Circulating lncRNA- and miRNA-Associated ceRNA Network as a Potential Prognostic Biomarker for Non-Hodgkin Lymphoma: A Bioinformatics Analysis and a Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of CeRNA Regulatory Network and Functional Analysis
2.2. Study Population
2.3. RNA Extractions and qPCR
2.4. Statistical Analysis
3. Results
3.1. lncRNA-miRNA-mRNA Network Construction
3.2. miRNA and lncRNA Expression Levels in NHL Patients’ Plasma Samples
3.3. miRNAs and LncRNAs Plasma Levels According to IPI and FLIPI Score
3.4. miRNA and lncRNA Expression Levels in NHL Patients’ Plasma Samples according to Bone Marrow Involvement
3.5. miRNAs’ and LncRNAs’ Impact on Overall Survival and Progression-Free Survival of NHL Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaffer, A.L., III; Young, R.M.; Staudt, L.M. Pathogenesis of Human B Cell Lymphomas. Annu. Rev. Immunol. 2012, 30, 565–610. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Armitage, J.O.; Gascoyne, R.D.; Lunning, M.A.; Cavalli, F. Non-Hodgkin lymphoma. Lancet 2017, 390, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Klener, P.; Klanova, M. Drug Resistance in Non-Hodgkin Lymphomas. Int. J. Mol. Sci. 2020, 21, 2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovira, J.; Valera, A.; Colomo, L.; Setoain, X.; Rodríguez, S.; Martínez-Trillos, A.; Giné, E.; Dlouhy, I.; Magnano, L.; Gaya, A. Prognosis of patients with diffuse large B cell lymphoma not reaching complete response or relapsing after frontline chemotherapy or immunochemotherapy. Ann. Hematol. 2015, 94, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Crump, M.; Neelapu, S.S.; Farooq, U.; Van Den Neste, E.; Kuruvilla, J.; Westin, J.; Link, B.K.; Hay, A.; Cerhan, J.R.; Zhu, L. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood 2017, 130, 1800–1808. [Google Scholar] [CrossRef]
- A predictive model for aggressive non-Hodgkin’s lymphoma. N. Engl. J. Med. 1993, 329, 987–994. [CrossRef] [PubMed]
- Solal-Céligny, P.; Roy, P.; Colombat, P.; White, J.; Armitage, J.O.; Arranz-Saez, R.; Au, W.Y.; Bellei, M.; Brice, P.; Caballero, D. Follicular lymphoma international prognostic index. Blood 2004, 104, 1258–1265. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, S.; Tsunoda, S.; Koyama, D.; Suzuki, M.; Sukegawa, M.; Misawa, K.; Hojo, H.; Zhu, X.; Utano, K.; Ohta, M. Femoral marrow MRI is a non-invasive, non-irradiated and useful tool for detecting bone marrow involvement in non-Hodgkin lymphoma. J. Clin. Exp. Hematop. JCEH 2021, 61, 78–84. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Esmaeili, M.; Taheri, M. Expression of non-coding RNAs in hematological malignancies. Eur. J. Pharmacol. 2020, 875, 172976. [Google Scholar] [CrossRef]
- Sole, C.; Arnaiz, E.; Manterola, L.; Otaegui, D.; Lawrie, C.H. The circulating transcriptome as a source of cancer liquid biopsy biomarkers. Semin. Cancer Biol. 2019, 58, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Solé, C.; Arnaiz, E.; Lawrie, C.H. MicroRNAs as Biomarkers of B-cell Lymphoma. Biomarker Insights 2018, 13, 1177271918806840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopp, F.; Mendell, J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 2018, 172, 393–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karstensen, K.T.; Schein, A.; Petri, A.; Bøgsted, M.; Dybkær, K.; Uchida, S.; Kauppinen, S. Long Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Non-Coding RNA 2021, 7, 1. [Google Scholar] [CrossRef]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Li, B.; Lu, C.-L.; Wang, J.-Y.; Gao, M.; Gao, W. LncRNA LINC01857 promotes cell growth and diminishes apoptosis via PI3K/mTOR pathway and EMT process by regulating miR-141-3p/MAP4K4 axis in diffuse large B-cell lymphoma. Cancer Gene Therapy 2020, 28, 1046–1057. [Google Scholar] [CrossRef] [PubMed]
- Baytak, E.; Gong, Q.; Akman, B.; Yuan, H.; Chan, W.C.; Kucuk, C. Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2017, 39, 1010428317701648. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Jiao, C.; Lin, Y.; Chen, M.; Zhang, J.; Wang, J.; Zhang, Z. lncRNA UCA1 Contributes to Imatinib Resistance by Acting as a ceRNA Against miR-16 in Chronic Myeloid Leukemia Cells. DNA Cell Biol. 2017, 36, 18–25. [Google Scholar] [CrossRef]
- Neat, M.J.; Foot, N.; Jenner, M.; Goff, L.; Ashcroft, K.; Burford, D.; Dunham, A.; Norton, A.; Lister, T.A.; Fitzgibbon, J. Localisation of a novel region of recurrent amplification in follicular lymphoma to an∼ 6.8 Mb region of 13q32-33. Genes Chromosomes Cancer 2001, 32, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Monni, O.; Oinonen, R.; Elonen, E.; Franssila, K.; Teerenhovi, L.; Joensuu, H.; Knuutila, S. Gain of 3q and deletion of 11q22 are frequent aberrations in mantle cell lymphoma. Genes Chromosomes Cancer 1998, 21, 298–307. [Google Scholar] [CrossRef]
- Rao, P.H.; Houldsworth, J.; Dyomina, K.; Parsa, N.Z.; Cigudosa, J.C.; Louie, D.C.; Popplewell, L.; Offit, K.; Jhanwar, S.C.; Chaganti, R.S.K. Chromosomal and Gene Amplification in Diffuse Large B-Cell Lymphoma. Blood 1998, 92, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.Y.; Oda, H.; Lai, M.; Skalsky, R.L.; Bethel, K.; Shepherd, J.; Kang, S.G.; Liu, W.-H.; Sabouri-Ghomi, M.; Cullen, B.R.; et al. MicroRNA-17∼92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J. 2013, 32, 2377–2391. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. science 2004, 303, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Calado, D.P.; Galler, G.; Thai, T.-H.; Patterson, H.C.; Wang, J.; Rajewsky, N.; Bender, T.P.; Rajewsky, K. MiR-150 Controls B Cell Differentiation by Targeting the Transcription Factor c-Myb. Cell 2007, 131, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, K.; Ikawa, T.; Gentner, B.; Hozumi, K.; Harnprasopwat, R.; Lu, J.; Yamashita, R.; Ha, D.; Toyoshima, T.; Chanda, B.; et al. MicroRNA-126–mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors. Proc. Natl. Acad. Sci. USA 2013, 110, 13410–13415. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.Y.; Lin, Y.C.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.G.; Jin, C.N.; Yu, Y.; et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020, 48, D148–D154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Fernandes, M.; Marques, H.; Teixeira, A.L.; Medeiros, R. ceRNA Network of lncRNA/miRNA as Circulating Prognostic Biomarkers in Non-Hodgkin Lymphomas: Bioinformatic Analysis and Assessment of Their Prognostic Value in an NHL Cohort. Int. J. Mol. Sci. 2022, 23, 201. [Google Scholar] [CrossRef] [PubMed]
- Zimta, A.-A.; Tigu, A.B.; Braicu, C.; Stefan, C.; Ionescu, C.; Berindan-Neagoe, I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front. Oncol. 2020, 10, 389. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, Y.; Guo, Y.; Hu, L.; Xiao, Z.; Liu, X.; Wang, J.; Xu, Q.; Tong, X. Long non-coding RNA SNHG16 promotes proliferation and inhibits apoptosis of diffuse large B-cell lymphoma cells by targeting miR-497-5p/PIM1 axis. J. Cell Mol. Med. 2019, 23, 7395–7405. [Google Scholar] [CrossRef]
- Zhao, W.; Fu, H.; Zhang, S.; Sun, S.; Liu, Y. LncRNA SNHG16 drives proliferation, migration, and invasion of hemangioma endothelial cell through modulation of miR-520d-3p/STAT3 axis. Cancer Med. 2018, 7, 3311–3320. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Xu, J.; Yue, D. LncRNA-SNHG16 predicts poor prognosis and promotes tumor proliferation through epigenetically silencing p21 in bladder cancer. Cancer Gene Ther. 2018, 25, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, L.L.; True, K.; Hamilton, M.P.; Nielsen, M.M.; Damas, N.D.; Damgaard, C.K.; Ongen, H.; Dermitzakis, E.; Bramsen, J.B.; Pedersen, J.S.; et al. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol. Oncol. 2016, 10, 1266–1282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ma, A.; Jin, Y.; Pan, G.; Wang, C. LncRNA SNHG16 induced by TFAP2A modulates glycolysis and proliferation of endometrial carcinoma through miR-490-3p/HK2 axis. Am. J. Transl. Res. 2019, 11, 7137–7145. [Google Scholar]
- Li, S.; Zhang, S.; Chen, J. c-Myc induced upregulation of long non-coding RNA SNHG16 enhances progression and carcinogenesis in oral squamous cell carcinoma. Cancer Gene Ther. 2019, 26, 400–410. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Liu, H.; Ding, Z.B.; Xi, H.P.; Wang, G.W. lncRNA SNHG16 Exerts Oncogenic Functions in Promoting Proliferation of Glioma Through Suppressing p21. Pathol. Oncol. Res. POR 2020, 26, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, H.; Wang, X.; Liu, H.; Liu, H.; Lin, Z. Knockdown of lncRNA SNHG16 suppresses multiple myeloma cell proliferation by sponging miR-342-3p. Cancer Cell Int. 2020, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zheng, H.; Xu, J.; Zhang, F.; Pan, H. LncRNA SNHG16 aggravates tumorigenesis and development of hepatocellular carcinoma by sponging miR-4500 and targeting STAT3. J. Cell Biochem. 2019; Online ahead of print. [Google Scholar] [CrossRef]
- Zhong, J.H.; Xiang, X.; Wang, Y.Y.; Liu, X.; Qi, L.N.; Luo, C.P.; Wei, W.E.; You, X.M.; Ma, L.; Xiang, B.D. The lncRNA SNHG16 affects prognosis in hepatocellular carcinoma by regulating p62 expression. J. Cell. Physiol. 2020, 235, 1090–1102. [Google Scholar] [CrossRef] [PubMed]
- Ota, A.; Tagawa, H.; Karnan, S.; Tsuzuki, S.; Karpas, A.; Kira, S.; Yoshida, Y.; Seto, M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004, 64, 3087–3095. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Thomson, J.M.; Hemann, M.T.; Hernando-Monge, E.; Mu, D.; Goodson, S.; Powers, S.; Cordon-Cardo, C.; Lowe, S.W.; Hannon, G.J. A microRNA polycistron as a potential human oncogene. Nature 2005, 435, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Mu, P.; Han, Y.C.; Betel, D.; Yao, E.; Squatrito, M.; Ogrodowski, P.; de Stanchina, E.; D’Andrea, A.; Sander, C.; Ventura, A. Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 2009, 23, 2806–2811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Qin, T.; Mao, J.; Zhang, J.; Fan, S.; Lu, Y.; Sun, Z.; Zhang, Q.; Song, B.; Li, L. PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway. J. Exp. Clin. Cancer Res. 2019, 38, 256. [Google Scholar] [CrossRef]
- Rao, E.; Jiang, C.; Ji, M.; Huang, X.; Iqbal, J.; Lenz, G.; Wright, G.; Staudt, L.M.; Zhao, Y.; McKeithan, T.W.; et al. The miRNA-17∼92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia 2012, 26, 1064–1072. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chang, H.; Chen, G. Effects of microRNA-20a on the proliferation, migration and apoptosis of multiple myeloma via the PTEN/PI3K/AKT signaling pathway. Oncol. Lett. 2018, 15, 10001–10007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.B.; Elledge, S.J. The DNA damage response: Putting checkpoints in perspective. Nature 2000, 408, 433–439. [Google Scholar] [CrossRef]
- Zhuo, W.; Ge, W.; Meng, G.; Jia, S.; Zhou, X.; Liu, J. MicroRNA-20a promotes the proliferation and cell cycle of human osteosarcoma cells by suppressing early growth response 2 expression. Mol. Med. Rep. 2015, 12, 4989–4994. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zhu, H.; Jiao, R.; Wu, X.; Ji, G.; Zhang, X. Prognostic and clinicopathological significance of SNHG6 in human cancers: A meta-analysis. BMC Cancer 2020, 20, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Zhu, H.; Chen, J.; Lin, W.; Li, B.; Guo, Y. Construction of relapse-related lncRNA-mediated ceRNA networks in Hodgkin lymphoma. Arch. Med. Sci. 2020, 16, 1411–1418. [Google Scholar] [CrossRef]
- Fan, R.H.; Guo, J.N.; Yan, W.; Huang, M.D.; Zhu, C.L.; Yin, Y.M.; Chen, X.F. Small nucleolar host gene 6 promotes esophageal squamous cell carcinoma cell proliferation and inhibits cell apoptosis. Oncol. Lett. 2018, 15, 6497–6502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, K.; Tian, J.; Shi, W.; Xia, H.; Zhu, Y. LncRNA SNHG6 is Associated with Poor Prognosis of Gastric Cancer and Promotes Cell Proliferation and EMT through Epigenetically Silencing p27 and Sponging miR-101-3p. Cell. Physiol. Biochem. 2017, 42, 999–1012. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, R.; Qiu, X.; Tian, T. SNHG6 Promotes Tumor Growth via Repression of P21 in Colorectal Cancer. Cell. Physiol. Biochem. 2018, 49, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, X.; Li, R.; Zhang, R.; Hu, D.; Zhang, Y.; Gao, L. LncRNA SNHG6 Inhibits Apoptosis by Regulating EZH2 Expression via the Sponging of MiR-101-3p in Esophageal Squamous-Cell Carcinoma. OncoTargets Ther. 2020, 13, 11411–11420. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, Y.; Guo, Q.; Zhu, J.; Cao, L.; Guo, X.; Xu, F.; Weng, W.; Ju, X.; Wu, X. Long non-coding RNA SNHG6 promotes cell proliferation and migration through sponging miR-4465 in ovarian clear cell carcinoma. J. Cell Mol. Med. 2019, 23, 5025–5036. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Chen, X.; Lin, K.; Zeng, K.; Liu, X.; Xu, X.; Pan, B.; Xu, T.; Sun, L.; He, B.; et al. lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. J. Hematol. Oncol. 2019, 12, 3. [Google Scholar] [CrossRef]
- Lai, F.; Deng, W.; Fu, C.; Wu, P.; Cao, M.; Tan, S. Long non-coding RNA SNHG6 increases JAK2 expression by targeting the miR-181 family to promote colorectal cancer cell proliferation. J. Gene Med. 2020, 22, e3262. [Google Scholar] [CrossRef]
- Yu, C.; Sun, J.; Leng, X.; Yang, J. Long noncoding RNA SNHG6 functions as a competing endogenous RNA by sponging miR-181a-5p to regulate E2F5 expression in colorectal cancer. Cancer Manag. Res. 2019, 11, 611–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozloski, G.A.; Jiang, X.; Bhatt, S.; Ruiz, J.; Vega, F.; Shaknovich, R.; Melnick, A.; Lossos, I.S. miR-181a negatively regulates NF-κB signaling and affects activated B-cell–like diffuse large B-cell lymphoma pathogenesis. Blood 2016, 127, 2856–2866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S.; Qi, W.; Morales, C.; Cooke, L.; Spier, C.; Weterings, E.; Mahadevan, D. Disruption of Aneuploidy and Senescence Induced by Aurora Inhibition Promotes Intrinsic Apoptosis in Double Hit or Double Expressor Diffuse Large B-cell Lymphomas. Mol. Cancer Ther. 2017, 16, 2083–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinical–Pathological Characteristics | N (%) N = 113 |
---|---|
Age | |
≤60 years | 53 (46.9%) |
>60 years | 60 (53.1%) |
Gender | |
Female | 57 (50.4%) |
Male | 56 (49.6%) |
Grade | |
Low (indolent) | 55 (48.7%) |
High (aggressive) | 58 (51.3%) |
Subtype of NHL | |
Follicular | 40 (35.4%) |
Diffuse large B cell | 58 (51.3%) |
Marginal Zone | 15 (13.3%) |
Stage | |
I/II | 43 (38.1%) |
III/IV | 70 (61.9%) |
LDH serum levels | |
Normal | 67 (59.3%) |
High | 45 (39.8%) |
Unknown | 1 (0.9%) |
ECOG | |
0–1 | 97 (85.8%) |
≥2 | 14 (12.4%) |
Unknown | 2 (1.8%) |
B symptoms | |
Absent | 80 (70.8%) |
Present | 33 (29.2%) |
IPI Score (high-grade tumors) | |
Low risk (0–1) | 17 (29.3%) |
Intermediate risk (2–3) | 25 (43.1%) |
High risk (4–5) | 14 (24.1%) |
Unknown | 2 (3.4%) |
FLIPI score (low-grade tumors) | |
Low risk (0–1) | 18 (32.7%) |
Intermediate risk (2) | 18 (32.7%) |
High risk (3, 4, 5) | 19 (34.5%) |
BM involvement | |
Negative | 81 (71.7%) |
Positive | 32 (28.3%) |
Groups | hsa-miR-20a-5p/SNHG16 | hsa-miR-181a-5p/SNHG6 |
---|---|---|
Low risk | ↓hsa-miR-20a-5p + ↓SNHG16 | ↑hsa-miR-181a-5p + ↓SNHG6 |
Intermediate risk | ↓hsa-miR-20a-5p + ↓SNHG16 ↓hsa-miR-20a-5p + ↑SNHG16 | ↑hsa-miR-181a-5p + ↑SNHG6 ↓hsa-miR-181a-5p + ↓SNHG6 |
High risk | ↑hsa-miR-20a-5p + ↑SNHG16 | ↓hsa-miR-181a-5p + ↑SNHG6 |
Risk Groups | n | Negative BMI (n) | Positive BMI (n) | OR (95% CI) | p |
---|---|---|---|---|---|
hsa-miR-20a-5p/SNHG16 | 0.023 | ||||
Low/intermediate risk | 59 | 48 | 11 | 1 | |
High risk | 36 | 21 | 14 | 2.91 (1.14–7.46) | |
hsa-miR-181a-5p/SNHG6 | 0.010 | ||||
Low/intermediate risk | 56 | 46 | 28 | 1 | |
High risk | 48 | 10 | 20 | 3.28 (1.35–8.02) |
Characteristic | OS | 5-Year PFS | ||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
miR-20a levels (Low/Inter vs. High) | 2.834 (1.007–7.979) | 0.037 | 3.898 (1.676–9.045) | 0.001 |
miR-181a levels (Low/Inter vs. High) | 0.200 (0.046–0.871) | 0.032 | 0.450 (0.194–1.046) | 0.048 |
SNHG16 levels (Low/Inter vs. High) | 4.481 (1.672–12.005) | 0.002 | 2.346 (1.100–5.004) | 0.029 |
SNHG6 levels (Low/Inter vs. High) | 2.621 (1.029–6.675) | 0.043 | 2.325 (1.147–4.710) | 0.022 |
Characteristic | OS | ||
---|---|---|---|
HR (95% CI) | p | c Index | |
Model 1 | |||
Age (≤60 years vs. >60 years) | 2.446 (0.788–7.596) | 0.122 | 0.608 |
Lymphoma grade (Low vs. High) | 2.338 (1.112–4.915) | 0.025 | |
B symptoms (Absent vs. Present) | 1.116 (0.355–3.508) | 0.081 | |
Stage (I/II vs. III/IV) | 3.311 (1.705–5.546) | 0.029 | |
ECOG (0–1 vs. ≥2) | 2.418 (1.326–5.722) | 0.036 | |
LDH levels (normal vs. high) | 2.696(1.656–4.388) | 0.037 | |
Model 2 | |||
Age (≤60 years vs. >60 years) | 2.584 (0.826–19.353) | 0.105 | 0.689 |
Lymphoma grade (Low vs. High) | 3.824 (1.167–12.536) | 0.027 | |
B symptoms (Absent vs. Present) | 1.743 (0.197–2.805) | 0.661 | |
Stage (I/II vs. III/IV) | 3.999 (0.826–9.353) | 0.085 | |
ECOG (0–1 vs. ≥2) | 4.447 (1.221–6.200) | 0.024 | |
LDH levels (normal vs. high) | 1.887 (0.676–5.267) | 0.225 | |
hsa-miR-20a-5p levels (Low/Inter vs. High) | 3.129 (1.090–8.984) | 0.034 | |
SNHG16 levels (Low/Inter vs. High) | 4.393 (1.488–8.969) | 0.007 | |
Model 3 | |||
Age (≤60 years vs. >60 years) | 2.589 (0.790–8.426) | 0.116 | 0.703 |
Lymphoma grade (Low vs. High) | 3.717 (1.097–12.590) | 0.035 | |
B symptoms (Absent vs. Present) | 1.744 (0.210–2.638) | 0.647 | |
Stage (I/II vs. III/IV) | 2.489 (1.080–5.486) | 0.040 | |
ECOG (0–1 vs. ≥2) | 4.701 (1.349–6.381) | 0.015 | |
LDH levels (normal vs. high) | 1.043 (0.321–3.387) | 0.244 | |
hsa-miR-181a-5p levels (Low/Inter vs. High) | 0.207(0.41–1.032) | 0.035 | |
SNHG6 levels (Low/Inter vs. High) | 2.801 (1.015–7.728) | 0.047 |
Characteristic | 5-Year PFS | ||
---|---|---|---|
HR (95% CI) | p | c Index | |
Model 1 | |||
Age (≤60 years vs. >60 years) | 2.025 (1.040–3.944) | 0.038 | 0.645 |
Lymphoma grade (Low vs. High) | 2.315 (1.403– 3.820) | 0.001 | |
B symptoms (Absent vs. Present | 1.644 (0.312–1.329) | 0.234 | |
Stage (I/II vs. III/IV) | 2.437 (1.149–5.167) | 0.020 | |
ECOG (0–1 vs. ≥2) | 1.402 (1.040–7.720) | 0.057 | |
LDH levels (normal vs. high) | 1.509 (0.855–2.662) | 0.156 | |
Model 2 | |||
Age (≤60 years vs. >60 years) | 2.456 (0.993–6.073) | 0.052 | 0.810 |
Lymphoma grade (Low vs. High) | 2.223 (1.021–4.840) | 0.044 | |
B symptoms (Absent vs. Present) | 1.762 (0.256–2.263) | 0.624 | |
Stage (I/II vs. III/IV) | 3.994 (1.378–11.580) | 0.011 | |
ECOG (0–1 vs. ≥2) | 3.205 (1.151–8.921) | 0.026 | |
LDH levels (normal vs. high) | 2.158 (0.989–4.714) | 0.053 | |
hsa-miR-20a-5p levels (Low/Inter vs. High) | 3.875 (1.619–9.279) | 0.002 | |
SNHG16 levels (Low/Inter vs. High) | 3.658 (1.410–9.491) | 0.030 | |
Model 3 | |||
Age (≤60 years vs. >60 years) | 2.760 (1.127–6.760) | 0.026 | 0.709 |
Lymphoma grade (Low vs. High) | 2.368 (1.114–5.035) | 0.025 | |
B symptoms (Absent vs. Present) | 1.968 (0.935–4.142) | 0.074 | |
Stage (I/II vs. III/IV) | 3.052 (1.027–9.065) | 0.045 | |
ECOG (0–1 vs. ≥2) | 2.901 (2.939–4.216) | 0.021 | |
LDH levels (normal vs. high) | 1.433 (0.668–3.075) | 0.355 | |
hsa-miR-181a-5p levels (Low/Inter vs. High) | 0.374 (0.154–0.906) | 0.029 | |
SNHG6 levels (Low/Inter vs. High) | 2.183 (0.142–0.783) | 0.032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, M.; Marques, H.; Teixeira, A.L.; Medeiros, R. Circulating lncRNA- and miRNA-Associated ceRNA Network as a Potential Prognostic Biomarker for Non-Hodgkin Lymphoma: A Bioinformatics Analysis and a Pilot Study. Biomedicines 2022, 10, 1322. https://doi.org/10.3390/biomedicines10061322
Fernandes M, Marques H, Teixeira AL, Medeiros R. Circulating lncRNA- and miRNA-Associated ceRNA Network as a Potential Prognostic Biomarker for Non-Hodgkin Lymphoma: A Bioinformatics Analysis and a Pilot Study. Biomedicines. 2022; 10(6):1322. https://doi.org/10.3390/biomedicines10061322
Chicago/Turabian StyleFernandes, Mara, Herlander Marques, Ana Luísa Teixeira, and Rui Medeiros. 2022. "Circulating lncRNA- and miRNA-Associated ceRNA Network as a Potential Prognostic Biomarker for Non-Hodgkin Lymphoma: A Bioinformatics Analysis and a Pilot Study" Biomedicines 10, no. 6: 1322. https://doi.org/10.3390/biomedicines10061322
APA StyleFernandes, M., Marques, H., Teixeira, A. L., & Medeiros, R. (2022). Circulating lncRNA- and miRNA-Associated ceRNA Network as a Potential Prognostic Biomarker for Non-Hodgkin Lymphoma: A Bioinformatics Analysis and a Pilot Study. Biomedicines, 10(6), 1322. https://doi.org/10.3390/biomedicines10061322