Role of CCR2-Positive Macrophages in Pathological Ventricular Remodelling
Abstract
:1. Introduction
2. Heart Failure Is a Major Burden on Population Health
3. Heart Failure Is a Heterogeneous Condition
4. Ventricular Remodelling Is a Common Antecedent of Heart Failure
5. Monocyte-Derived Macrophages Contribute to Adverse Ventricular Remodelling in Humans
6. CCR2+ Monocyte-Derived Macrophages Have Emerged as Key Effectors of the Inflammatory Response to Myocardial Injury
7. C-C Motif Chemokine Ligand 2 (CCL2)-CCR2 Mediated Monocyte Infiltration in Myocardial Injury
8. Experimental Studies of CCR2+ Monocytes and CCR2+ Monocyte-Derived Macrophages in Ventricular Remodelling
8.1. Myocardial Infarction
8.2. Pressure Overload
8.3. Diabetes
8.4. Myocarditis
8.5. Diphtheria Toxin
8.6. Ischemia Reperfusion Injury (IRI) and Cardiac Transplantation
9. CCR2+ Cardiac Macrophages in Human Heart Failure
10. Effects of CCR2+ Macrophages on Other Resident Cardiac Cell-Types Contribute to Adverse Cardiac Remodelling
11. Unanswered Questions and Future Directions for CCR2+ Cardiac Macrophage Research
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of heart failure. Eur. J. Heart Fail. 2020, 22, 1342–1356. [Google Scholar] [CrossRef] [PubMed]
- Ziaeian, B.; Fonarow, G.C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zannad, F.; Agrinier, N.; Alla, F. Heart failure burden and therapy. Europace 2009, 11, v1–v9. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.S.; Xu, H.; Matsouaka, R.A.; Bhatt, D.L.; Heidenreich, P.A.; Hernandez, A.F.; Devore, A.D.; Yancy, C.W.; Fonarow, G.C. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J. Am. Coll. Cardiol. 2017, 70, 2476–2486. [Google Scholar] [CrossRef] [PubMed]
- Koudstaal, S.; Rodriguez, M.P.; Denaxas, S.; Gho, J.M.; Shah, A.D.; Yu, N.; Patel, R.S.; Gale, C.P.; Hoes, A.W.; Cleland, J.G.; et al. Prognostic burden of heart failure recorded in primary care, acute hospital admissions, or both: A population-based linked electronic health record cohort study in 2.1 million people. Eur. J. Heart Fail. 2016, 19, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Gerber, Y.; Weston, S.A.; Redfield, M.M.; Chamberlain, A.M.; Manemann, S.M.; Jiang, R.; Killian, J.M.; Roger, V.L. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern. Med. 2015, 175, 996–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; et al. Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ. Heart Fail. 2013, 6, 606–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA guideline for the management of heart failure: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013, 128, 1810–1852. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.; Teng, T.-H.K. Understanding heart failure with mid-range ejection fraction. JACC Heart Fail. 2016, 4, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Sopko, G.; de Luca, L.; Velazquez, E.J.; Parker, J.; Binkley, P.F.; Sadowski, Z.; Golba, K.; Prior, D.L.; Rouleau, J.L.; et al. Navigating the crossroads of coronary artery disease and heart failure. Circulation 2006, 114, 1202–1213. [Google Scholar] [CrossRef] [PubMed]
- Cohn, J.N.; Ferrari, R.; Sharpe, N. Cardiac remodeling—Concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 2000, 35, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Konstam, M.A.; Kramer, D.G.; Patel, A.; Maron, M.S.; Udelson, J.E. Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. JACC Cardiovasc. Imaging 2011, 4, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burchfield, J.S.; Xie, M.; Hill, J.A. Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation 2013, 128, 388–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Ogden, L.G.; Bazzano, L.A.; Vupputuri, S.; Loria, C.; Whelton, P.K. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch. Intern. Med. 2001, 161, 996–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.M. Ventricular remodeling in heart failure with preserved ejection fraction. Curr. Heart Fail. Rep. 2013, 10, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, S.D.; Skali, H.; Anavekar, N.S.; Bourgoun, M.; Barvik, S.; Ghali, J.K.; Warnica, J.W.; Khrakovskaya, M.; Arnold, J.M.O.; Schwartz, Y.; et al. Changes in ventricular size and function in patients treated with valsartan, captopril, or both after myocardial infarction. Circulation 2005, 111, 3411–3419. [Google Scholar] [CrossRef] [PubMed]
- Colucci, W.S.; Kolias, T.J.; Adams, K.F.; Armstrong, W.F.; Ghali, J.K.; Gottlieb, S.S.; Greenberg, B.; Klibaner, M.I.; Kukin, M.L.; Sugg, J.E. Metoprolol reverses left ventricular remodeling in patients with asymptomatic systolic dysfunction: The REversal of VEntricular Remodeling with Toprol-XL (REVERT) trial. Circulation 2007, 116, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Biondi-Zoccai, G.; Abbate, A.; D’Ascenzo, F.; Castagno, D.; van Tassell, B.; Mukherjee, D.; Lichstein, E. Benefits of β blockers in patients with heart failure and reduced ejection fraction: Network meta-analysis. BMJ 2013, 346, f55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulla, J.; Barlera, S.; Latini, R.; Kjoller-Hansen, L.; Sogaard, P.; Christensen, E.; Kober, L.; Torp-Pedersen, C. A systematic review: Effect of angiotensin converting enzyme inhibition on left ventricular volumes and ejection fraction in patients with a myocardial infarction and in patients with left ventricular dysfunction. Eur. J. Heart Fail. 2007, 9, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, R.; Yusuf, S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative group on ACE inhibitor trials. JAMA J. Am. Med Assoc. 1995, 273, 1450–1456. [Google Scholar] [CrossRef]
- McKelvie, R.S.; Yusuf, S.; Pericak, D.; Avezum, A.; Burns, R.J.; Probstfield, J.; Tsuyuki, R.T.; White, M.; Rouleau, J.; Latini, R.; et al. Comparison of candesartan, enalapril, and their combination in congestive heart failure: Randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD pilot study investigators. Circulation 1999, 100, 1056–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, V.C.; Rhew, D.C.; Dylan, M.; Badamgarav, E.; Braunstein, G.D.; Weingarten, S.R. Meta-analysis: Angiotensin-receptor blockers in chronic heart failure and high-risk acute myocardial infarction. Ann. Intern. Med. 2004, 141, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, R.; Lu, C.; Chen, Q.; Xu, T.; Li, D. Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling: Meta-analysis. J. Am. Heart Assoc. 2019, 8, e012272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Huang, T.; Shen, W.; Xu, X.; Yang, P.; Zhu, D.; Fang, H.; Wan, H.; Wu, T.; Wu, Y.; et al. Efficacy and safety of sacubitril-valsartan in heart failure: A meta-analysis of randomized controlled trials. ESC Heart Fail. 2020, 7, 3841–3850. [Google Scholar] [CrossRef] [PubMed]
- Daubert, C.; Gold, M.R.; Abraham, W.T.; Ghio, S.; Hassager, C.; Goode, G.; Szili-Török, T.; Linde, C. Prevention of disease progression by cardiac resynchronization therapy in patients with asymptomatic or mildly symptomatic left ventricular dysfunction: Insights from the european cohort of the REVERSE (resynchronization reverses remodeling in systolic left ventricular dysfunction) trial. J. Am. Coll. Cardiol. 2009, 54, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
- Lubitz, S.A.; Leong-Sit, P.; Fine, N.; Kramer, D.B.; Singh, J.; Ellinor, P.T. Effectiveness of cardiac resynchronization therapy in mild congestive heart failure: Systematic review and meta-analysis of randomized trials. Eur. J. Heart Fail. 2010, 12, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Mazer, C.D.; Yan, A.T.; Mason, T.; Garg, V.; Teoh, H.; Zuo, F.; Quan, A.; Farkouh, M.E.; Fitchett, D.H.; et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: The EMPA-HEART cardio, link-6 randomized clinical trial. Circulation 2019, 140, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Rocca, H.-P.B.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Sekaran, N.K.; Crowley, A.L.; de Souza, F.R.; Resende, E.S.; Rao, S.V. The role for cardiovascular remodeling in cardiovascular outcomes. Curr. Atheroscler. Rep. 2017, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.; Smith, C.; Entman, M.L. The inflammatory response in myocardial infarction. Cardiovasc. Res. 2002, 53, 31–47. [Google Scholar] [CrossRef]
- Maekawa, Y.; Anzai, T.; Yoshikawa, T.; Asakura, Y.; Takahashi, T.; Ishikawa, S.; Mitamura, H.; Ogawa, S. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction: A possible role for left ventricular remodeling. J. Am. Coll. Cardiol. 2002, 39, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Hulsmans, M.; Sager, H.B.; Roh, J.D.; Valero-Muñoz, M.; Houstis, N.E.; Iwamoto, Y.; Sun, Y.; Wilson, R.M.; Wojtkiewicz, G.; Tricot, B.; et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 2018, 215, 423–440. [Google Scholar] [CrossRef] [PubMed]
- Mills, C.D.; Kincaid, K.; Alt, J.M.; Heilman, M.J.; Hill, A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 2000, 164, 6166–6173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Wang, Y.; Pei, G.; Deng, X.; Jiang, H.; Wu, J.; Zhou, C.; Guo, Y.; Yao, Y.; Zeng, R.; et al. Bone marrow-derived Ly6C–macrophages promote ischemia-induced chronic kidney disease. Cell Death Dis. 2019, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.L.; Castaño, A.P.; Nowlin, B.T.; Lupher, M.L.; Duffield, J.S. Bone marrow Ly6Chigh, monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol. 2009, 183, 6733–6743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulsmans, M.; Sam, F.; Nahrendorf, M. Monocyte and macrophage contributions to cardiac remodeling. J. Mol. Cell. Cardiol. 2016, 93, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, C.; Pamer, E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 2011, 11, 762–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Italiani, P.; Boraschi, D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front. Immunol. 2014, 5, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahrendorf, M.; Swirski, F.K.; Aikawa, E.; Stangenberg, L.; Wurdinger, T.; Figueiredo, J.-L.; Libby, P.; Weissleder, R.; Pittet, M.J. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 2007, 204, 3037–3047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaman, R.; Hamidzada, H.; Epelman, S. Exploring cardiac macrophage heterogeneity in the healthy and diseased myocardium. Curr. Opin. Immunol. 2021, 68, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Epelman, S.; Lavine, K.J.; Beaudin, A.E.; Sojka, D.K.; Carrero, J.A.; Calderon, B.; Brija, T.; Gautier, E.L.; Ivanov, S.; Satpathy, A.T.; et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 2014, 40, 91–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavine, K.J.; Epelman, S.; Uchida, K.; Weber, K.J.; Nichols, C.G.; Schilling, J.D.; Ornitz, D.; Randolph, G.J.; Mann, D.L. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl. Acad. Sci. USA 2014, 111, 16029–16034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dick, S.A.; Macklin, J.A.; Nejat, S.; Momen, A.; Clemente-Casares, X.; Althagafi, M.G.; Chen, J.; Kantores, C.; Hosseinzadeh, S.; Aronoff, L.; et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 2019, 20, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Martini, E.; Kunderfranco, P.; Peano, C.; Carullo, P.; Cremonesi, M.; Schorn, T.; Carriero, R.; Termanini, A.; Colombo, F.S.; Jachetti, E.; et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload–driven heart failure reveals extent of immune activation. Circulation 2019, 140, 2089–2107. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, G.; Schneider, C.; Wong, N.; Bredemeyer, A.; Hulsmans, M.; Nahrendorf, M.; Epelman, S.; Kreisel, D.; Liu, Y.; Itoh, A.; et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 2018, 24, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, G.; Bredemeyer, A.L.; Li, W.; Zaitsev, K.; Koenig, A.L.; Lokshina, I.V.; Mohan, J.; Ivey, B.; Hsiao, H.-M.; Weinheimer, C.J.; et al. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 2019, 124, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hsiao, H.M.; Higashikubo, R.; Saunders, B.T.; Bharat, A.; Goldstein, D.R.; Krupnick, A.S.; Gelman, A.E.; Lavine, K.J.; Kreisel, D. Heart-resident CCR2(+) macrophages promote neutrophil extravasation through TLR9/My, D88/CXCL5 signaling. JCI Insight 2016, 1, e87315. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, F.; Courties, G.; Dutta, P.; Mortensen, L.J.; Gorbatov, R.; Sena, B.; Novobrantseva, T.I.; Borodovsky, A.; Fitzgerald, K.; Koteliansky, V.; et al. Silencing of CCR2 in myocarditis. Eur. Heart J. 2015, 36, 1478–1488. [Google Scholar] [CrossRef]
- Sager, H.B.; Hulsmans, M.; Lavine, K.J.; Moreira, M.B.; Heidt, T.; Courties, G.; Sun, Y.; Iwamoto, Y.; Tricot, B.; Khan, O.; et al. Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circ. Res. 2016, 119, 853–864. [Google Scholar] [CrossRef] [Green Version]
- Wong, N.R.; Mohan, J.; Kopecky, B.J.; Guo, S.; Du, L.; Leid, J.; Feng, G.; Lokshina, I.; Dmytrenko, O.; Luehmann, H.; et al. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity 2021, 54, 2072–2088.e7. [Google Scholar] [CrossRef] [PubMed]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interf. Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Dewald, O.; Zymek, P.; Winkelmann, K.; Koerting, A.; Ren, G.; Abou-Khamis, T.; Michael, L.H.; Rollins, B.J.; Entman, M.L.; Frangogiannis, N.G. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 2005, 96, 881–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, S.J.; Domin, J.; Waterfield, M.D.; Ward, S.G.; Westwick, J. CC chemokine monocyte chemotactic peptide-1 activates both the class I p85/p110 phosphatidylinositol 3-kinase and the class II PI3K-C2α. J. Biol. Chem. 1998, 273, 25987–25995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cambien, B.; Pomeranz, M.; Millet, M.-A.; Rossi, B.; Schmid-Alliana, A. Signal transduction involved in MCP-1–mediated monocytic transendothelial migration. Blood 2001, 97, 359–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auffray, C.; Fogg, D.; Garfa, M.; Elain, G.; Join-Lambert, O.; Kayal, S.; Sarnacki, S.; Cumano, A.; Lauvau, G.; Geissmann, F. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317, 666–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swirski, F.K.; Nahrendorf, M.; Etzrodt, M.; Wildgruber, M.; Cortez-Retamozo, V.; Panizzi, P.; Figueiredo, J.-L.; Kohler, R.H.; Chudnovskiy, A.; Waterman, P.; et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325, 612–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sager, H.B.; Heidt, T.; Hulsmans, M.; Dutta, P.; Courties, G.; Sebas, M.; Wojtkiewicz, G.; Tricot, B.; Iwamoto, Y.; Sun, Y.; et al. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. Circulation 2015, 132, 1880–1890. [Google Scholar] [CrossRef]
- Gschwandtner, M.; Derler, R.; Midwood, K.S. More than just attractive: How CCL2 influences myeloid cell behavior beyond chemotaxis. Front. Immunol. 2019, 10, 2759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dosquet, C.; Weill, D.; Wautier, J.L. Molecular mechanism of blood monocyte adhesion to vascular endothelial cells. Nouv. Rev. Fr. Hematol. 1992, 34, 55–59. [Google Scholar]
- Hayashidani, S.; Tsutsui, H.; Shiomi, T.; Ikeuchi, M.; Matsusaka, H.; Suematsu, N.; Wen, J.; Egashira, K.; Takeshita, A. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 2003, 108, 2134–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaikita, K.; Hayasaki, T.; Okuma, T.; Kuziel, W.A.; Ogawa, H.; Takeya, M. Targeted deletion of CC chemokine receptor 2 Attenuates left ventricular remodeling after experimental myocardial infarction. Am. J. Pathol. 2004, 165, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Hayasaki, T.; Kaikita, K.; Okuma, T.; Yamamoto, E.; Kuziel, W.A.; Ogawa, H.; Takeya, M. CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myocardial ischemia-reperfusion in mice. Circ. J. 2006, 70, 342–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, F.; Khalil, M.; Kiedrowski, M.; O’Connor, C.; Petrovic, E.; Zhou, X.; Penn, M.S. Critical role for leukocyte hypoxia inducible factor-1α expression in post-myocardial infarction left ventricular remodeling. Circ. Res. 2010, 106, 601–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majmudar, M.D.; Keliher, E.J.; Heidt, T.; Leuschner, F.; Truelove, J.; Sena, B.F.; Gorbatov, R.; Iwamoto, Y.; Dutta, P.; Wojtkiewicz, G.; et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 2013, 127, 2038–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grisanti, L.A.; Traynham, C.J.; Repas, A.A.; Gao, E.; Koch, W.J.; Tilley, D.G. β2-adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury. Proc. Natl. Acad. Sci. USA 2016, 113, 15126–15131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Seo, M.J.; Deci, M.B.; Weil, B.R.; Canty, J.M.; Nguyen, J. Effect of CCR2 inhibitor-loaded lipid micelles on inflammatory cell migration and cardiac function after myocardial infarction. Int. J. Nanomed. 2018, 13, 6441–6451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, J.; He, S.; Wang, Y.; Lu, Y.; Gu, M.; Li, D.; Tang, T.; Nie, S.; Zhang, M.; Lv, B.; et al. Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration. Basic Res. Cardiol. 2021, 116, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Nemska, S.; Monassier, L.; Gassmann, M.; Frossard, N.; Tavakoli, R. Kinetic mRNA profiling in a rat model of left-ventricular hypertrophy reveals early expression of chemokines and their receptors. PLoS ONE 2016, 11, e0161273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, B.; Bansal, S.S.; Ismahil, M.A.; Hamid, T.; Rokosh, G.; Mack, M.; Prabhu, S.D. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl. Sci. 2018, 3, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Shen, Y.; Zhang, R.; Sugi, K.; Vasudevan, N.T.; Alaiti, M.A.; Sweet, D.R.; Zhou, L.; Qing, Y.; Gerson, S.L.; et al. Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. Proc. Natl. Acad. Sci. USA 2018, 115, E4661–E4669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemska, S.; Gassmann, M.; Bang, M.-L.; Frossard, N.; Tavakoli, R. Antagonizing the CX3CR1 receptor markedly reduces development of cardiac hypertrophy after transverse aortic constriction in mice. J. Cardiovasc. Pharmacol. 2021, 78, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Revelo, X.S.; Parthiban, P.; Chen, C.; Barrow, F.; Fredrickson, G.; Wang, H.; Yücel, D.; Herman, A.; van Berlo, J.H. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ. Res. 2021, 129, 1086–1101. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.-H.; Xu, J.-D.; Sun, S.-N.; Li, Y.; Zhou, Z.; Li, H.; Liu, X.; Deng, J.-P.; Huang, Y.-S.; Chen, Z.-X.; et al. Single-cell transcriptomic analyses of cardiac immune cells reveal that Rel-driven CD72-positive macrophages induce cardiomyocyte injury. Cardiovasc. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Bu, J.; Huang, S.; Wang, J.; Xia, T.; Liu, H.; You, Y.; Wang, Z.; Liu, K. The GABAA receptor influences pressure overload-induced heart failure by modulating macrophages in mice. Front. Immunol. 2021, 12, 670153. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, M.; Hiasa, K.-I.; Zhao, Q.; Inoue, S.; Ohtani, K.; Kitamoto, S.; Tsuchihashi, M.; Sugaya, T.; Charo, I.F.; Kura, S.; et al. Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ. Res. 2004, 94, 1203–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Lin, S.-C.; Chen, J.; Miao, Y.; Taffet, G.E.; Entman, M.L.; Wang, Y. CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin II-induced cardiac fibrosis. Am. J. Physiol. Circ. Physiol. 2011, 301, H538–H547. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Hu, L.; Shu, Z.; Chen, L.; Li, X.; Du, M.; Sun, D.; Mao, X.; Deng, S.; Huang, K.; et al. Role of CCR2 in the development of streptozotocin-treated diabetic cardiomyopathy. Diabetes 2019, 68, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Göser, S.; Ottl, R.; Brodner, A.; Dengler, T.J.; Torzewski, J.; Egashira, K.; Rose, N.R.; Katus, H.A.; Kaya, Z. Critical role for monocyte chemoattractant protein-1 and macrophage inflammatory protein-1α in induction of experimental autoimmune myocarditis and effective anti–monocyte chemoattractant protein-1 gene therapy. Circulation 2005, 112, 3400–3407. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Chen, R.; Barnie, P.A.; Tian, Y.; Zhang, S.; Xu, H.; Chakrabarti, S.; Su, Z. Fibroblast transdifferentiation promotes conversion of M1 macrophages and replenishment of cardiac resident macrophages following cardiac injury in mice. Eur. J. Immunol. 2020, 50, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Heo, G.S.; Kopecky, B.; Sultan, D.; Ou, M.; Feng, G.; Bajpai, G.; Zhang, X.; Luehmann, H.; Detering, L.; Su, Y.; et al. Molecular imaging visualizes recruitment of inflammatory monocytes and macrophages to the injured heart. Circ. Res. 2019, 124, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G.; Dewald, O.; Xia, Y.; Ren, G.; Haudek, S.; Leucker, T.; Kraemer, D.; Taffet, G.; Rollins, B.J.; Entman, M.L. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation 2007, 115, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Dalal, R.; Cao, C.D.; Postoak, J.L.; Yang, G.; Zhang, Q.; Wang, Z.; Lal, H.; van Kaer, L. IL-10–producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc. Natl. Acad. Sci. USA 2019, 116, 21673–21684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Frangogiannis, N.G. The role of macrophages in nonischemic heart failure. JACC Basic Transl. Sci. 2018, 3, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.; Ismahil, M.A.; Hamid, T.; Bansal, S.S.; Prabhu, S.D. Mononuclear phagocytes are dispensable for cardiac remodeling in established pressure-overload heart failure. PLoS ONE 2017, 12, e0170781. [Google Scholar] [CrossRef] [PubMed]
- Laroumanie, F.; Douin-Echinard, V.; Pozzo, J.; Lairez, O.; Tortosa, F.; Vinel, C.; Delage, C.; Calise, D.; Dutaur, M.; Parini, A.; et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 2014, 129, 2111–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevers, T.; Salvador, A.M.; Grodecki-Pena, A.; Knapp, A.; Velázquez, F.; Aronovitz, M.; Kapur, N.K.; Karas, R.H.; Blanton, R.M.; Alcaide, P. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ. Heart Fail. 2015, 8, 776–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallikourdis, M.; Martini, E.; Carullo, P.; Sardi, C.; Roselli, G.; Greco, C.M.; Vignali, D.; Riva, F.; Berre, A.M.O.; Stølen, T.O.; et al. T cell costimulation blockade blunts pressure overload-induced heart failure. Nat. Commun. 2017, 8, 14680. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Yu, P.; Li, D.; Li, Z.; Liao, Y.; Wang, Y.; Zhou, B.; Wang, L. Single-cell reconstruction of progression trajectory reveals intervention principles in pathological cardiac hypertrophy. Circulation 2020, 141, 1704–1719. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.; Macia, M.G.; Luli, S.; Worrell, J.C.; Reilly, W.J.; Paish, H.L.; Knox, A.; Barksby, B.S.; Gee, L.M.; Zaki, M.Y.W.; et al. C-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis. Nat. Metab. 2020, 2, 1350–1367. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, S.; Sheng, Y.; Peng, X.; Liu, H.; Jin, N.; Cai, J.; Shu, Y.; Li, T.; Li, P.; et al. Topiramate modulates post-infarction inflammation primarily by targeting monocytes or macrophages. Cardiovasc. Res. 2017, 113, 475–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, R.H.; Abel, E.D. Basic mechanisms of diabetic heart disease. Circ. Res. 2020, 126, 1501–1525. [Google Scholar] [CrossRef] [PubMed]
- Lafuse, W.P.; Wozniak, D.J.; Rajaram, M.V.S. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells 2020, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Frangogiannis, N.G. Chemokines in cardiac fibrosis. Curr. Opin. Physiol. 2020, 19, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Li, Y.; Jia, L.; Han, Y.; Cheng, J.; Li, H.; Qi, Y.; Du, J. Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/smad activation and cardiac fibrosis induced by angiotensin II. PLoS ONE 2012, 7, e35144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, H.; Takeda, N.; Isagawa, T.; Semba, H.; Nishimura, S.; Morioka, M.S.; Nakagama, Y.; Sato, T.; Soma, K.; Koyama, K.; et al. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nat. Commun. 2019, 10, 2824. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Herranz, L.; Sahún-Español, Á.; Paredes, A.; Gonzalo, P.; Gkontra, P.; Núñez, V.; Clemente, C.; Cedenilla, M.; Villalba-Orero, M.; Inserte, J.; et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. Elife 2020, 9, 57920. [Google Scholar] [CrossRef] [PubMed]
- Hitscherich, P.G.; Xie, L.; del Re, D.; Lee, E.J. The effects of macrophages on cardiomyocyte calcium-handling function using in vitro culture models. Physiol. Rep. 2019, 7, e14137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnerat, G.; Alarcón, M.L.; Vasconcellos, L.R.; Hochman-Mendez, C.; Brasil, G.; Bassani, R.A.; Casis, O.; Malan, D.; Travassos, L.H.; Sepúlveda, M.; et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat. Commun. 2016, 7, 13344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, D.J.; Yang, Z.; Hopkins, P.M.; Steele, D.S.; Harrison, S.M. TNF-α and IL-1β increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium 2010, 47, 378–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, Y.-D.; Wang, Q.; Hou, J.-W.; Li, W.; Cai, X.-X.; Yang, Y.-L.; Zhang, L.-H.; Wei, Z.-X.; Chen, T.-Z.; Wang, Y.-P.; et al. Macrophages facilitate post myocardial infarction arrhythmias: Roles of gap junction and KCa3.1. Theranostics 2019, 9, 6396–6411. [Google Scholar] [CrossRef] [PubMed]
- Milbank, E.; Soleti, R.; Martinez, E.; Lahouel, B.; Hilairet, G.; Martinez, M.C.; Andriantsitohaina, R.; Noireaud, J. Microparticles from apoptotic RAW 264.7 macrophage cells carry tumour necrosis factor-α functionally active on cardiomyocytes from adult mice. J. Extracell. Vesicles 2015, 4, 28621. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, Z.-M.; Jie, D.; Gan, W.; Zhang, A.; Shi, H.-J.; Wang, H.; Lv, L.; Li, Z.; Tang, T.; et al. Macrophage-derived exosomal mir-155 regulating cardiomyocyte pyroptosis and hypertrophy in uremic cardiomyopathy. JACC Basic Transl. Sci. 2020, 5, 148–166. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.S.; Nelson, P.J.; Gröne, H.J.; Weber, C. Expression of CCR2 by endothelial cells: Implications for MCP-1 mediated wound injury repair and In vivo inflammatory activation of endothelium. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 2085–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iikura, M.; Miyamasu, M.; Yamaguchi, M.; Kawasaki, H.; Matsushima, K.; Kitaura, M.; Morita, Y.; Yoshie, O.; Yamamoto, K.; Hirai, K. Chemokine receptors in human basophils: Inducible expression of functional CXCR4. J. Leukoc. Biol. 2001, 70, 113–120. [Google Scholar] [PubMed]
- Bakos, E.; Thaiss, C.A.; Kramer, M.P.; Cohen, S.; Radomir, L.; Orr, I.; Kaushansky, N.; Ben-Nun, A.; Becker-Herman, S.; Shachar, I. CCR2 regulates the immune response by modulating the interconversion and function of effector and regulatory T cells. J. Immunol. 2017, 198, 4659–4671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Hua, L.; Harmer, D.; Li, P.; Ren, G. Cre driver mice targeting macrophages. Methods Pharmacol. Toxicol. 2018, 1784, 263–275. [Google Scholar]
- Chen, B.; Brickshawana, A.; Frangogiannis, N.G. The functional heterogeneity of resident cardiac macrophages in myocardial injury, CCR2(+) cells promote inflammation, whereas CCR2(−) cells protect. Circ. Res. 2019, 124, 183–185. [Google Scholar] [CrossRef] [PubMed]
- De Zeeuw, D.; Bekker, P.; Henkel, E.; Hasslacher, C.; Gouni-Berthold, I.; Mehling, H.; Potarca, A.; Tesar, V.; Heerspink, H.J.L.; Schall, T.J. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: A randomised trial. Lancet Diabetes Endocrinol. 2015, 3, 687–696. [Google Scholar] [CrossRef]
- Fei, L.; Ren, X.; Yu, H.; Zhan, Y. Targeting the CCL2/CCR2 axis in cancer immunotherapy: One stone, three birds? Front. Immunol. 2021, 12, 771210. [Google Scholar] [CrossRef] [PubMed]
- Kreisel, D.; Lai, J.; Richardson, S.B.; Ibricevic, A.; Nava, R.G.; Lin, X.; Li, W.; Kornfeld, C.G.; Miller, M.J.; Brody, S.L.; et al. Polarized alloantigen presentation by airway epithelial cells contributes to direct CD8+ T cell activation in the airway. Am. J Respir. Cell Mol. Biol. 2011, 44, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Kiguchi, N.; Kobayashi, Y.; Saika, F.; Kishioka, S. Epigenetic upregulation of CCL2 and CCL3 via histone modifications in infiltrating macrophages after peripheral nerve injury. Cytokine 2013, 64, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, J.; Zhang, B.; Liu, G.; Zhao, H.; Hu, Q. KDM3A inhibition modulates macrophage polarization to aggravate post-MI injuries and accelerates adverse ventricular remodeling via an IRF4 signaling pathway. Cell. Signal. 2019, 64, 109415. [Google Scholar] [CrossRef] [PubMed]
- Deberge, M.; Yu, S.; Dehn, S.; Ifergan, I.; Yeap, X.Y.; Filipp, M.; Becker, A.; Luo, X.; Miller, S.; Thorp, E.B. Monocytes prime autoreactive T cells after myocardial infarction. Am. J. Physiol. Circ. Physiol. 2020, 318, H116–H123. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, H.; Hirose, M.; Takahashi, M.; Kawaguchi, M.; Ise, H.; Kolattukudy, P.E.; Yamada, M.; Ikeda, U. MCP-1 induces cardioprotection against ischaemia/reperfusion injury: Role of reactive oxygen species. Cardiovasc. Res. 2008, 78, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Vagnozzi, R.J.; Maillet, M.; Sargent, M.A.; Khalil, H.; Johansen, A.K.Z.; Schwanekamp, J.A.; York, A.J.; Huang, V.; Nahrendorf, M.; Sadayappan, S.; et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 2019, 577, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Faber, J.E. De-novo collateral formation following acute myocardial infarction: Dependence on CCR2+ bone marrow cells. J. Mol. Cell. Cardiol. 2015, 87, 4–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Myocardial Infarction | |||
---|---|---|---|
Year | Disease Context and Intervention | Principal Effects on Ventricular Remodelling | Citation |
2003 | Left coronary artery ligation and limb skeletal muscle transfection of N-terminal deletion mutant human CCL2 | Mutant CCL2 transfection improved survival, LV cavity dilatation, contractile dysfunction, interstitial fibrosis, macrophage recruitment and inflammatory and fibrotic gene expression | [63] |
2004 | LAD ligation in wildtype and Ccr2−/− mice | Ccr2 knockout decreased macrophage accumulation, interstitial fibrosis and rise in LVDD and attenuated FS decline | [64] |
2006 | 45 min ischemia reperfusion by occlusion of left coronary artery in wildtype and Ccr2−/− mice | Decreased macrophage accumulation, infarct size and oxidative stress with Ccr2 knockout | [65] |
2007 | Left coronary artery ligation in wildtype and ApoE−/− mice | Sequential recruitment of Ly6Chi and Ly6Clo monocytes to infarcted hearts via CCR2 and CX3CR1, respectively. Impaired wound healing in ApoE−/− mice with persistent Ly6Chi monocytosis after MI | [42] |
2009 | Left coronary artery ligation | Splenic Ly6Chi monocytes are recruited to the ischemic myocardium | [59] |
2010 | LAD ligation and lentiviral transfection of transplanted hematopoietic stem cells with HIF-1α siRNA | Decreased leukocyte CCR2 expression and improved EF with HIF-1α knockdown | [66] |
2013 | Knockdown of CCR2 with nanoparticle-encapsulated LAD ligation in wildtype and ApoE−/− mice | CCR2 knockdown decreased Ly6Chi monocytes in infarcts, inflammatory gene expression and LVEDV and LVESV and increased EF | [67] |
2016 | LAD ligation | Macrophage accumulation in the remote myocardium occurs through both local macrophage proliferation and monocyte recruitment | [52] |
2016 | LAD ligation in bone marrow chimeric β2AR knockout mice or CCR2 knockout mice or treatment with CCR2 antagonist | Leukocyte recruitment to infarcted hearts diminished by β2AR knockout, CCR2 knockout or CCR2 antagonist | [68] |
2018 | Administration of CCR2-targeting micelles containing CCR2 antagonist to mice after LAD ligation | Decreased Ly6Chi cell accumulation and reduced infarct size with CCR2 antagonism | [69] |
2021 | LAD ligation and adoptive transfer of Bregs | Decreased infarct size, Ly6Chi monocyte infiltration and interstitial fibrosis, LVEDD and LVESD and increased EF and FS associated with downregulation of monocyte CCR2 expression | [70] |
Pressure Overload | |||
Year | Disease Context and Intervention | Principal Effects on Ventricular Remodelling | Citation |
2016 | Banding of the suprarenal abdominal aorta in rats | Upregulation in cardiac Ccl2 and Ccr2 mRNA levels preceding LVH | [71] |
2018 | CCR2 antagonism and antibody-mediated CCR2+ monocyte depletion in mice with TAC | CCR2 antagonism prevented early macrophage accumulation and attenuated LVH. Longer duration treatment attenuated both LV dilatation and EF decline. Either CCR2 antagonism or anti-CCR2 antibody attenuated interstitial fibrosis | [72] |
2018 | TAC in wildtype and Ccr2−/− mice and CCR2 antagonism | Concluded that macrophage accumulation early after TAC is due to proliferation of resident CCR2− macrophages and monocyte infiltration is a later event. CCR2 antagonism did not affect early macrophage accumulation. Ccr2 knockout prevented EF decline and preserved capillary density without affecting hypertrophy or fibrosis. Delayed CCR2 antagonism attenuated EF decline and did not affect hypertrophy | [73] |
2019 | Single-cell RNA sequencing of CD45+ cells from mouse TAC hearts | Described four clusters expressing macrophage/monocyte markers: Ccr2− pro-repair macrophages, Ccr2− phagocytic monocytes/macrophages and two Ccr2+ proinflammatory recruited populations | [47] |
2021 | TAC in wildtype mice | Ccr2 mRNA levels increased in mouse hearts 3–14 days after TAC and CCR2 antagonism did not affect LVH | [74] |
2021 | CyTOF and single-cell RNA sequencing in wildtype TAC hearts. Antibody-based macrophage depletion. Ccr2 knockout in TAC mice | Reported that both resident macrophages and monocyte-derived macrophages increased one week after TAC and declined by four weeks. Monocyte-derived CCR2+ macrophages are major promoters of cardiac fibrosis | [75] |
2021 | TAC, angiotensin II and LAD ligation. Rel knockdown and Rel−/− bone marrow chimera mice | Pro-inflammatory CCR2+ macrophages express high levels of CD72. CD72hi macrophage differentiation is driven by c-Rel. Rel knockout prevented EF decline in TAC mice | [76] |
2021 | GABAA receptor agonist and antagonist administration to TAC mice | GABAA receptor agonism increased CCR2+ macrophage accumulation, LVEDD, LVESD, hypertrophy and fibrosis and decreased EF and FS. GABAA receptor antagonism improved remodelling | [77] |
2004 | Angiotensin II infusion in wildtype and Ccr2−/− and bone marrow transferred Ccr2−/− mice | Angiotensin II increased monocyte CCR2 expression. Ccr2−/− and bone marrow transferred Ccr2−/− mice exhibited blunted aortic remodelling with angiotensin II, whereas LVH was unaffected | [78] |
2011 | Angiotensin II infusion in wildtype and Ccr2−/− mice | Angiotensin II increased blood pressure and LVH comparably in wildtype and Ccr2−/− mice, whereas interstitial and perivascular fibrosis were reduced with Ccr2 knockout | [79] |
Diabetes | |||
Year | Disease Context and Intervention | Principal Effects on Ventricular Remodelling | Citation |
2019 | Streptozotocin-induced diabetes in wildtype and Ccr2−/− mice. CCR2 antagonism in db/db mice | Ccr2 knockout attenuated reduction in EF, FS, dP/dtmax, fibrosis, programmed cell death and oxidative stress in streptozotocin-diabetic mice. CCR2 antagonism attenuated reduction in EF, FS and CO in db/db mice | [80] |
Myocarditis | |||
Year | Disease Context and Intervention | Principal Effects on Ventricular Remodelling | Citation |
2005 | CCL2 neutralization or Ccr2 knockout in EAM (cardiac myosin induced). Transfection with dominant negative inhibitor of Ccl2 gene | CCL2 neutralization, Ccr2 knockout or dominant negative Ccl2 transfection attenuated myocarditis severity | [81] |
2015 | Nanoparticle encapsulated CCR2 siRNA administration to mice with EAM (Troponin I induced) | Attenuated Ly6Chi monocyte recruitment, cardiac inflammation and fibrosis and preserved EF | [51] |
2020 | EAM (MyHCα614–629) and viral myocarditis (CVB3) | Transfer of splenic CD45.2+CCR2+ monocytes/macrophages to CD45.1 mice showed CD45.2+CCR2+CX3CR1+ macrophages in the hearts 48h after CVB3 infection | [82] |
Diphtheria Toxin | |||
Year | Disease Context and Intervention | Principal Effects on Ventricular Remodelling | Citation |
2014 | DT administration to mice expressing DTR in cardiomyocytes (Mlc2v-CreRosa26-DTR) and CCR2 antagonism | Adult mouse hearts selectively recruit MHC-IIhiCCR2+ monocyte-derived macrophages in response to cardiomyocyte death. CCR2 antagonism blocked monocyte recruitment, attenuated inflammation and preserved microvascular density | [45] |
2019 | DT administration to mice expressing DTR under the control of the rat Tnnt2 promoter, closed chest IRI and injection of PET 68Ga-DOTA-ECL1i radiotracer | 68Ga-DOTA-ECL1i uptake was associated with accumulation of CCR2+ monocytes and macrophages in injured hearts | [83] |
IRI and Cardiac Transplantation | |||
Year | Disease Context and Intervention | Principal Effects on Ventricular Remodelling | Citation |
2007 | Ccl2 knockout and antibody-mediated CCL2 neutralization in mice with closed chest IRI | CCL2 knockout or downregulation decreased monocyte infiltration, fibrosis and FS decline | [84] |
2016 | Transplantation-associated IRI and intravital 2-photon imaging and depletion of CCR2+ cells from donor hearts by DT administration to CCR2-DTR transgenic mice | Tissue resident CCR2+ monocyte-derived macrophages mediate neutrophil recruitment to the ischemic myocardium | [50] |
2019 | MI, reperfused MI, DT/DTR (Tnnt2 promoter) cardiomyocyte ablation and cardiac transplantation with intravital 2-photon imaging | Tissue resident CCR2+ macrophages promote monocyte recruitment and tissue resident CCR2− macrophages inhibit monocyte recruitment | [49] |
Characteristic | CCR2− Macrophages | CCR2+ Macrophages |
---|---|---|
Known as | Resident macrophages | Infiltrating macrophages (with the exception of a small pool of CCR2+ resident macrophages) |
Nature | Anti-inflammatory, reparative | Proinflammatory |
Ontogeny | Originate during embryogenesis from yolk-sac- and fetal-liver-derived monocyte progenitors | Derived from definitive hematopoietic precursors in the bone marrow and spleen |
Replenishment | Self-renewal by in situ proliferation | Proliferation as well as replacement by circulating monocytes |
Primary functions | Maintenance of tissue homeostasis, resolution of inflammation and repair of damaged tissue | Inflammation, tissue remodelling after injury/infection, fibrosis |
Dynamics of myocardial numbers | Abundantly present in the steady state heart, diminish with myocardial insult | Very low in number under homeostatic conditions but abundantly increase after myocardial injury |
Location in heart | Near atrioventricular node, adjacent to endothelial cells and near nerve endings | Near the capillaries and sites of inflammation and injury |
Distinguishable surface markers | TIMD4, LYVE-1, SIGLEC-1, CX3CR1 | CCR2 |
Clusters identified based on single cell sequencing | TIMD4 cluster and MHC-II cluster under steady state and disease states | CCR2 and ISG clusters under steady state, expand into multiple clusters under disease conditions |
Differentially expressed genes | Igf1, Hbegf, Bmp2, Cyr61, Pdgfc, Fgf9, Trpv4, CD33, and Rhob | Il1β, Gdf3, Lgals3, Ccl17, Cxcl19, Itgax, Itgb7, Itgax, Traf1, Tnip3, Tnfsf14, Timp1, Mmp12, Mmp19, Vegfa, Pgf, Col4a1, Col3a1, and Fn1 |
Pathways enriched for differentially expressed genes | Endocytosis/transport, nervous system development, cell adhesion, and migration | Antigen presentation, immune/inflammatory response, T cell co-stimulation, integrin remodelling and angiogenesis |
Effect on monocyte mobilization | Inhibit monocyte infiltration | CCR2+ resident macrophages promote monocyte infiltration |
Predominant effect on myocardial angiogenesis | Promote angiogenesis | Inhibit angiogenesis |
Predominant effect on cardiac fibrosis | Prevent fibrosis | Promote fibrosis |
Effect on electrical activity of the heart | Facilitate electrical conduction in the heart through connexin-43-containing gap junctions | Predispose to arrhythmias by increasing duration of action potential |
Overall effect on cardiac remodelling and function | Promote healing of the myocardium after injury and restore cardiac function | Promote adverse cardiac remodelling changes resulting in impaired cardiac function |
Contact with cardiomyocytes | Foot processes are in direct contact with cardiomyocytes | Not in contact with cardiomyocytes and foot processes extend into interstitial spaces |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yerra, V.G.; Advani, A. Role of CCR2-Positive Macrophages in Pathological Ventricular Remodelling. Biomedicines 2022, 10, 661. https://doi.org/10.3390/biomedicines10030661
Yerra VG, Advani A. Role of CCR2-Positive Macrophages in Pathological Ventricular Remodelling. Biomedicines. 2022; 10(3):661. https://doi.org/10.3390/biomedicines10030661
Chicago/Turabian StyleYerra, Veera Ganesh, and Andrew Advani. 2022. "Role of CCR2-Positive Macrophages in Pathological Ventricular Remodelling" Biomedicines 10, no. 3: 661. https://doi.org/10.3390/biomedicines10030661
APA StyleYerra, V. G., & Advani, A. (2022). Role of CCR2-Positive Macrophages in Pathological Ventricular Remodelling. Biomedicines, 10(3), 661. https://doi.org/10.3390/biomedicines10030661