-1902 | 64 | 256 | 4 | 64 | 128 | 2 |
BAA-1904 | 8 | 512 | 64 * | 4 | 64 | 16 * |
BAA-1905 | 8 | 512 | 64 * | 8 | 64 | 8 * |
K. pneumoniae Strain | Imipenem/Relebactam | Doripenem/Relebactam | ||||
---|---|---|---|---|---|---|
MIC1,SI | MIC1,HI | MIC1,HI/MIC1,SI | MIC1,SI | MIC1,HI | MIC1,HI/MIC1,SI | |
14 | 0.25 | 1 | 4 | 0.25 | 1 | 4 |
16 | 0.5 | 2 | 4 | 1 | 2 | 2 |
BAA-1705 | 0.25 | 1 | 4 | 0.06 | 0.5 | 8 * |
BAA-1902 | 0.5 | 2 | 4 | 0.5 | 2 | 4 |
BAA-1904 | 0.5 | 4 | 8 * | 0.125 | 0.5 | 4 |
BAA-1905 | 0.25 | 2 | 8 * | 0.06 | 0.5 | 8 * |
MIC2,SI | MIC2,HI | MIC2,HI/MIC2,SI | MIC2,SI | MIC2,HI | MIC2,HI/MIC2,SI | |
14 | 2 | 4 | 2 | 2 | 4 | 2 |
16 | 4 | 4 | 1 | 8 | 8 | 1 |
BAA-1705 | 1 | 4 | 4 | 1 | 4 | 4 |
BAA-1902 | 2 | 4 | 2 | 2 | 4 | 2 |
BAA-1904 | 1 | 8 | 8 * | 0.5 | 4 | 8 * |
BAA-1905 | 1 | 8 | 8 * | 1 | 8 | 8 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golikova, M.V.; Alieva, K.N.; Filimonova, A.V.; Ageevets, V.A.; Sulian, O.S.; Avdeeva, A.A.; Sidorenko, S.V.; Zinner, S.H. Klebsiella pneumoniae Susceptibility to Carbapenem/Relebactam Combinations: Influence of Inoculum Density and Carbapenem-to-Inhibitor Concentration Ratio. Biomedicines 2022, 10, 1454. https://doi.org/10.3390/biomedicines10061454
Golikova MV, Alieva KN, Filimonova AV, Ageevets VA, Sulian OS, Avdeeva AA, Sidorenko SV, Zinner SH. Klebsiella pneumoniae Susceptibility to Carbapenem/Relebactam Combinations: Influence of Inoculum Density and Carbapenem-to-Inhibitor Concentration Ratio. Biomedicines. 2022; 10(6):1454. https://doi.org/10.3390/biomedicines10061454
Chicago/Turabian StyleGolikova, Maria V., Kamilla N. Alieva, Alla V. Filimonova, Vladimir A. Ageevets, Ofeliia S. Sulian, Alisa A. Avdeeva, Sergey V. Sidorenko, and Stephen H. Zinner. 2022. "Klebsiella pneumoniae Susceptibility to Carbapenem/Relebactam Combinations: Influence of Inoculum Density and Carbapenem-to-Inhibitor Concentration Ratio" Biomedicines 10, no. 6: 1454. https://doi.org/10.3390/biomedicines10061454
APA StyleGolikova, M. V., Alieva, K. N., Filimonova, A. V., Ageevets, V. A., Sulian, O. S., Avdeeva, A. A., Sidorenko, S. V., & Zinner, S. H. (2022). Klebsiella pneumoniae Susceptibility to Carbapenem/Relebactam Combinations: Influence of Inoculum Density and Carbapenem-to-Inhibitor Concentration Ratio. Biomedicines, 10(6), 1454. https://doi.org/10.3390/biomedicines10061454