Immune Mechanism of Epileptogenesis and Related Therapeutic Strategies
Abstract
:1. Introduction
2. Methods
- Types of immunity and its relationship with the central nervous system (CNS);
- The mechanisms of immunomediated epileptogenesis;
- The epileptic disorders related to immunity;
- The immunomodulatory and anti-neuroinflammatory treatments of epilepsy.
3. Results
3.1. Types of Immunity and Its Relationship with the Central Nervous System (CNS)
3.1.1. Peripheral Immunity (Innate/Adaptive)
- T helper cells (Th cells): include three cell subtypes: Th1 cells, defined by the expression of lineage cytokine interferon (IFN)-γ, required for the control of intracellular viruses and bacteria; Th2 cells, defined by the expression of lineage cytokines interleukin (IL)-4/IL-5/IL-13 and the master transcription factor GATA3, which orchestrate the immune reaction against parasites; and Th17 cells, defined by the expression of lineage cytokines IL-17/IL-22, important for the immune response against certain extracellular bacteria and fungi., although they also play a major role in the development of autoimmunity.
- Regulatory T cells (Treg cells): Its main biological function consists of the suppression of self-reactive cells at the peripheral level.
3.1.2. Central Innate Immunity of the Brain
- Meningeal macrophages, located in the vicinity of the BBB. They play a main role in immunosurveillance and subsequent presentation of antigens to CD4+ T cells.
- Macrophages near the choroid plexus. Its basic function is also related to immunosurveillance tasks.
- Macrophages of the perivascular space. They are considered a part of the BBB and participate mostly in immunosurveillance and in the recruitment of circulating leukocytes.
- Parenchymal cells: Microglia and astrocytes. They are considered the key elements of central innate immunity but also participate in physiological processes regarding brain development and synaptic plasticity.
- M1 state or proinflammatory state, which converts microglia into a secretory cell of elements such as cytokines (IL-1β, IL6, TNFα), chemokines (CCL2), and other products such as ROS (reactive oxygen species), NO (nitric oxide), or glutamate, responsible of cell destruction processes of inflammatory origin, also known as pyroptosis [30,31].
- M2 state or alternative activation, which has the opposite effect, resulting in secretion of anti-inflammatory or neurotrophic factors [32].
- Mammalian target of rapamicin (mTOR) pathway;
- Nuclear factor k-B (NF-κB) pathway;
- Janus kinase (JAK)-signal transducer;
- Activator of transcription (STAT) pathway;
- Purinergic signaling.
3.2. Mechanisms of Immunomediated Epileptogenesis
3.2.1. Epileptogenesis Mediated by Peripheral Immunity
- ALE with Autoantibodies against surface antigens: Infrequently associated with oncological pathology and with suitable response to immunomodulatory treatments [41]. Autoantibodies against surface antigens have an epileptogenic capacity per se, but the risk of developing AAE is lower due to the reversible effect of these antibodies after their removal.
- ALE with Autoantibodies against intracytoplasmic antigens: Includes classic paraneoplastic syndromes related to onconeural antibodies. Related AAE is characterized by its refractoriness to medical treatments [42,43]. Table 1 summarizes the characteristics of the main paraneoplastic syndromes with antibodies against intracellular antigens.
3.2.2. Epileptogenesis and Brain Innate Immunity
- IL-1 Receptor (IL-R1)/Toll-like Receptor (TLR) [58]: Preclinical investigations in experimental models using pharmacological and genetic tools have identified a significant contribution of interleukin-1 (IL-1) type 1 receptor/Toll-like receptor (IL-1R/TLR) signaling seizure activity. This signal can be activated by ligands associated with infections (PAMPS) or by endogenous molecules, such as proinflammatory cytokines (e.g., IL-1beta) or DAMPS (e.g., high-mobility group box 1 (HMGB1)) [59]. The activation of the IL-1β/IL-1β R axis is strictly linked to the secretion of the intracellular protein MyD88 after the activation of innate immune receptors (especially TLR) during pathogen recognition [31]. This activates an intracellular molecular cascade that, ultimately, can lead to an alteration of neuronal excitability.
- TNF-α: TNF-α affects seizure susceptibility in animal models in a dual pattern. The mechanism of action seems to be exerted through receptors TNFR1 (p55) or TNFR2 (p75) receptor signaling [60]. In general, TNFR1 has been reported to mediate the ictogenic effects of TNF-α, whereas TNFR2 mediates the neuroprotective actions of this cytokine.
- High-Mobility Proteins (HMGB1): These molecules are components of chromatin and are passively released from necrotic cells and actively released by cells that are exposed to deep stress [61]. Recent studies have described models of epilepsy induced by bicuculline and kainic acid that highlight the nature of HMGB1-TLR4 interactions [62], as well as its role in epileptic recurrence, emphasizing the role of immune-related molecules in epileptogenesis [63].
- Cyclooxygenase-2 (COX-2): COX-2 is an enzyme synthesizing prostaglandin (PGs) that has also received attention due to its possible involvement in seizure generation [64]. It seems that the presence of COX-2 facilitates the recurrence of seizures in the hippocampus and may upregulate P-Glycoprotein at the BBB, causing AED resistance [65].
3.3. The Epileptic Disorders Related to Immunity
- Universality. Most epileptic disorders, regardless of their etiology (genetic, structural, autoimmune, infectious, traumatic, etc.), involve a greater or lesser extent the processes described. This universality suggests that these substrates may become valid therapeutic targets regardless of the etiology.
- Not compartmentalized. We will hardly find a pathology that exclusively affects a type of immunity, and a synergic collaboration between the different immune systems is presumed.
3.3.1. Epileptic Disorders Secondary to Systemic Autoimmune Disease
3.3.2. Autoimmune Diseases Primarily Involving CNS
3.3.3. Epilepsies Secondary to Structural Etiologies with a Predominant Role of Autoimmunity
- Tuberous Sclerosis Complex (TSC): It is a genetic disease with a predisposition to the development of structural alterations of the cerebral cortex called tubers, as well as neoplasms such as subependymal giant cell astrocytoma (SEGA). The pathogenic mechanism is related to central innate immunity abnormalities, mainly mutations leading to a hyperactivation of the mTOR pathway. However, inhibition of this system can be achieved pharmacologically through mTOR inhibitor drugs such as everolimus. This is the first of the genetically based etiologies of which, today, we have a personalized therapeutic strategy that acts directly on the basic mechanisms of epileptogenesis [87].
- Focal Cortical Dysplasia (FCD): Some FCD produces an activation of cerebral innate immunity, mainly microglial activation. Although their exact pathogenesis remains poorly understood, somatic mutations in the mTOR pathway have been found in FCD type IIb [88].
3.4. The Immunomodulatory and/or Anti-Inflammatory Treatments in Epilepsy
3.4.1. Established Treatments Used in Clinical Practice
- Rituximab: Anti-CD20 monoclonal antibody used in cases of involvement of adaptive humoral immunity. It is widely used due to its suitable tolerability and safety. Rituximab can be used as both a second-line agent for acute immunosuppression and as a long-term immunosuppressant for recurrent cases. Rituximab, however, does not deplete antibody-secreting cells, which are typically CD20-negative. Therefore, rituximab may work by deleting the antigen-specific memory B-cell populations that secrete the pathogenic antibodies [43].
- Azathioprine: It is an antagonist of the synthesis of purines and, consequently, of the production of DNA/RNA for the proliferation of white blood cells. Azathioprine usually takes 6 to 8 months to be effective, so it is often needed along with the progressive and concomitant reduction in oral steroids [15].
- Cyclophosphamide: It induces cell apoptosis through irreversible alterations of DNA. It is generally reserved for severe cases refractory to other immunotherapies due to the strong immunosuppressive effect and increased risk of adverse events including nausea and vomiting, alopecia, hemorrhagic cystitis, agranulocytosis, infertility, and increased risk of tumors [96].
- Mycophenolate mofetil: This drug depletes guanosine nucleotides preferentially in T and B lymphocytes, and inhibits their proliferation, thereby suppressing cell-mediated immune responses and antibody synthesis [96].
- mTOR pathway-modulating drugs: This line of research has produced the first drugs approved for the treatment of some epileptic disorders of neuroinflammatory basis, such as those included within the tuberous sclerosis complex. Everolimus has shown to be effective in the treatment of epilepsy related to tuberous sclerosis with level of evidence I [97]. Additionally, there is an ongoing clinical trial of everolimus in type II FCD (ClinicalTrials.gov Identifier: NCT03198949).
3.4.2. Future Therapeutic Strategies
- TLR pathway inhibitor drugs: Research on selective TLR pathway blockade strategy (IL-1β/IL-1βRaxis) has generated some molecules that have shown antiepileptic efficacy in animal models. Among them, perhaps the most promising is resveratrol [115].
- HMGB1 inhibitor drugs: Emerging evidence suggest that HMGB1 may contribute to the pathogenesis of epilepsy [62] since glycyrrhizin, an HMGB1 inhibitor, exhibits neuroprotective and antiepileptic effects in different animal models of epilepsy [116,118]. However, this drug has not been assessed in clinical trials for epilepsy.
- TNF-α inhibitor drugs: There are four TNF-α inhibitors approved as treatments for ulcerative colitis and/or Crohn’s disease: infliximab, adalimumab, golimumab, and certolizumab pegol [98]. The mechanism of action is based on both the neutralization of TNF-α bioactivity and the induction of apoptosis of TNF-expressing mononuclear cells [99]. Adalimumab is a fully human IgG1 monoclonal antibody that specifically binds to TNF-α, which showed to be reduced seizures and functional impairment in patients with RE [100]. Indeed, there is an ongoing clinical trial trying to evaluate the benefit of adalimumab in patients with RE. (ClinicalTrials.gov Identifier: NCT04003922). In addition, infliximab was effective in a patient with relapsing polychondritis and LE [101]. Conversely, golimumab and certolizumab have not been tested for epilepsy.
- Drugs modulating T lymphocytes: A large experience has been gathered about these drugs regarding efficacy and safety due to their use as disease-modifying therapies in multiple sclerosis.
- Natalizumab is a humanized monoclonal anti-α4-integrin antibody approved for the treatment of multiple sclerosis. Integrins are heterodimeric proteins expressed on the cell surface of leukocytes that participate in a wide variety of functions, such as survival, growth, differentiation, migration, inflammatory responses, and tumor invasion, among others [126]. Natalizumab interferes with leukocyte migration across the BBB, which is mediated by interaction between α4-integrin and vascular cell adhesion molecule-1, resulting in a selective CNS immunosuppression due to lower recruitment of immune cells in the cerebral parenchyma [127]. The administration of anti–α4-integrin antibodies showed to reduce seizures in a mouse model of epilepsy [128]. However, a recent phase II clinical trial in refractory epilepsy did not meet the primary endpoint of decreasing seizures, although no adverse events were reported [102]. Further exploration of possible anti-inflammatory therapies for drug-resistant epilepsy is warranted [103]. Interestingly, some cases of RE have been successfully treated with natalizumab [104].
- Inebilizumab: this drug is a promising therapeutic monoclonal antibody against the B-cell surface antigen CD19 that has recently been shown to be safe and efficacious in the treatment of neuromyelitis optica spectrum disorder, another antibody-mediated disorder of the CNS [105]. Compared to rituximab, inebilizumab not only depletes CD20+ B cells but also CD20- plasmablasts and plasma cells, resulting in robust and sustained suppression of humoral immunity. There is an ongoing clinical trial phase II with inebilizumab for the treatment of limbic encephalitis with anti-NMDAR antibodies (ClinicalTrials.gov Identifier: NCT04372615).
- Cytokine-targeted therapies: Given the central role of cytokines in many epileptic disorders, these therapies are promising for patients with epilepsy [109]. Among them, we mainly distinguish anti-interleukin drugs (anakinra and tocilizumab) and anti-interferon-γ drugs (situximab and emapalumab).
- Anakinra, an anti-IL1 receptor, has shown antiepileptic properties in patients with super refractory epileptic status [110], RE [111], and especially in cases of febrile infection-related epilepsy syndrome (FIRES), for which it has been proposed as a first-line therapeutic alternative [112,113]. Additionally, anakinra has been shown to reduce seizures in animal models of anti-NMDAR encephalitis and lithium-pilocarpine-induced epilepsy.
- Tocilizumab, an anti-IL6 receptor, has been reported to be effective in FIRES refractory to anakinra [129]. Currently, there are no research reports with situximab or emapalumab for epilepsy.
- Anti-neonatal Fc receptor (FcRn) therapies: A novel treatment approach targets the neonatal Fc receptor (FcRn) of several immune cells. The primary function of FcRn is to prevent IgG and albumin from lysosomal degradation through the recycling and transcytosis of IgG, therefore, prolonging its half-life. Antagonism of this receptor causes IgG catabolism, resulting in reduced overall IgG and pathogenic autoantibody levels [106,107]. There is currently an ongoing phase II clinical trial with rozanolixizumab (ClinicalTrials.gov Identifier: NCT04875975), a high-affinity human neonatal FC receptor (IgG4P) monoclonal antibody (IgG4P), developed to reduce pathogenic IgG in autoimmune and alloimmune diseases, such as encephalitis with anti-LGI1 antibodies.
- Proteasome inhibitors: Drugs targeting long-lived plasma cells (LLPCs) are a promising treatment for antibody-mediated neurological conditions. Specifically, bortezomid is a selective inhibitor of the S26 protasome for which a possible efficacy has been suggested for the treatment of limbic encephalitis with anti-NMDA antibodies. A recent systematic review shows that more than 50% of the patients reported in the literature treated in this way showed improvement. In any case, specifically designed studies are necessary to evaluate this topic [114].
- Janus Kinase/Signal Transducer and Activator of Transcription (JAK-STAT) Inhibitors: Inhibitors of the JAK-STAT pathway are proposed as a future therapeutic target in neuroinflammatory-based processes since they modulate the intracellular signaling pathways of multiple cytokine receptors [120]. Among these molecules, we find AZD1480, tofacitinib, baricitinib, SAR317461, momelotinib, filgotinib, baricitinib, ruxolitinib, lestaurtinib, or pacritinib [130], although lestaurtinib has any promising studies on animal models of epilepsy [119].
- NF-κβ inhibitors: As mentioned before, steroids preferentially and indirectly act on the NF-κβ transcription complex, although other novel drugs may selectively block this relevant pathway of neuroinflammation. Among them, dimethyl-fumarate, fingolimod, or teriflunamide have been widely used in patients with multiple sclerosis [131]. Interestingly, promising results have been reported on animal models of epilepsy treated with dimethyl-fumarate and fingolimod [122,123]. Emerging experimental findings suggest that fingolimod exerts disease-modifying antiepileptic effects based on its anti-neuroinflammatory properties, potent neuroprotection, anti-gliotic effects, myelin protection, reduction in the mTOR signaling pathway, and activation of microglia and astrocytes. Thus, the antiepileptic efficacy of this drug seems to be supported by various mechanisms of action that converge on the modulation of innate brain immunity [117,122].
- MAPK pathway inhibitors: Several drugs perform a selective blockade of this pathway, such as SB203580 [121], macranthoin G, and PD-0325901 (a derivative of CI-1040). The inhibition of p38-MAPK by SB203580 may regulate epileptic activity by decreasing expression levels of adenosine A1 receptor (A1R) and the type 1 equilibrative nucleoside transporter (ENT1) in animal models [121,124].
- COX-2 inhibitor drugs: COX-2 inhibitors have sown anti-seizure properties in various acute and chronic models of epilepsy. Aspirin, naproxen, rofecoxib, or nimesulide protected mice from mortality caused by pentylenetetrazol-induced seizure (PTZ) [132].
- Purinergic signaling modulating drugs: Increasing evidence suggests purinergic signaling via extracellularly released ATP as shared pathological mechanisms across numerous brain diseases, including epilepsy. Once released, ATP activates specific purinergic receptors, such as the ionotropic P2X7 receptor (P2X7R). Suggesting the therapeutic potential of drugs targeting the P2X7R for epilepsy, P2X7R expression increases following status epilepticus and during epilepsy, and P2X7R antagonism modulates seizure severity and epilepsy development. JNJ-47965567, a selective P2X7R antagonist, has some evidence in animal models of focal epilepsy [125].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nylander, A.; Hafler, D.A. Multiple sclerosis. J. Clin. Invest. 2012, 122. [Google Scholar] [CrossRef] [PubMed]
- Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s Dement. 2016, 12, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Wesselingh, R.; Butzkueven, H.; Buzzard, K.; Tarlinton, D.; O’Brien, T.; Monif, M. Innate Immunity in the Central Nervous System: A Missing Piece of the Autoimmune Encephalitis Puzzle? Front. Immunol. 2019, 10, 2066. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, X.; Zhang, Y.; Liu, H.; Liao, J.; Shao, K.; Chu, Y.; Liu, G. Modulation of TSC-m, TOR signaling on immune cells in immunity and autoimmunity. J. Cell. Physiol. 2014, 229, 17–26. [Google Scholar] [PubMed]
- Pracucci, E.; Pillai, V.; Lamers, D.; Parra, R.; Landi, S. Neuroinflammation: A Signature or a Cause of Epilepsy? Int. J. Mol. Sci. 2021, 22, 6981. [Google Scholar] [CrossRef] [PubMed]
- Ong, M.-S.; Kohane, I.S.; Cai, T.; Gorman, M.P.; Mandl, K.D. Population-Level Evidence for an Autoimmune Etiology of Epilepsy. JAMA Neurol. 2014, 71, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Sander, J.W.; Shorvon, S.D. Epidemiology of the epilepsies. J. Neurol. Neurosurg. Psychiatry 1996, 61, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshe, S.; Peltola, J.; Perez, E.R.; et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Yao, L. The role of inflammation in epileptogenesis. Acta Epileptol. 2020, 2, 15. [Google Scholar] [CrossRef]
- Alvim, M.K.M.; Morita-Sherman, M.E.; Yasuda, C.L.; Rocha, N.P.; Vieira Érica, L.; Pimentel-Silva, L.R.; Nogueira, M.H.; Barbosa, R.; Watanabe, N.; Coan, A.C.; et al. Inflammatory and neurotrophic factor plasma levels are related to epilepsy independently of etiology. Epilepsia 2021, 62, 2385–2394. [Google Scholar] [CrossRef]
- Kim, I.; Mlsna, L.M.; Yoon, S.; Le, B.; Yu, S.; Xu, D.; Koh, S. A postnatal peak in microglial development in the mouse hippocampus is correlated with heightened sensitivity to seizure triggers. Brain Behav. 2015, 5, e00403. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacol. 2020, 167, 107605. [Google Scholar] [CrossRef] [PubMed]
- Kölliker-Frers, R.; Udovin, L.; Otero-Losada, M.; Kobiec, T.; Herrera, M.I.; Palacios, J.; Razzitte, G.; Capani, F. Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediat. Inflamm. 2021, 2021, 9999146. [Google Scholar] [CrossRef] [PubMed]
- Waisman, A.; Liblau, R.; Becher, B. Innate and adaptive immune responses in the CNS. Lancet Neurol. 2015, 14, 945–955. [Google Scholar] [CrossRef]
- Sechi, E.; Flanagan, E.P. Antibody-Mediated Autoimmune Diseases of the CNS: Challenges and Approaches to Diagnosis and Management. Front. Neurol. 2021, 12. [Google Scholar] [CrossRef]
- Gendelman, H.E. Neural Immunity: Friend or Foe? J. Neuro. Virol. 2002, 8, 474–479. [Google Scholar] [CrossRef]
- Le Page, A.; Dupuis, G.; Frost, E.H.; Larbi, A.; Pawelec, G.; Witkowski, J.M.; Fulop, T. Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp. Gerontol. 2018, 107, 59–66. [Google Scholar] [CrossRef]
- Huang, X.; Hussain, B.; Chang, J. Peripheral inflammation and blood–brain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther. 2021, 27, 36–47. [Google Scholar] [CrossRef]
- Van Hamburg, J.P.; de Bruijn, M.J.W.; Ribeiro de Almeida, C.; van Zwam, M.; van Meurs, M.; de Haas, E.; Boon, L.; Samsom, J.N.; Hendrinks, R.W. Enforced expression of GATA3 allows differentiation of IL-17-producing cells, but constrains Th17-mediated pathology. Eur. J. Immunol. 2008, 38, 2573–2586. [Google Scholar] [CrossRef]
- Alexopoulos, H.; Dalakas, M.C. The immunobiology of autoimmune encephalitides. J. Autoimmun. 2019, 104, 102339. [Google Scholar] [CrossRef]
- Iorio, R.; Lennon, V.A. Neural antigen-specific autoimmune disorders. Immunol Rev. 2012, 248, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Melzer, N.; Meuth, S.G.; Wiendl, H. Neuron-directed autoimmunity in the central nervous system: Entities, mechanisms, diagnostic clues, and therapeutic options. Curr. Opin. Neurol. 2012, 25, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Healy, L.M.; Yaqubi, M.; Ludwin, S.; Antel, J.P. Species differences in immune-mediated CNS tissue injury and repair: A (neuro)inflammatory topic. Glia 2020, 68, 811–829. [Google Scholar] [CrossRef] [PubMed]
- Michell-Robinson, M.; Touil, H.; Healy, L.; Owen, D.; Durafourt, B.; Bar-Or, A.; Antel, J.; Moore, C.S. Roles of microglia in brain development, tissue maintenance and repair. Brain 2015, 138, 1138–1159. [Google Scholar] [CrossRef] [Green Version]
- Chasaide, C.N.; Lynch, M.A. The role of the immune system in driving neuroinflammation. Brain Neurosci. Adv. 2020, 4, 239821281990108. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.H.; Perucca, P.; O’brien, T.J.; Kwan, P.; Monif, M. Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease. Epilepsia 2020, 62, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Feldman, N.; Rotter-Maskowitz, A.; Okun, E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res. Rev. 2015, 24, 29–39. [Google Scholar] [CrossRef]
- Aguilera, G.; Colín-González, A.L.; Rangel-Lopez, E.; Chavarria, A.; Santamaría, A. Redox Signaling, Neuroinflammation, and Neurodegeneration. Antioxid. Redox Signal. 2018, 28, 1626–1651. [Google Scholar] [CrossRef]
- Serrano-Castro, P.J.; Estivill-Torrús, G.; Cabezudo-García, P.; Reyes-Bueno, J.A.; Petersen, N.C.; Aguilar-Castillo, M.J.; Suarez-Perez, J.; Jimenez-Hernandez, M.D.; Moya-Molina, M.A.; Oliver-Martos, B.; et al. Influencia de la infección SARS-Cov2 sobre Enfermedades Neurodegenerativas y Neuropsiquiátricas: ¿Una pandemia demorada? Neurología. 2020. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0213485320300670 (accessed on 20 April 2020).
- Mészáros, Á.; Molnár, K.; Nógrádi, B.; Hernádi, Z.; Nyúl-Tóth, Á.; Wilhelm, I.; Krizbai, I.A. Neurovascular Inflammaging in Health and Disease. Cells 2020, 9, 1614. [Google Scholar] [CrossRef]
- Subramaniam, S.R.; Federoff, H.J. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson’s Disease. Front. Aging Neurosci. 2017, 9, 176. [Google Scholar] [CrossRef]
- Muzio, L.; Viotti, A.; Martino, G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front. Neurosci. 2021, 15. [Google Scholar] [CrossRef] [PubMed]
- Wohleb, E.S.; Godbout, J.P. Basic Aspects of the Immunology of Neuroinflammation. Mod. Trends Pharm. 2013, 28, 1–19. [Google Scholar] [CrossRef]
- Dhapola, R.; Hota, S.S.; Sarma, P.; Bhattacharyya, A.; Medhi, B.; Reddy, D.H. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 2021, 29, 1669–1681. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.K.; Jo, M.; Kim, J.-H.; Suk, K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscience 2019, 25, 227–240. [Google Scholar] [CrossRef]
- Sinha, S.; Patil, S.; Jayalekshmy, V.; Satishchandra, P. Do cytokines have any role in epilepsy? Epilepsy Res. 2008, 82, 171–176. [Google Scholar] [CrossRef] [PubMed]
- De Vries, E.E.; van den Munckhof, B.; Braun, K.P.J.; van Royen-Kerkhof, A.; de Jager, W.; Jansen, F.E. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2016, 63, 177–190. [Google Scholar] [CrossRef]
- Webster, K.M.; Sun, M.; Crack, P.; O’brien, T.J.; Shultz, S.R.; Semple, B.D. Inflammation in epileptogenesis after traumatic brain injury. J. Neuroinflamm. 2017, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Steriade, C.; Britton, J.; Dale, R.C.; Gadoth, A.; Irani, S.R.; Linnoila, J.; McKeon, A.; Shao, X.; Venegas, V.; Bien, C.G. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: Conceptual definitions. Epilepsia 2020, 61, 1341–1351. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, L.; Lu, D.; Dai, S.; Han, Y.; Wu, Z.; Xu, P.; Chang, L.; Wu, Q. Association between autoimmune encephalitis and epilepsy: Systematic review and meta-analysis. Seizure 2021, 91, 346–359. [Google Scholar] [CrossRef]
- Romoli, M.; Krashia, P.; Sen, A.; Franciotta, D.; Gastaldi, M.; Nobili, A.; Mancini, A.; Cesarini, E.N.; Nigro, P.; Tambasco, N.; et al. Hippocampal epileptogenesis in autoimmune encephalitis. Ann. Clin. Transl. Neurol. 2019, 6, 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Bien, C.G.; Scheffer, I. Autoantibodies and epilepsy. Epilepsia 2011, 52, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Abboud, H.; Probasco, J.C.; Irani, S.; Ances, B.; Benavides, D.R.; Bradshaw, M.; Christo, P.P.; Dale, R.C.; Fernandez-Fournier, M.; Flanagan, E.P.; et al. Autoimmune encephalitis: Proposed best practice recommendations for diagnosis and acute management. J. Neurol. Neurosurg. Psychiatry 2021, 92, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Eichler, T.W.; Totland, C.; Haugen, M.; Qvale, T.H.; Mazengia, K.; Storstein, A.; Haukanes, B.I.; Vedeler, C.A. CDR2L Antibodies: A New Player in Paraneoplastic Cerebellar Degeneration. PLoS ONE 2013, 8, e66002. [Google Scholar] [CrossRef]
- Greenlee, J.E.; Carlson, N.G.; Abbatemarco, J.R.; Herdlevær, I.; Clardy, S.L.; Vedeler, C.A. Paraneoplastic and Other Autoimmune Encephalitides: Antineuronal Antibodies, T Lymphocytes, and Questions of Pathogenesis. Front. Neurol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Binks, S.; Uy, C.; Honnorat, J.; Irani, S.R. Paraneoplastic neurological syndromes: A practical approach to diagnosis and management. Pr. Neurol. 2021, 22, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Kawamura, M.; Sakimura, K.; Kato, N. Significance of Autoantibodies in Autoimmune Encephalitis in Relation to Antigen Localization: An Outline of Frequently Reported Autoantibodies with a Non-Systematic Review. Int. J. Mol. Sci. 2020, 21, 4941. [Google Scholar] [CrossRef] [PubMed]
- Takkar, A.; Mehta, S.; Gupta, N.; Bansal, S.; Lal, V. Anti- RI antibody associated progressive supranuclear palsy like presentation in a patient with breast carcinoma. J. Neuroimmunol. 2020, 347. [Google Scholar] [CrossRef] [PubMed]
- Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016, 15, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Ortega Suero, G.; Sola-Valls, N.; Escudero, D.; Saiz, A.; Graus, F. Síndromes neurológicos paraneoplásicos asociados a anticuerpos anti-Ma y anti-Ma. Neurologia 2018, 33, 35–46. [Google Scholar] [CrossRef]
- Shah, S.; Vazquez Do Campo, R.; Kumar, N.; McKeon, A.; Flanagan, E.P.; Klein, C.; Pittock, S.J.; Dubey, D. Paraneoplastic Myeloneuropathies: Clinical, Oncologic, and Serologic Accompaniments. Neurology 2021, 96, e632–e639. [Google Scholar] [CrossRef]
- Bernardo, F.; Rebordão, L.; Rêgo, A.; Machado, S.; Passos, J.; Costa, C.; Cruz, S.; Pinto, A.N.; Santos, M. Stiff person spectrum disorders: An illustrative case series of their phenotypic and antibody diversity. J. Neuroimmunol. 2020, 341, 577192. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Tan, J.; Sun, H.; Liu, Y.; Guan, W.; Jia, J.; Wang, Z. Anti-SOX1 Antibodies in Paraneoplastic Neurological Syndrome. J. Clin. Neurol. 2020, 16, 530–546. [Google Scholar] [CrossRef] [PubMed]
- Heimfarth, L.; Passos, F.R.S.; Monteiro, B.S.; Araújo, A.A.D.S.; Júnior, L.J.Q.; Quintans, J.D.S.S. Serum glial fibrillary acidic protein is a body fluid biomarker: A valuable prognostic for neurological disease—A systematic review. Int. Immunopharmacol. 2022, 107, 108624. [Google Scholar] [CrossRef] [PubMed]
- Loehrer, P.A.; Timmermann, L.; Pehl, A.; Bien, C.I.; Pfestroff, A.; Pedrosa, D.J. Rhombencephalitis associated with isolated Zic4-antibodies in Paraneoplastic cerebellar degeneration: A case report. BMC Neurol. 2020, 20, 208. [Google Scholar] [CrossRef] [PubMed]
- Cabezudo-García, P.; Mena-Vázquez, N.; Ciano-Petersen, N.; García-Martín, G.; Estivill-Torrús, G.; Serrano-Castro, P. Prevalence of Neural Autoantibodies in Epilepsy of Unknown Etiology: Systematic Review and Meta-Analysis. Brain Sci. 2021, 11, 392. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhu, C.; Huang, D. Microglial activation: An important process in the onset of epilepsy. Am. J. Transl. Res. 2018, 10, 2877–2889. [Google Scholar]
- Vezzani, A.; Maroso, M.; Balosso, S.; Sanchez, M.-A.; Bartfai, T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav. Immun. 2011, 25, 1281–1289. [Google Scholar] [CrossRef]
- Maroso, M.; Balosso, S.; Ravizza, T.; Liu, J.; Bianchi, M.E.; Vezzani, A. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: The importance of IL-1beta and high-mobility group box. J. Intern. Med. 2011, 270, 319–326. [Google Scholar] [CrossRef]
- Balosso, S.; Ravizza, T.; Aronica, E.; Vezzani, A. The dual role of TNF-α and its receptors in seizures. Exp. Neurol. 2013, 247, 267–271. [Google Scholar] [CrossRef]
- Guan, Y.; Li, T. The Potential Therapeutic Role of the HMGB1-TLR Pathway in Epilepsy. Curr. Drug Targets 2021, 22, 171–182. [Google Scholar] [CrossRef]
- Paudel, Y.N.; Semple, B.D.; Jones, N.C.; Othman, I.; Shaikh, M.F. High mobility group box 1 (HMGB1) as a novel frontier in epileptogenesis: From pathogenesis to therapeutic approaches. J. Neurochem. 2019, 151, 542–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matin, N.; Tabatabaie, O.; Falsaperla, R.; Lubrano, R.; Pavone, P.; Mahmood, F.; Gullotta, M.; Serra, A.; Di Mauro, P.; Cocuzza, S.; et al. Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum. Vaccines Immunother. 2015, 11, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Rawat, C.; Kukal, S.; Dahiya, U.R.; Kukreti, R. Cyclooxygenase-2 (COX-2) inhibitors: Future therapeutic strategies for epilepsy management. J. Neuroinflamm. 2019, 16, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łukawski, K.; Czuczwar, S.J. Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opin. Drug Metab. Toxicol. 2021, 17, 1075–1090. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.S.; Kuruba, R. Experimental Models of Status Epilepticus and Neuronal Injury for Evaluation of Therapeutic Interventions. Int. J. Mol. Sci. 2013, 14, 18284–18318. [Google Scholar] [CrossRef] [PubMed]
- Rato, M.L.; Bandeira, M.; Romão, V.C.; de Sousa, D.A. Neurologic Manifestations of the Antiphospholipid Syndrome—An Update. Curr. Neurol. Neurosci. Rep. 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Noureldine, M.H.; Harifi, G.; Berjawi, A.; Haydar, A.; Nader, M.; Elnawar, R.; Sweid, A.; Al Saleh, J.; A Khamashta, M.; Uthman, I. Hughes syndrome and epilepsy: When to test for antiphospholipid antibodies? Lupus 2016, 25, 1397–1411. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Xia, Y.; Yang, Q.; Zhao, Y. The contribution of macrophages to systemic lupus erythematosus. Clin. Immunol. 2019, 207, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lin, A.; Wang, X. Seizures in steroid-responsive encephalopathy. Neurol. Sci. 2021, 42, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Julian, T.; Hadjivassiliou, M.; Zis, P. Gluten sensitivity and epilepsy: A systematic review. J. Neurol. 2019, 266, 1557–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouvroye, M.D.; Zis, P.; Van Dam, A.-M.; Rozemuller, A.J.M.; Bouma, G.; Hadjivassiliou, M. The Neuropathology of Gluten-Related Neurological Disorders: A Systematic Review. Nutrients 2020, 12, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daif, A.; Lukas, R.V.; Issa, N.P.; Javed, A.; Van Haerents, S.; Reder, A.T.; Tao, J.X.; Warnke, P.; Rose, S.; Towle, V.L.; et al. Antiglutamic acid decarboxylase 65 (GAD65) antibody-associated epilepsy. Epilepsy Behav. 2018, 80, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Fredriksen, J.R.; Carr, C.M.; Koeller, K.K.; Verdoorn, J.T.; Gadoth, A.; Pittock, S.J.; Kotsenas, A.L. MRI findings in glutamic acid decarboxylase associated autoimmune epilepsy. Neuroradiology 2018, 60, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Budhram, A.; Sechi, E.; Flanagan, E.P.; Dubey, D.; Zekeridou, A.; Shah, S.S.; Gadoth, A.; Naddaf, E.; McKeon, A.; Pittock, S.J.; et al. Clinical spectrum of high-titre GAD65 antibodies. J. Neurol. Neurosurg. Psychiatry 2021, 92, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-H.; Zheng, Y.; Cai, M.-T.; Yang, F.; Fang, W.; Zhang, Y.-X.; Ding, M.-P. Seizure occurrence in myelin oligodendrocyte glycoprotein antibody-associated disease: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2020, 42, 102057. [Google Scholar] [CrossRef] [PubMed]
- Aronica, E.; Mühlebner, A. Neuropathology of epilepsy. Handb. Clin. Neurol. 2018, 145, 193–216. [Google Scholar]
- Bien, C.G.; Widman, G.; Urbach, H.; Sassen, R.; Kuczaty, S.; Wiestler, O.D.; Schramm, J.; Elger, C.E. The natural history of Rasmussen’s encephalitis. Brain 2002, 125, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Velasco, R.; Villagrán, M.; Jové, M.; Simó, M.; Vilariño, N.; Alemany, M.; Palmero, R.; Martinez-Villacamps, M.M.; Nadal, E.; Bruna, J. Encephalitis Induced by Immune Checkpoint Inhibitors: A Systematic Review. JAMA Neurol. 2021, 78, 864–873. [Google Scholar] [CrossRef]
- Sechi, E.; Markovic, S.N.; McKeon, A.; Dubey, D.; Liewluck, T.; Lennon, V.A.; Lopez-Chiriboga, A.S.; Klein, C.J.; Mauremann, M.; Pittock, S.J.; et al. Neurologic autoimmunity and immune checkpoint inhibitors: Autoantibody profiles and outcomes. Neurology 2020, 95, e2442–e2452. [Google Scholar] [CrossRef]
- Maniscalco, G.T.; Zekeridou, A.; Allegorico, L.; Ranieri, A.; Napolitano, M.; Pezzella, M.; Della Gatta, L.; Manzo, V.; Ferrari, S.; Mariotto, S. GAD65 autoimmunity after treatment with nivolumab: A multifocal presentation. Neurol. Sci. 2021, 42, 4289–4291. [Google Scholar] [CrossRef]
- Erol-Yıldız, R.; Kızılay, T.; Tüzün, E.; Mısırlı, H.; Türkoğlu, R. Nivolumab-induced autoantibody negative limbic encephalitis in a patient with Hodgkin lymphoma. Leuk. Lymphoma 2020, 61, 1519–1521. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Jaffer, M.; Verma, N.; Mokhtari, S.; Ramsakal, A.; Peguero, E. Immune checkpoint inhibitor induced anti-glutamic acid decarboxylase 65 (Anti-GAD 65) limbic encephalitis responsive to intravenous immunoglobulin and plasma exchange. J. Neurol. 2020, 267, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.P.; Hissaria, P.; Hsieh, A.H.; Kneebone, C.; Vallat, W. Autoimmune limbic encephalitis with anti-contactin-associated protein-like 2 antibody secondary to pembrolizumab therapy. J. Neuroimmunol. 2017, 305, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Salam, S.; Lavin, T.; Turan, A. Limbic encephalitis following immunotherapy against metastatic malignant melanoma. BMJ Case Rep. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tröscher, A.R.; Sakaraki, E.; Mair, K.M.; Köck, U.; Racz, A.; Borger, V.; Cloppenborg, T.; Becker, A.J.; Bien, C.G.; Bauer, J. T cell numbers correlate with neuronal loss rather than with seizure activity in medial temporal lobe epilepsy. Epilepsia 2021, 62, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Mcdaniel, S.S.; Wong, M. Therapeutic role of mamalian target of rapamycin (m, TOR) inhibition in preventing epileptogenesis. Neurosci. Lett. 2011, 497, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, T.S.; Broekaart, D.W.M.; Luinenburg, M.; Mijnsbergen, C.; Anink, J.J.; Sim, N.S.; Michailidou, I.; Jansen, F.E.; van Rijen, P.C.; Lee, J.H.; et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol. Appl. Neurobiol. 2021. [Google Scholar] [CrossRef]
- Sorel, L.; Dusaucy-Bauloye, A. A propos de 21 cas d’hypsarhythmia de Gibbs; son traitement spectaculaire par l’ACTH. Acta Neurol. Psychiatr. Belg. 1958, 58, 130–141. [Google Scholar]
- Laurent, C.; Capron, J.; Quillerou, B.; Thomas, G.; Alamowitch, S.; Fain, O.; Mekinian, A. Steroid-responsive encephalopathy associated with autoimmune thyroiditis (SREAT): Characteristics, treatment and outcome in 251 cases from the literature. Autoimmun. Rev. 2016, 15, 1129–1133. [Google Scholar] [CrossRef]
- Kyritsis, A.P.; Markoula, S.; Alexiou, G.; Asimakopoulos, A.; Jabbour, P.; Fotopoulos, A.; Sioka, C. Diagnosis and treatment of limbic encephalitis in the cancer patient. Future Oncol. 2020, 16, 1649–1657. [Google Scholar] [CrossRef]
- Hwang, C.J.; Choi, D.; Park, M.; Hong, J. NF-κB as a Key Mediator of Brain Inflammation in Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets 2019, 18, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lapides, D.A.; McDonald, M.M. Inflammatory Manifestations of Systemic Diseases in the Central Nervous System. Curr. Treat. Options Neurol. 2020, 22, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, X. Immunotherapy for Refractory Autoimmune Encephalitis. Front. Immunol. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Reeves, H.M.; Winters, J.L. The mechanisms of action of plasma exchange. Br. J. Haematol. 2014, 164, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Alamilla-Sanchez, M.E.; Alcala-Salgado, M.A.; Alonso-Bello, C.D.; Fonseca-Gonzalez, G.T. Mechanism of Action and Efficacy of Immunosupressors in Lupus Nephritis. Int. J. Nephrol. Renov. Dis. 2021, 14, 441–458. [Google Scholar] [CrossRef]
- Krueger, D.A.; Wilfong, A.A.; Holland-Bouley, K.; Anderson, A.E.; Agricola, K.; Tudor, C.; Mays, M.; Lopez, C.M.; Kim, M.-O.; Franz, D.N. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann. Neurol. 2013, 74, 679–687. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Sandborn, W.J.; Panaccione, R.; Domènech, E.; Pouillon, L.; Siegmund, B.; Danese, S.; Ghosh, S. Tumour necrosis factor inhibitors in inflammatory bowel disease: The story continues. Ther. Adv. Gastroenterol. 2021, 14. [Google Scholar] [CrossRef]
- Vena, G.A.; Cassano, N. Drug focus: Adalimumab in the treatment of moderate to severe psoriasis. Biol. Targets Ther. 2007, 1, 93–103. [Google Scholar]
- Lagarde, S.; Villeneuve, N.; Trébuchon, A.; Kaphan, E.; Lepine, A.; McGonigal, A.; Roubertie, A.; Barthez, M.-A.J.; Trommsdorff, V.; Lefranc, J.; et al. Anti-tumor necrosis factor alpha therapy (adalimumab) in Rasmussen’s encephalitis: An open pilot study. Epilepsia 2016, 57, 956–966. [Google Scholar] [CrossRef]
- Kondo, T.; Fukuta, M.; Takemoto, A.; Takami, Y.; Sato, M.; Takahashi, N.; Suzuki, T.; Sato, J.; Atsuta, N.; Sobue, G.; et al. Limbic encephalitis associated with relapsing polychondritis responded to infliximab and maintained its condition without recurrence after discontinuation: A case report and review of the literature. Nagoya J. Med. Sci. 2014, 76, 361–368. [Google Scholar]
- French, J.A.; Cole, A.J.; Faught, E.; Theodore, W.H.; Vezzani, A.; Liow, K.; Halford, J.J.; Armstrong, R.; Szaflarski, J.P.; Hubbard, S.; et al. Safety and Efficacy of Natalizumab as Adjunctive Therapy for People with Drug-Resistant Epilepsy. Neurology 2021, 97, e1757–e1767. [Google Scholar] [CrossRef] [PubMed]
- Melvin, J.J.; Hardison, H.H. Immunomodulatory Treatments in Epilepsy. Semin. Pediatr. Neurol. 2014, 21, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Bittner, S.; Simon, O.J.; Göbel, K.; Bien, C.G.; Meuth, S.G.; Wiendl, H. Rasmussen encephalitis treated with natalizumab. Neurology 2013, 81, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Rensel, M.; Zabeti, A.; Mealy, M.A.; Cimbora, D.; She, D.; Drappa, J.; Katz, E. Long-term efficacy and safety of inebilizumab in neuromyelitis optica spectrum disorder: Analysis of aquaporin-4-immunoglobulin G-seropositive participants taking inebilizumab for ≥4 years in the N-MOmentum trial. Mult. Scler. [CrossRef]
- Gable, K.L.; Guptill, J.T. Antagonism of the Neonatal Fc Receptor as an Emerging Treatment for Myasthenia Gravis. Front. Immunol. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Smets, I.; Titulaer, M.J. Antibody Therapies in Autoimmune Encephalitis. Neurotherapeutics 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fabene, P.F.; Bramanti, P.; Constantin, G. The emerging role for chemokines in epilepsy. J. Neuroimmunol. 2010, 224, 22–27. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Choi, C.-H.; Ma, S.-H.; Ma, K.K.; Leung, H.; Mok, V.C. Super-refractory status epilepticus in autoimmune encephalitis treated with interleukin-1 receptor antagonist, anakinra. Epileptic Disord. 2021, 23, 500–505. [Google Scholar] [CrossRef]
- Mochol, M.; Taubøll, E.; Sveberg, L.; Tennøe, B.; Olsen, K.B.; Heuser, K.; Svalheim, S. Seizure control after late introduction of anakinra in a patient with adult onset Rasmussen’ encephalitis. Epilepsy Behav. Rep. 2021, 16, 100462. [Google Scholar] [CrossRef]
- Yamanaka, G.; Ishida, Y.; Kanou, K.; Suzuki, S.; Watanabe, Y.; Takamatsu, T.; Morichi, S.; Go, S.; Oana, S.; Yamazaki, T.; et al. Towards a Treatment for Neuroinflammation in Epilepsy: Interleukin-1 Receptor Antagonist, Anakinra, as a Potential Treatment in Intractable Epilepsy. Int. J. Mol. Sci. 2021, 22, 6282. [Google Scholar] [CrossRef]
- Koh, S.; Wirrell, E.; Vezzani, A.; Nabbout, R.; Muscal, E.; Kaliakatsos, M.; Wickström, R.; Riviello, J.J.; Brunklaus, A.; Payne, E.; et al. Proposal to optimize evaluation and treatment of Febrile infection-related epilepsy syndrome (FIRES): A Report from FIRES workshop. Epilepsia Open 2021, 6, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Dinoto, A.; Cheli, M.; Bratina, A.; Sartori, A.; Manganotti, P. Bortezomib in anti-N-Methyl-d-Aspartate-Receptor (NMDA-R) encephalitis: A systematic review. J. Neuroimmunol. 2021, 356, 577586. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.A.; Akhter, J.; Aarzoo; Bashir, D.J.; Manzoor, S.; Rastogi, S.; Arora, I.; Aggarwal, N.B.; Samim, M. Resveratrol loaded nanoparticles attenuate cognitive impairment and inflammatory markers in PTZ-induced kindled mice. Int. Immunopharmacol. 2021, 101, 108287. [Google Scholar] [CrossRef] [PubMed]
- Paudel, Y.N.; Khan, S.U.; Othman, I.; Shaikh, M.F. Naturally Occurring HMGB1 Inhibitor, Glycyrrhizin, Modulates Chronic Seizures-Induced Memory Dysfunction in Zebrafish Model. ACS Chem. Neurosci. 2021, 12, 3288–3302. [Google Scholar] [CrossRef]
- Paudel, Y.N.; Angelopoulou, E.; Piperi, C.; Gnatkovsky, V.; Othman, I.; Shaikh, M.F. From the Molecular Mechanism to Pre-clinical Results: Anti-epileptic Effects of Fingolimod. Curr. Neuropharmacol. 2020, 18, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Wang, L.; Zhang, B.; Gao, F.; Yang, C.M. Glycyrrhizin, an HMGB1 inhibitor, exhibits neuroprotective effects in rats after lithium-pilocarpine-induced status epilepticus. J. Pharm. Pharmacol. 2019, 71, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Medlej, Y.; Salah, H.; Wadi, L.; Saad, S.; Bashir, B.; Allam, J.; Atoui, Z.; Darwish, N.; Karnib, N.; Darwish, H.; et al. Lestaurtinib (CEP-701) modulates the effects of early life hypoxic seizures on cognitive and emotional behaviors in immature rats. Epilepsy Behav. 2019, 92, 332–340. [Google Scholar] [CrossRef]
- Jamilloux, Y.; El Jammal, T.; Vuitton, L.; Gerfaud-Valentin, M.; Kerever, S.; Sève, P. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun. Rev. 2019, 18, 102390. [Google Scholar] [CrossRef] [PubMed]
- Tai, T.Y.; Warner, L.N.; Jones, T.D.; Jung, S.; Concepcion, F.A.; Skyrud, D.W.; Fender, J.; Liu, Y.; Williams, A.D.; Neumaier, J.F.; et al. Antiepileptic action of c-Jun N-terminal kinase (JNK) inhibition in an animal model of temporal lobe epilepsy. Neuroscience 2017, 349, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Bascuñana, P.; Möhle, L.; Brackhan, M.; Pahnke, J. Fingolimod as a Treatment in Neurologic Disorders Beyond Multiple Sclerosis. Drugs R&D 2020, 20, 197–207. [Google Scholar] [CrossRef]
- Singh, N.; Saha, L.; Kumari, P.; Singh, J.; Bhatia, A.; Banerjee, D.; Chakrabarti, A. Effect of dimethyl fumarate on neuroinflammation and apoptosis in pentylenetetrazol kindling model in rats. Brain Res. Bull. 2019, 144, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, Q.; Huang, H.; Zhang, J.; Wang, J.; Chen, Y.; Peng, Y.; Zhang, H.; Zeng, J.; Feng, Z.; et al. Inhibition of p38 MAPK regulates epileptic severity by decreasing expression levels of A1R and ENT. Mol. Med. Rep. 2020, 22, 5348–5357. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Pacheco, A.; Diaz-Hernandez, M.; Arribas-Blázquez, M.; Sanz-Rodriguez, A.; Olivos-Oré, L.A.; Artalejo, A.R.; Alves, M.; Letavic, M.; Miras-Portugal, M.T.; Conroy, R.M.; et al. Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. J. Neurosci. 2016, 36, 5920–5932. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.F.; Silva, L.B.; Cruz, J.V.; Araújo, P.H.; Kimani, N.M.; Leite, F.H.; Campos, J.M.; Santos, C.B. An Overview of the α4β1 Integrin and the Potential Therapeutic Role of its Antagonists. Curr. Med. Chem. 2021, 28, 5884–5895. [Google Scholar] [CrossRef]
- Miller, J.W. Inflammation as a Target for Epilepsy Therapy. Neurology 2021, 97, 845–846. [Google Scholar] [CrossRef]
- Fabene, P.F.; Mora, G.N.; Martinello, M.; Rossi, B.; Merigo, F.; Ottoboni, L.; Bach, S.; Angiari, S.; Benati, D.; Chakir, A.; et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat. Med. 2008, 14, 1377–1383. [Google Scholar] [CrossRef]
- Stredny, C.M.; Case, S.; Sansevere, A.J.; Son, M.; Henderson, L.; Gorman, M.P. Interleukin-6 Blockade with Tocilizumab in Anakinra-Refractory Febrile Infection-Related Epilepsy Syndrome (FIRES). Child Neurol. Open 2020, 7. [Google Scholar] [CrossRef]
- Nailwal, N.P.; Doshi, G.M. Role of intracellular signaling pathways and their inhibitors in the treatment of inflammation. Inflammopharmacology 2021, 29, 617–640. [Google Scholar] [CrossRef]
- Ambrosius, B.; Gold, R.; Chan, A.; Faissner, S. Antineuroinflammatory drugs in HIV-associated neurocognitive disorders as potential therapy. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e551. [Google Scholar] [CrossRef] [Green Version]
- Dhir, A. An update of cyclooxygenase (COX)-inhibitors in epilepsy disorders. Expert Opin. Investig. Drugs 2019, 28, 191–205. [Google Scholar] [CrossRef]
- Minter, M.R.; Taylor, J.M.; Crack, P.J. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J. Neurochem. 2016, 136, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Gelders, G.; Baekelandt, V.; Van Der Perren, A. Linking Neuroinflammation and Neurodegeneration in Parkinson’s Disease. J. Immunol. Res. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte-Silva, E.; Macedo, D.; Maes, M.; Peixoto, C.A. Novel insights into the mechanisms underlying depression-associated experimental autoimmune encephalomyelitis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 93, 4784268. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Berk, M.; Klein, H.; Walder, K.; Galecki, P.; Maes, M. Nitrosative Stress, Hypernitrosylation, and Autoimmune Responses to Nitrosylated Proteins: New Pathways in Neuroprogressive Disorders Including Depression and Chronic Fatigue Syndrome. Mol. Neurobiol. 2017, 54, 4271–4291. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Yirmyia, R.; Noraberg, J.; Brene, S.; Hibbeln, J.; Perini, G.; Kubera, M.; Bob, P.; Lerer, B.; Maj, M. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression. Metab. Brain Dis. 2009, 24, 27–53. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.E.; Garcia-Morales, I.; Gil-Nagel, A. Prevalence of depressive symptoms and their impact on quality of life in patients with drug-resistant focal epilepsy (IMDYVA study). Epilepsy Res. 2015, 110, 157–165. [Google Scholar] [CrossRef] [Green Version]
Antibodies (Epitope) | Clinical Expression | Associated Tumor (>90%) | References |
---|---|---|---|
Yo (CDR2L) | Cerebellar ataxia, brain stem encephalitis. | Ovarian carcinoma (>60%), breast carcinoma. | [44,45,46] |
Hu (HuD) | Limbic and brain stem encephalitis. Peripheral neuropathy. | Oat cell carcinoma of the lung (>75%). Non-oat cell carcinoma of the lung. | [46,47] |
Ri (NOVA1) | Limbic and brain stem encephalitis. Opsoclonus. | Breast carcinoma (>50%). Oat cell carcinoma of the lung. | [46,48] |
CV2 (CRMP5) | Encephalomyelitis. Polyneuropathy. | Oat cell carcinoma of the lung (>75%). Thymoma. | [46,49] |
Ma1, 2 | Limbic and brain stem encephalitis. | Carcinoma of the testicle (50%). | [46,50] |
PCA-2 (MAP1B) | Encephalomyelitis. Peripheral neuropathy. | Oat cell carcinoma of the lung. Non-oat cell carcinoma of the lung. | [46,51] |
Anti-amphiphysin | Stiff person syndrome. LE. | Oat cell carcinoma of the lung. Breast carcinoma. | [46,52] |
SOX-1 | Ataxia. Lambert-Eaton syndrome. | Oat cell carcinoma of the lung (>95%). | [46,53] |
GFAP | Meningo-encephalomyelitis. | Ovarian teratoma (35%). | [46,54] |
Zic4 | Cerebellar ataxia. | Oat cell carcinoma of the lung. | [46,55] |
Mechanism of Epileptogenesis | Type of Epileptogenesis | Molecular Substrate | References | |
---|---|---|---|---|
Peripheral immunity related epileptogenesis | Plasmatic cytokines- mediated epileptogenesis | IL-1ra | [10,36,37] | |
IL-1 | ||||
IL-6 | ||||
CXCL8/IL-8 | ||||
Autoantibodies-mediated epileptogenesis | Antibodies against membrane surface antigens | NMDA receptor | [14,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55] | |
GABAa receptor | ||||
GABAb receptor | ||||
AMPA receptor | ||||
Glycine receptor | ||||
Antibodies against proteins that stabilize potassium channels | LGI1 | |||
CASPR2 | ||||
Antibodies against enzymes that catalyze the formation of neurotransmitters | GAD65 | |||
Antibodies directed against intracellular antigens | Yo (CDR2L) | |||
Hu (HuD) | ||||
Ri (NOVA1) | ||||
CV2 (CRMP5) | ||||
Ma1, 2 | ||||
PCA-2 (MAP1B) | ||||
Antiamfifisine | ||||
SOX-1 | ||||
GFAP | ||||
Zic-4 | ||||
Brain innate immunity related epilleptogenesis | Brain modifying neuronal excitability molecules | IL-1 receptor (IL-R1)/Toll-like receptor (TLR) | [26,32,38] | |
TNF-α | ||||
High-mobility proteins (HMGB1) | ||||
Cyclooxygenase-2 (COX-2) | ||||
Astrocytic/microglial intracellular signaling pathways related to epileptogenesis | Mammalian target of rapamicin (mTOR) pathway, nuclear factor k-B (NF-κB) pathway, | |||
Janus kinase (JAK)-signal transducer, | ||||
Activator of transcription (STAT) pathway, | ||||
Mitogen-activated protein kinase (MAPK) pathway | ||||
Purinergic signaling. |
Status | Category | Drug | Mechanism of Action | Indications | References |
---|---|---|---|---|---|
Established | Corticoids | Prednisone Prednisolone Dexamethasone | Genomic effects at the transcriptional and post-transcriptional level on the molecular pathways that converge on the nuclear factor-κβ (NF-κβ) | Acute phase of:
| [90,91,92,93,94] |
Autoantibody removal therapies | IgIV PLEX | Remove pathogenic elements from the circulation (vg autoantibodies or immunocomplexes) and elimination of proinflammatory cytokines | Acute and chronic phases of:
| [94,95] | |
Immunosuppressors | Rituximab | Anti-CD20 monoclonal antibody. | Acute and chronic phases of:
| [43,94] | |
Azathioprine | Antagonist of the synthesis of purines and production of DNA/RNA for the proliferation of white blood cells | Chronic phase of:
| [14,94] | ||
Cyclophosphamide | Cellular apoptosis through induction of irreversible DNA alterations | Acute and chronic phases of:
| [94,96] | ||
Mycophenolate mofetil | Inhibits proliferation of T and B lymphocytes, thereby suppressing cell-mediated immune responses and antibody formation. | Acute and chronic phases of:
| [94] | ||
mTOR pathway modulating drugs | Everolimus | mTOR pathway modulation | Chronic phase of:
| [97] | |
Ongoing Clinical trials | TNF-α inhibitor drugs | Adalimumab * Infliximab Golimumab Certolizumab pegol | TNF-α antagonism | Acute and chronic phases of:
| [98,99,100,101] |
T lymphocytes modulating drugs | Natalizumab * Inebilizumab * | Modulation of T lymphocytes | Chronic phase of:
| [102,103,104,105] | |
Anti-neonatal Fc receptor (FcRn) antibodies | Rozanolixizumab * | IgG catabolism, resulting in reduced overall IgG and pathogenic autoantibody levels | Acute and chronic phases of:
| [106,107] | |
Open-label Studies | Cytokines-targeted therapies | Anakinra * Tocilizumab * Situximab Emapalumab | Modulation of synthesis of cytokines | Acute phase of:
| [108,109,110,111,112,113] |
Proteasome inhibitors | Bortezomib * | Selective inhibitor of the 26S proteasome, preventing the activation of NF-κB | Acute phase of:
| [114] | |
Animal models | TLR pathway inhibitor drugs | Resveratrol * | Suppresses NF-κβ induced by TLRs 3 and 4 | - | [115] |
HMGB1 inhibitor drugs | Glycyrrhizin * | Inhibitions of high-mobility proteins | - | [61,116,117,118] | |
Janus kinase/signal transducer and activator of transcription (JAK-STAT) inhibitor drugs | Lestaurtinib * AZD1480 Tofacitinib Baricitinib SAR317461 Momelotinib Filgotinib Baricitinib Ruxolitinib Pacritinib | JAK-STAT inhibition | - | [119,120,121] | |
NF-κβ inhibitor drugs | Dimethyl-Fumarate * Fingolimod * Teriflunamide | Inhibition of NF-κβ pathway | - | [92,117,122,123] | |
MAPKpathway inhibitor drugs | SB203580 * Macranthoin G PD-0325901 | Inhibition of p38-MAPK | - | [124] | |
COX-2 inhibitor drugs | Aspirin * Naproxen * Rofecoxib * Nimesulide * | Cox-2 inhibition | - | [64] | |
Purinergic signaling modulation drugs | JNJ-47965567 * | Transient P2X7 receptor antagonism | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Castillo, M.J.; Cabezudo-García, P.; Ciano-Petersen, N.L.; García-Martin, G.; Marín-Gracia, M.; Estivill-Torrús, G.; Serrano-Castro, P.J. Immune Mechanism of Epileptogenesis and Related Therapeutic Strategies. Biomedicines 2022, 10, 716. https://doi.org/10.3390/biomedicines10030716
Aguilar-Castillo MJ, Cabezudo-García P, Ciano-Petersen NL, García-Martin G, Marín-Gracia M, Estivill-Torrús G, Serrano-Castro PJ. Immune Mechanism of Epileptogenesis and Related Therapeutic Strategies. Biomedicines. 2022; 10(3):716. https://doi.org/10.3390/biomedicines10030716
Chicago/Turabian StyleAguilar-Castillo, María José, Pablo Cabezudo-García, Nicolas Lundahl Ciano-Petersen, Guillermina García-Martin, Marta Marín-Gracia, Guillermo Estivill-Torrús, and Pedro Jesús Serrano-Castro. 2022. "Immune Mechanism of Epileptogenesis and Related Therapeutic Strategies" Biomedicines 10, no. 3: 716. https://doi.org/10.3390/biomedicines10030716
APA StyleAguilar-Castillo, M. J., Cabezudo-García, P., Ciano-Petersen, N. L., García-Martin, G., Marín-Gracia, M., Estivill-Torrús, G., & Serrano-Castro, P. J. (2022). Immune Mechanism of Epileptogenesis and Related Therapeutic Strategies. Biomedicines, 10(3), 716. https://doi.org/10.3390/biomedicines10030716