Next Article in Journal
Qualitative and Quantitative Comparison of Hippocampal Volumetric Software Applications: Do All Roads Lead to Rome?
Next Article in Special Issue
Multi-Layered Human Blood Vessels-on-Chip Design Using Double Viscous Finger Patterning
Previous Article in Journal
Roux-en-Y Gastric Bypass Modulates AMPK, Autophagy and Inflammatory Response in Leukocytes of Obese Patients
Previous Article in Special Issue
Decellularized In Vitro Capillaries for Studies of Metastatic Tendency and Selection of Treatment
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:

Neutrophil Extracellular Traps, Angiogenesis and Cancer

Remo Poto
Leonardo Cristinziano
Luca Modestino
Amato de Paulis
Gianni Marone
Stefania Loffredo
Maria Rosaria Galdiero
1,2,3,4 and
Gilda Varricchi
Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
Author to whom correspondence should be addressed.
Biomedicines 2022, 10(2), 431;
Submission received: 20 January 2022 / Revised: 7 February 2022 / Accepted: 9 February 2022 / Published: 12 February 2022
(This article belongs to the Special Issue Angiogenesis and Anti-angiogenesis in Health and Diseases)


Human neutrophils, the most abundant circulating leukocytes, are fundamental components of the host response against different pathogens. Until a few years ago, neutrophils received limited attention in cancer immunology. Recently, it was discovered that both circulating, and tumor-associated, neutrophils possess functional plasticity when exposed to various inflammatory stimuli and in the tumor microenvironment. Neutrophils and their mediators can exert several pro-tumor activities in cancer and promote metastasis through different mechanisms. Angiogenesis plays a pivotal role in inflammation and tumor growth. Activated human neutrophils release several angiogenic factors [vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (ANGPT1), CXCL8, hepatocyte growth factor (HGF), and metalloproteinase 9 (MMP-9)] and form neutrophil extracellular traps (NETs). NETs promote tumor growth and metastasis formation through several mechanisms: they can awake dormant cancer cells, capture circulating tumor cells, coat and shield cancer cells, thus preventing CD8+- and natural killer (NK) cell-mediated cytotoxicity. ANGPTs released by endothelial and periendothelial mural cells induce platelet-activating factor (PAF) synthesis and neutrophil adhesion to endothelial cells. NETs can directly exert several proangiogenic activities in human endothelial cells and NETs induced by ANGPTs and PAF increase several aspects of angiogenesis in vitro and in vivo. A better understanding of the pathophysiological functions of NETs in cancer and angiogenesis could be of importance in the early diagnosis, prevention and treatment of tumors.

1. Introduction

Human neutrophils are conventionally considered fundamental players of the host response against a wide spectrum of different pathogens [1,2]. Peripheral blood neutrophils have the propensity to migrate into inflamed tissues in response to a plethora of chemotactic stimuli produced within the inflammatory site [3]. These cells kill pathogens through phagocytosis, the release of their potent antimicrobial arsenal, which includes cytoplasmic enzymes, oxidants (e.g., reactive oxygen species: ROS), and lipid mediators [4,5], and the formation of neutrophil extracellular traps (NETs) [6,7,8].
Increasing evidence implicates neutrophils in the pathogenesis of a broad spectrum of human disorders, including chronic inflammatory disorders, autoimmune diseases and cancer, in addition to infections [2,9]. Neutrophils are generated in the bone marrow and enter the bloodstream as terminally differentiated cells with a short lifespan. To maintain a stable number in the peripheral blood, neutrophils are produced at a rate of 10 × 1011–2 × 1011 cells per day in humans [10]. Neutrophil development and terminal differentiation are controlled by growth factors (e.g., GM-CSF, G-CSF), microRNAs, and other regulatory systems. Cytoplasmic granules of neutrophils are formed during the differentiation process from the promyelocyte stage onwards. Primary (or azurophilic) granules are formed in promyelocytes, secondary (or specific) granules in myelocytes, and tertiary (or gelatinase) granules in band cells [11].
Recent evidence indicates that “aged” peripheral blood neutrophils can return to the bone marrow, where they are phagocytosed by resident macrophages, which stimulate the release of “new” cells to maintain a stable number of peripheral blood neutrophils [12]. Neutrophil aging appears to be mainly regulated by the microbiome [13]. Neutrophils can also translocate from the interstitium to the intravascular space through a mechanism termed “reverse migration” [14,15].
Human neutrophils display several activating cell surface receptors that activate different intracellular signaling mechanisms to mediate effector functions [2]. Neutrophil-expressed Gi protein-coupled receptors include formyl peptide receptors recognizing bacterial products and mitochondria-derived danger signals [16], the LTB4 receptor BLT1 [17], chemokine receptors (e.g., CXCR1, CXCR2), and the C3a and C5a receptors sensing anaphylatoxins [18]. Immunoglobulins can activate the FcαRI and FcγRIIA receptors [19]. Lipopolysaccharide activates the TLR4 on human neutrophils [20,21], which also express various receptors for a constellation of cytokines, such as G-CSF, GM-CSF, TNF-α, IL-1, IL-4, IL-6, IL-13, and interferons [22,23,24,25,26].
In this review, we provide a general overview of the pathogenic roles of neutrophils in cancer with emphasis on NETs and angiogenesis.

2. Neutrophils and Cancer

Approximately 50% of the world’s population is affected by cancer at some point during their lifetime. Until few years ago, neutrophils received only limited attention in tumor immunology because they were considered short-lived cells with a circulating half-life of ~10 h in humans [9] and had limited transcriptional activity. However, in vivo labeling of human neutrophils has suggested that these cells survive in circulation for more than five days [27]. Moreover, there is evidence that cytokines secreted by tumor and immune cells, such as G-CSF, IL-1β, IL-6 or TNF-α can extend their lifespan [28]. At present, our understanding of the in vivo multiple functions of neutrophils in cancer patients remains limited.
Several investigators have reported that patients with advanced-stage cancers can have high counts of peripheral blood neutrophils [29], and the neutrophil-to-lymphocyte ratio (NLR) has been proposed as a prognostic factor for survival in several tumors [30,31,32]. During the past decade, the phenotypes and functions of neutrophils in cancer patients have started to be investigated in more detail [9,33].
There is compelling evidence that tumor-associated neutrophils (TAN) and their mediators are involved in tumor growth and progression, angiogenesis, and metastasis formation [4,34,35,36]. A decade ago, it was demonstrated that mouse neutrophils could undergo polarization towards an anti-tumor N1 or a protumor N2 phenotype. N1 neutrophils exert a direct anti-tumor effect mediated by ROS production and antibody-dependent cell cytotoxicity (ADCC) [37,38]. There is some evidence that N1 cells can activate CD8+ T cells and dendritic cells (DCs) and perhaps present tumor antigens [37,39,40]. By comparison, N2 neutrophils can promote tumor development through the remodeling of the extracellular matrix, angiogenesis and the production of pro-tumorigenic cytokines and chemokines [33,37,41]. The conditions promoting N1 or N2 polarization in vivo are largely unknown. Whether the N1/N2 profile described in mouse models is applicable to humans remains largely unknown.
In 2015 it was discovered that both circulating, and tumor-associated, neutrophils (TANs) possess some functional plasticity and can undergo activation when exposed to various stimuli in the tumor microenvironment (TME) [42,43]. For instance, transforming growth factor-β (TGF-β) can promote a pro-tumor N2 phenotype, whereas interferon-β (IFN-β) or the inhibition of TGF-β induce an anti-tumor N1 phenotype [37,44]. At least two neutrophil subpopulations have been identified in the peripheral blood of both cancer patients and mouse models: mature normal-density neutrophils (NDNs) and low-density neutrophils (LDNs) [45,46,47,48,49]. Mature NDNs possess an N1-like phenotype and can kill tumor cells, whereas LDNs have immunosuppressive properties [46,47,48]. Recently, multiple neutrophil subsets have been described in the circulation of both mouse models [50,51] and cancer patients [47,50,51,52,53].
In colon cancer, a better prognosis is associated with high neutrophil counts [54] and in breast cancer models, depletion of neutrophils causes disease progression [55]. Macrophages activate neutrophils through IFNs to produce chemokines and cytokines [56]. Neutrophils can induce DNA damage in cancer cells by releasing ROS and ATP [57,58]. Neutrophils promote tumor growth and the formation of metastasis by increasing angiogenesis [20,35,59], cell motility, migration, and invasion [60]. In mouse models, neutrophils promote metastasis [61], whereas neutrophil depletion prevents metastasis [62]. Neutrophils can adhere to circulating tumor cells, favoring their proliferation and metastasis [63]. Moreover, neutrophils provide lipids to tumor cells, fueling their proliferation and metastatic activity [64]. In different experimental models, neutrophils can exert anti-tumor activities by directly killing tumor cells and activating αβ T cells and CD4+ and CD8+ T cells [4].
Neutrophil extracellular traps (NETs) promote metastasis by several mechanisms [65]. Neutrophils elastase (NE) and cathepsin G (CG) [61] awaken dormant cancer cells by cleaving the extracellular matrix (ECM) protein lamin, generating an epitope that binds to tumor integrins, leading to the proliferation and migration of cancer cells [66,67]. NETs can also shield tumor cells blocking the activity of cytolytic T lymphocytes (CTLs) [68]. NETs can promote thrombosis in cancer patients [69] and a NET circulating biomarker [i.e., citrullinated histone 3 (H3cit)] is prognostic for venous thrombosis [70]. Collectively, these results indicate that the detection and inhibition of NET formation could have relevance in cancer diagnosis, prognosis, and metastasis prevention. Table 1 summarizes the main protumorigenic mechanisms of NETs in cancer.

3. Neutrophils, Angiogenesis and Lymphangiogenesis

Angiogenesis, the formation of new blood vessels from pre-existing ones [101], can represent a physiological or pathological process. Physiological angiogenesis is essential in embryonic development, tissue repair, the menstrual cycle and the growth of collateral circulation [102,103]. Pathological angiogenesis occurs during inflammation and tumor growth [103]. Angiogenesis is stimulated by hypoxia, cell metabolic demands, and lack of nutrients. These metabolic events stimulate hypoxia inducible factor (HIF) and molecules, such as mTOR (mammalian target of rapamycin) [104,105], which play a central role in the production of proangiogenic factors [106]. Angiogenesis is a complex process that requires the coordinated expression of several pro- and anti-angiogenic factors and their receptors on blood endothelial cells (BECs). The process is activated by angiogenic factors, such as vascular endothelial growth factors (VEGFs), angiopoietins (ANGPTs), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and CXCL8/IL-8. Several anti-angiogenic factors, such as angiostatin, endostatin, and angiopoietin 2 (ANGPT2) [107], and the VEGF-A165b isoform [35] modulate inflammatory and tumor angiogenesis.
Vascular endothelial growth factors (VEGFs), including VEGF-A, VEGF-B, and placental growth factors (PlGF) are the most important angiogenic factors [108]. These factors exert their biological activities through the activation of two tyrosine kinase receptors, VEGFR1 and VEGFR2, on blood endothelial cells [109,110]. VEGF-C and VEGF-D promote lymphangiogenesis through the engagement of VEGFR3 on lymphatic endothelial cells [111,112]. Angiopoietins (ANGPTs) are ligands for the tyrosine kinase TIE2 receptor [113,114] and have a pivotal role in blood vessel homeostasis [103]. In humans, there are two known ANGPTs, namely, ANGPT1 and ANGPT2 [115]. ANGPT1, produced by perivascular mural cells, is an agonist, while ANGPT2, contained in Weibel–Palade bodies, is an antagonist of the TIE2 receptor on BECs [116]. ANGPT1 stabilizes the endothelial cell junction integrity and inhibits the increase in vascular permeability caused by VEGF-A. By contrast, ANGPT2 by competitive antagonism of TIE2 receptor inhibits this stabilization [117,118]. In normal conditions, ANGPT2 is minimally expressed but it increases at the site of inflammation and in tumors [119,120]. ANGPT2 levels are elevated in cancer, increasing angiogenesis, tumor growth, and metastasis formation [118].
ANGPT1 phosphorylates the TIE2 receptor leading to PI3K/AKT activation, which causes phosphorylation (inactivation) of the transcription factor FOXO1 (Forkhead box O). This process leads to vessel stabilization. ANGPT2 is an antagonist of the TIE2 receptor, which allows PI3K/AKT inactivation and prevents phosphorylation (inactivation) of FOXO1 [121]. This induces the release of ANGPT2 from BECs [122,123]. In pathological conditions, such as cancer, AKT inactivation, caused by weak ANGPT1-TIE2 signaling, results in the activation of Foxo1 and the expression of ANGPT2. In this condition, ANGPT2 promotes TIE2 phosphorylation to compensate for the ANGPT1-induced activation of TIE2, leading to chemotaxis of endothelial cells and tube formation.
Human neutrophils produce and release a wide spectrum of proangiogenic factors and play key roles in different models of inflammatory and tumor angiogenesis [124,125,126]. VEGF-A, the most potent proangiogenic molecule, is present in human neutrophils [35,83] and can be released in response to N-formyl-methionyl-leucyl-phenylamine (fMLF) [35,125], TNF-α [84,127], lipopolysaccharide (LPS) [20,35,127], G-CSF [128], and PMA [35,125]. We have shown that highly purified human neutrophils contain preformed VEGF-A ~ ANGPT1 > VEGF-B [35]. Human neutrophils constitutively express VEGF-A, VEGF-B, and ANGPT1 mRNAs. We also found that several human recombinant phospholipases A2 (sPLA2) (group V and group X) induced the release of ANGPT1 > VEGF-A > CXCL8 from neutrophils [35]. These results were paralleled by the release of β-glucuronidase, a marker of exocytosis. By contrast, no secretion of the angiogenic factor VEGF-B could be observed in these experiments. The release of proangiogenic factors from human neutrophils was inhibited by the preincubation of cells with brefeldin A (inhibitor of cellular transport and protein secretion) or cycloheximide (inhibitor of protein synthesis). These results are compatible with the hypothesis that sPLA2 can induce the de novo synthesis of several proangiogenic factors from human neutrophils.
Angiogenesis is the result of a dynamic balance between proangiogenic and anti-angiogenic factors. VEGF-A exists in multiple isoforms possessing strikingly contrasting properties [129]. VEGF-A165 is the first VEGF-A isoform described [130], and its expression, signaling, and roles in inflammatory and tumor angiogenesis, have been widely investigated [20,35,101,131]. Other isoforms (i.e., VEGF-A121, VEGF-A145, VEGF-A148, VEGF-A183, VEGF-A189, and VEGF-A206) are generated by alternative splicing of exon 6 and 7 [129]. VEGF-A165b is an additional isoform generated by exon 8 distal splice site selection. Thus, VEGF-A mRNA splicing generates two families of proteins that differ by their carboxy-terminal six amino acids [129,132]. These conformational changes result in the inability of VEGF-A165b to bind neuropilin 1 (NRP1), a co-receptor of VEGFR2 [133]. As a result, VEGF-A165b fails to induce VEGFR2 tyrosine phosphorylation and activates the downstream signaling pathway that characterizes the proangiogenic isoform VEGF-A165a [133,134]. The translational relevance of these observations is supported by the involvement of VEGF-A165b and its anti-angiogenic activities in different human disorders [135,136,137].
We found that highly purified human neutrophils constitutively express VEGF-A165b mRNA [35]. Interestingly, human recombinant sPLA2 group V, but not group X, caused VEGF-A165b release from neutrophils. These results indicate that sPLA2 group V selectively modulates the release of anti-angiogenic factors from human neutrophils. Further studies are needed to verify whether other immunological stimuli can induce the release of anti-angiogenic factors (e.g., VEGF-A165b) from human neutrophils.
More recently, we have extended the previous observation showing that untreated neutrophils contain hepatocyte growth factor (HGF) > VEGF-A ~ CXCL8 [20] and that LPS and fMLF induced the release of these angiogenic factors. Matrix metalloproteinase 9 (MMP-9) is also secreted by human neutrophils and plays an important role in promoting angiogenesis by counteracting the effects of anti-angiogenic molecules and by inducing the release of VEGF-A in TME [138,139].
Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing ones, is limited in healthy adults but occurs during pathological conditions, such as inflammation, tissue repair, and tumor growth [140]. VEGF-C and VEGF-D are key regulators of lymphangiogenesis by activation of the VEGFR3 receptor on lymphatic endothelial cells (LECs) [141]. Previous studies have demonstrated that tissue-resident immune cells, such as human macrophages [142,143] and mast cells [110,112,144], are a major source of lymphangiogenic factors. When we investigated the effects of sPLA2 on the release of lymphangiogenic factors from human neutrophils, we found that these cells do not express VEGF-C/VEGF-D mRNAs. Moreover, several sPLA2 do not cause the secretion of these lymphangiogenic factors from neutrophils [35]. Further studies should investigate whether other immunological stimuli can induce the expression and release of lymphangiogenic factors from these cells.

4. NET Formation

Neutrophil extracellular traps (NETs) are pleiotropic networks composed of a DNA scaffold associated with several granule proteins and released by activated neutrophils in a process commonly termed NETosis [6,145]. NETs can trap several bacteria [6,146,147,148,149], fungi [150,151], and viruses [152,153], enabling their subsequent clearance [7,8,154].
A pioneering study described a novel form of neutrophil death induced by the prolonged incubation (3 h) with phorbol 12-myristate 13-acetate (PMA), which differed from apoptosis and necrosis [155]. PMA induced the loss of chromatin compactness, the rupture of the nuclear and cytoplasmic membranes, and the release of nuclear DNA. This process was ROS-dependent and led to neutrophil cell death [155]. Subsequently, Brinkmann and collaborators elegantly described NET composition and their antimicrobial properties [6]. Different immunological stimuli [IL-8/CXCL8, IFN-α/IFN-γ/C5a, GM-CSF/C5a, and lipopolysaccharide (LPS)] induce NET formation from human neutrophils within 2–4 h after neutrophil activation [6,8,145,146,156]. In addition, several bacteria [6], fungi [157], viruses [158], anti-neutrophil cytoplasmic antibodies [159,160] and calcium ionophores [161,162] can also induce NET formation. The latter form of NET release requires cell death [161,163,164,165,166] and can be defined as “suicidal” NETosis [73]. PMA is a classical stimulus inducing suicidal NETosis [6,155]. In this process, PMA activates protein kinase C (PKC) causing calcium release from intracellular stores [167], ROS production and p38 MAPK activation [164]. Myeloperoxidase (MPO) and neutrophil elastase (NE) are released from the azurophilic granules [168] and translocate into the nucleus [169]. Activated peptidyl-arginine deiminase 4 (PAD4) translocates to the nucleus and catalyzes the deamination of histones H2A, H3 and H4, converting the arginine residues into citrulline. The loss of positive charge of histones results in a marked decrease of chromatin compactness [170,171]. Nuclear and mitochondrial membranes disintegrate and the intracellular content is released in the extracellular space and the neutrophil dies [172].
Several groups of investigators demonstrated the existence of a “vital” form of NET formation, in which the intracellular content of neutrophils is released in the extracellular space [8,73,146,147,173,174,175]. Vital NET formation rapidly occurs (5–60 min) after neutrophil activation and can be associated with vesicle release filled with mitochondrial DNA [8,73]. This process occurs via a rapid mechanism [147] and neutrophils are still alive to exert different functions [173,176,177]. This NET formation is cytoskeleton and glycolysis dependent but it occurs independently from oxidant production [8,146,174,175]. We have demonstrated that conditioned media from anaplastic thyroid cancer (ATC) cell lines induced vital release of NETs containing mitochondrial DNA [73].

5. NETs in Cancer

In addition to their role in host defense, NETs play a crucial role in several inflammatory disorders, such as autoimmune [178,179,180,181] and allergic diseases [182,183,184,185,186,187,188,189], pulmonary [112,190,191], cardiovascular [192,193,194], and autoinflammatory disorders [49], and sepsis [195]. NETs are also involved in venous and artherial thrombosis [196].
Several clinical and experimental studies emphasize the association among NET formation and tumor development, the formation of metastasis, and cancer-associated thrombosis [71,74,93,197,198,199,200,201]. Several reviews have recapitulated the roles of NETs in cancer [174,202,203,204,205,206,207,208].
NETs can stimulate endothelial-to-mesenchymal transition (EMT) [71], which is involved in tumorigenesis [209]. In murine models, NETs facilitate experimental cancer development [75,93,210,211]. NETs released from LDNs promote intestinal tumorigenesis [212]. In a murine model, genetic deletion of PAD4 reduces NETs, decreases tumor development and improves survival [76]. NETs accumulate in TME and promote experimental melanoma growth [81]. Incubation of NETs with melanoma cells reduces their migration and viability [213]. Circulating and intratumoral NETs are associated with an unfavorable prognosis in human B cell lymphomas [77]. High circulating NET biomarkers are correlated with a worse prognosis in metastatic colorectal cancer patients [201]. IL-8/CXCL8 induces NET formation and is associated with colorectal cancer liver metastasis [78]. IL-8/CXCL8, produced by a variety of human cancer cells [82,214,215], causes NET formation from neutrophils and granulocytic myeloid-derived suppressor cells (PMN-MDSCs) [73,77,192,216,217]. Several chemokines/cytokines (CXCR1/CXCR2 agonists, G-CSF, TGF-β) released in TME induce NET formation from human and murine neutrophils [16,68,216,218,219].
The adhesive properties of NETs favor their binding to pathogens and cancer cells [220]. NETs can trap circulating tumor cells (CTCs), thus promoting metastasis [221,222]. In an in vivo model, the dismantling of NETs by DNases inhibited NET trapping of CTC and the formation of metastasis [74]. Intravenous administration of a metastatic cell line favored the deposition of NET in the lungs and the formation of the metastatic niche [75]. MPO, a product of neutrophils, and H3Cit, a biomarker of NETs, were present in primary breast cancer and liver metastasis [79]. NET DNA induces cancer cell chemotaxis through the interaction with a membrane protein on tumor cells, promoting metastasis formation. NETs can promote metastasis through endothelial cell (EC) damage [223]. In fact, NET-associated NE increased EC permeability through the proteolysis of vascular endothelial (VE)-cadherin [71].
Due to poor angiogenic activity and the protective role of immune cells, metastatic cancer cells can remain dormant for an extended period [224,225]. Lipopolysaccharide (LPS) administration to mice bearing dormant cancer cells (DCCs) in the lung causes local NET formation [66], whereas neutrophil depletion blocks LPS-induced awakening of DCCs. In this study, NET formation and awakening of DCCs were inhibited by PAD4 inhibition or digestion of DNA. Collectively, these results suggest that NETs formed by inflammatory stimuli can induce the awakening of DCCs in different mouse models.
Chemokines activating the CXCR1 and CXCR2 receptors, produced by melanoma and colon carcinoma cell lines, induce NET formation which shields cancer cells against NK- and T cell-mediated cytotoxicity [68]. Reparixin (CXCR1 and CXCR2 antagonist) or a mAb blocking CXCR1 inhibits the in vivo formation of NETs in tumors. Incubation of cytotoxic lymphocytes (CTL) or NK cells with activated neutrophils induces NET release, which impairs cytotoxicity by shielding cancer cells. In vivo experiments by intravital microscopy showed that NETs impaired cytotoxic cell contact with tumor cells. Collectively, these results indicate that coating of cancer cells by NETs prevents cytotoxicity induced by CD8+T cells and NK cells [68]. Figure 1 schematically summarizes some of the pro-tumor activities of neutrophils.
NETs found in venous thromboembolism (VTE) and arterial thromboembolism (ATE) [231,232,233,234] can be linked to a pro-thrombotic state in cancer [69,93,94]. Pancreatic cancer, typically associated with VTE [235,236,237], has a poor prognosis [238,239]. NET biomarkers are augmented in hepatocellular carcinoma-related thrombosis [240], in tumor-associated stroke [241], and myeloproliferative neoplasms [242] and their increase predicts the risk of VTE in cancer patients [70]. It is important to note that quantitative analysis of DNA as a surrogate of NET formation can be misleading because increased circulating levels of DNA complexes can result from any cell death associated or not with neutrophilic inflammation [243].
NETs are now considered a promising therapeutic target in cancer [208]. It is well established that NETs amplify the metastatic potential of cancer cells [79,221,223]. Therefore, the inhibition of their formation, or the promotion of their resolution, have been proposed as therapeutic strategies in several experimental tumors [67,68,75]. DNase, degrading chromatin within the NETs, is one of the promising strategies to interfere with NET formation and activity [179]. DNase treatment reduces disease burden and metastasis in murine models of breast [244] and lung cancers [74], respectively.

6. NETs Modulate Inflammation

Increasing evidence demonstrates that NETs can promote inflammation by inducing proinflammatory cytokines from different immune cells [245,246]. In particular, histones, the major citrullinated proteins in NETs, activate the transcription of IL-1β in mononuclear cells by binding and activating TLR4. Moreover, NET DNA synergizes with citrullinated histones to induce IL-1β by promoting intracellular TLR4 translocation to endosomes [245]. In addition, NETs isolated from activated human neutrophils resulted in the activation of several cellular functions [246]. In particular, NETs induced the secretion of CXCL8/IL-8, but not of TNF-α, by human neutrophils.
A recent study demonstrated that microRNAs (miRNAs) can be associated with NET scaffolds [247]. Human neutrophils activated by different stimuli formed NETs carrying miRNA cargo. Interestingly, NET-associated miRNA-142-3p can be transferred to macrophages leading to a reduced expression of protein kinase Cα (PKCα), which modulates TNF-α production [247]. Therefore, the presence of mi RNA-142-3p in NETs regulating the production of inflammatory cytokines could be a negative feedback loop tuning the inflammatory reaction. It will be interesting to verify whether other miRNAs present in NET supernatants can play a pro-inflammatory or anti-inflammatory role. Collectively, these recent studies highlight two novel mechanisms through which NET-associated molecules could propagate or modulate inflammation.

7. NETs and Angiogenesis

Angiogenesis occurs in several inflammatory diseases [112,120,144] and tumors [73,248]. VEGFs, including VEGF-A, VEGF-B, and PlGF are the major angiogenic factors [21]. The angiopoietins (ANGPTs) are also important angiogenic factors [113,119,249]. Peri-vascular mural cells (pericytes) [250] and certain immune cells [251,252] produce ANGPT1, an agonist of the TIE2 receptor on ECs [253,254]. ANGPT2, stored in Weibel–Palade bodies, is an antagonist of the TIE2 receptor [116,255]. ANGPT1 and ANGPT2 exert several proinflammatory and proangiogenic activities on ECs and leukocytes in vitro and in vivo [256,257,258]. Both ANGPT1 and ANGPT2 can induce endothelial platelet-activating factor (PAF) synthesis and neutrophil adhesion into ECs [256,257,258,259].
Aldabbous and collaborators demonstrated that NETs directly promote angiogenesis in vitro and in vivo [85]. NETs generated by prolonged incubation of human neutrophils with PMA induce pro-angiogenic responses in a classical matrigel tube formation assay and a 3-dimensional spheroid sprouting assay. NETs induce angiogenesis (increased tube length, number of sprouts, and sprouting area) in human pulmonary artery endothelial cells (HPAECs). To investigate the effect of NETs on angiogenesis in vivo, they found that NET DNA injected subcutaneously into mice increases vascularization [85].
Sirois and colleagues have found that both ANGPT1 and ANGPT2 induce PAF synthesis in human neutrophils [256]. However, only ANGPT1, but not ANGPT2, induces cytokine release (e.g., IL-1β, IL-8/CXCL8) from human neutrophils [260,261]. Recently, the same group found that prolonged incubation (3 h) of human neutrophils with ANGPT1 and ANGPT2, alone or in combination, increases NET formation [86]. The release of NETs is mediated by the activation of TIE2 and requires the production of ROS. A PAD4 inhibitor, GSK484, completely inhibits ANGPT-induced NET formation. In this experimental model, a PAF receptor antagonist inhibited pro-angiogenic activity of NETs is also assessed using a classical matrigel assay of angiogenesis. NETs induced by ANGPT1/2 or PMA increase capillary-like tube length, the number of loops and tubule area [86]. Collectively, these studies demonstrate that ANGPTs can promote the release of NET, which exerts proangiogenic activities in vivo and in vitro. Table 2 summarizes the main proangiogenic mechanisms of NETs.
Macrophages, important resident immune cells in TME [143,262], are critical sentinels in tumor immunity, modulating angiogenesis and lymphangiogenesis [21,263] and surveilling against tumors [264,265]. Recent studies have demonstrated that activated macrophages can release extracellular DNA traps, also called macrophage extracellular traps (METs) [95,230,266]. There is some evidence that METs and TAMs contribute to cancer progression [267]. Aside from the interactions between several microorganisms and macrophages [268], other factors can induce MET formation. Neutrophil elastase, a major component of azurophilic granules of human neutrophils [168], can be released in association with NETs. Recently, it has been demonstrated that NE triggers the release of METs from human and mouse macrophages [230]. This observation highlights a novel interaction between human neutrophils and macrophages, two important immune cells that play significant roles in various aspects of tumorigenesis.
Mast cells [95,269,270,271,272,273,274], eosinophils [149,150,183,275,276,277,278], basophils [186,275,279], and macrophages [95,230], which are present in TME [143,144,208,248,280,281], can also release extracellular DNA traps. Further studies are needed to evaluate whether immunological stimuli (e.g., ANGPTs) can induce the formation of extracellular DNA traps from human mast cells, macrophages, eosinophils, and basophils.

8. Conclusions

There is now compelling evidence that neutrophils and NETs can promote several stages of tumorigenesis and metastasis formation. However, there is some evidence that neutrophils and NETs also exert reparative effects in the context of tumor inflammation [198,213]. Moreover, recent studies indicate that different components of NETs can propagate [245,246] or modulate inflammation [247]. Such dichotomy in the outcome of neutrophil activity is fascinating and intriguing [282]. It is presently unclear whether different activities of neutrophils depend on the opposite functions of their subsets or if environmental signals influence their plasticity.
There is compelling evidence that human neutrophils constitutively express [20,35,83,138,139] and release various proangiogenic molecules. Recently, we have found that human neutrophils also express and release the anti-angiogenic VEGF-A165b [35]. NETs can exert proangiogenic effects in vivo and in vitro [85,86,260,261]. Future studies should investigate whether human neutrophils activated by different stimuli can form NETs carrying proinflammatory and anti-inflammatory molecules.
The ability of NETs to trap a plethora of microorganisms has generated much attention [1,2], but it is their pathogenic potential in cancer that is attracting increasing enthusiasm [64,66,68,70,208,223]. NETs seem to play multiple roles in tumor growth, angiogenesis and metastasis formation. Given the multitude of NET-associated proteins, novel NET functions are likely to emerge. A better understanding of the pathophysiological functions of NETs in cancer and angiogenesis could be of paramount importance in the early diagnosis of tumors, in the prevention of metastasis, and when designing novel strategies for cancer treatment.

Author Contributions

R.P., L.C., G.M. and G.V. drafted the manuscript; R.P., L.C., L.M., A.d.P., G.M., S.L., M.R.G. and G.V. edited the manuscript. All authors have read and agreed to the published version of the manuscript.


This work was supported in part by grants from the CISI-Lab Project (University of Naples Federico II), TIMING Project and Campania Bioscience (Regione Campania), MIUR-PRIN 2017M8YMR8_005, and AIRC 25123.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.


The authors thank Gjada Criscuolo for her excellent managerial assistance in preparing this manuscript and the administrative staff (Roberto Bifulco, Anna Ferraro and Maria Cristina Fucci), without whom it would not be possible to work as a team.

Conflicts of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


ANGPT1angiopoietin 1
ANGPT2angiopoietin 2
Arg-1arginase 1
ATCanaplastic thyroid cancer
ATEarterial thromboembolism
BECblood endothelial cell
bFGFbasic fibroblast growth factor
CTLcytolytic T lymphocyte
DCdendritic cell
ECendothelial cell
EGFepidermal growth factor
EMTendothelial-to-mesenchymal transition
FOXO1Forkhead box O
H3citcitrullinated histone 3
HGFhepatocyte growth factor
HIFhypoxia inducible factor
HPAEChuman pulmonary artery endothelial cells
LDNlow-density neutrophil
LEClymphatic endothelial cell
mAbmonoclonal antibody
METmacrophage extracellular trap
MMP-9metalloproteinase 9
NDNnormal-density neutrophil
NEneutrophil elastase
NETneutrophil extracellular trap
NK cellnatural killer cell
NLRneutrophil-to-lymphocyte ratio
NRP1neuropilin 1
PAD4peptidyl-arginine deiminase 4
PAFplatelet-activating factor
PKCprotein kinase C
PlGFplacental growth factor
PMN-MDSCneutrophils and granulocytic myeloid derived suppressor cell
sPLA2secreted phospholipases A2
TAMtumor associated macrophage
TMEtumor microenvironment
TNF-αtumor necrosis factor-α
VEGFvascular endothelial growth factor
VEGFRvascular endothelial growth factor receptor
VTEvenous thromboembolism


  1. Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef] [PubMed]
  2. Nemeth, T.; Sperandio, M.; Mocsai, A. Neutrophils as emerging therapeutic targets. Nat. Rev. Drug Discov. 2020, 19, 253–275. [Google Scholar] [CrossRef] [PubMed]
  3. Pittman, K.; Kubes, P. Damage-associated molecular patterns control neutrophil recruitment. J. Innate Immun. 2013, 5, 315–323. [Google Scholar] [CrossRef] [PubMed]
  4. Carnevale, S.; Ghasemi, S.; Rigatelli, A.; Jaillon, S. The complexity of neutrophils in health and disease: Focus on cancer. Semin. Immunol. 2020, 48, 101409. [Google Scholar] [CrossRef]
  5. Lehman, H.K.; Segal, B.H. The role of neutrophils in host defense and disease. J. Allergy Clin. Immunol. 2020, 145, 1535–1544. [Google Scholar] [CrossRef]
  6. Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
  7. Brinkmann, V.; Zychlinsky, A. Neutrophil extracellular traps: Is immunity the second function of chromatin? J. Cell Biol. 2012, 198, 773–783. [Google Scholar] [CrossRef] [Green Version]
  8. Yousefi, S.; Mihalache, C.; Kozlowski, E.; Schmid, I.; Simon, H.U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009, 16, 1438–1444. [Google Scholar] [CrossRef]
  9. Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016, 16, 431–446. [Google Scholar] [CrossRef] [Green Version]
  10. Bardoel, B.W.; Kenny, E.F.; Sollberger, G.; Zychlinsky, A. Thebalancing act of neutrophils. Cell Host Microbe 2014, 15, 526–536. [Google Scholar] [CrossRef] [Green Version]
  11. Borregaard, N. Neutrophils, from marrow to microbes. Immunity 2010, 33, 657–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  12. Casanova-Acebes, M.; Pitaval, C.; Weiss, L.A.; Nombela-Arrieta, C.; Chevre, R.; A-González, N.; Kunisaki, Y.; Zhang, D.; van Rooijen, N.; Silberstein, L.E.; et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 2013, 153, 1025–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Zhang, D.; Chen, G.; Manwani, D.; Mortha, A.; Xu, C.; Faith, J.J.; Burk, R.D.; Kunisaki, Y.; Jang, J.E.; Scheiermann, C.; et al. Neutrophil ageing is regulated by the microbiome. Nature 2015, 525, 528–532. [Google Scholar] [CrossRef] [PubMed]
  14. Woodfin, A.; Voisin, M.B.; Beyrau, M.; Colom, B.; Caille, D.; Diapouli, F.M.; Nash, G.B.; Chavakis, T.; Albelda, S.M.; Rainger, G.E.; et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 2011, 12, 761–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Nourshargh, S.; Renshaw, S.A.; Imhof, B.A. Reverse Migration of Neutrophils: Where, When, How, and Why? Trends Immunol. 2016, 37, 273–286. [Google Scholar] [CrossRef] [PubMed]
  16. Weiss, E.; Kretschmer, D. Formyl-Peptide Receptors in Infection, Inflammation, and Cancer. Trends Immunol. 2018, 39, 815–829. [Google Scholar] [CrossRef] [PubMed]
  17. Saeki, K.; Yokomizo, T. Identification, signaling, and functions of LTB4 receptors. Semin. Immunol. 2017, 33, 30–36. [Google Scholar] [CrossRef]
  18. Sadik, D.C.; Miyabe, Y.; Sezin, T.; Luster, A.D. The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Semin. Immunol. 2018, 37, 21–29. [Google Scholar] [CrossRef]
  19. Aleyd, E.; Heineke, M.H.; van Egmond, M. The era of the immunoglobulin A Fc receptor FcalphaRI; its function and potential as target in disease. Immunol. Rev. 2015, 268, 123–138. [Google Scholar] [CrossRef]
  20. Braile, M.; Cristinziano, L.; Marcella, S.; Varricchi, G.; Marone, G.; Modestino, L.; Ferrara, A.L.; de Ciuceis, A.; Scala, S.; Galdiero, M.R.; et al. LPS-mediated neutrophil VEGF-A release is modulated by cannabinoid receptor activation. J. Leukoc. Biol. 2021, 109, 621–631. [Google Scholar] [CrossRef]
  21. Staiano, I.R.; Loffredo, S.; Borriello, F.; Iannotti, F.A.; Piscitelli, F.; Orlando, P.; Secondo, A.; Granata, F.; Lepore, M.T.; Fiorelli, A.; et al. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors. J. Leukoc. Biol. 2016, 99, 531–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Futosi, K.; Fodor, S.; Mocsai, A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol. 2013, 17, 638–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Blazek, K.; Eames, H.L.; Weiss, M.; Byrne, A.J.; Perocheau, D.; Pease, J.E.; Doyle, S.; McCann, F.; Williams, R.O.; Udalova, I.A. IFN-lambda resolves inflammation via suppression of neutrophil infiltration and IL-1beta production. J. Exp. Med. 2015, 212, 845–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Espinosa, V.; Dutta, O.; McElrath, C.; Du, P.; Chang, Y.J.; Cicciarelli, B.; Pitler, A.; Whitehead, I.; Obar, J.J.; Durbin, J.E.; et al. Type III interferon is a critical regulator of innate antifungal immunity. Sci. Immunol. 2017, 2, eaan5357. [Google Scholar] [CrossRef] [Green Version]
  25. Broggi, A.; Tan, Y.; Granucci, F.; Zanoni, I. IFN-lambda suppresses intestinal inflammation by non-translational regulation of neutrophil function. Nat. Immunol. 2017, 18, 1084–1093. [Google Scholar] [CrossRef]
  26. Impellizzieri, D.; Ridder, F.; Raeber, M.E.; Egholm, C.; Woytschak, J.; Kolios, A.G.A.; Legler, D.F.; Boyman, O. IL-4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation. J. Allergy Clin. Immunol. 2019, 144, 267–279.e4. [Google Scholar] [CrossRef] [Green Version]
  27. Pillay, J.; den Braber, I.; Vrisekoop, N.; Kwast, L.M.; de Boer, R.J.; Borghans, J.A.; Tesselaar, K.; Koenderman, L. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 2010, 116, 625–627. [Google Scholar] [CrossRef]
  28. Colotta, F.; Re, F.; Polentarutti, N.; Sozzani, S.; Mantovani, A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 1992, 80, 2012–2020. [Google Scholar] [CrossRef] [Green Version]
  29. Schmidt, H.; Bastholt, L.; Geertsen, P.; Christensen, I.J.; Larsen, S.; Gehl, J.; von der Maase, H. Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: A prognostic model. Br. J. Cancer 2005, 93, 273–278. [Google Scholar] [CrossRef]
  30. Asaoka, T.; Miyamoto, A.; Maeda, S.; Tsujie, M.; Hama, N.; Yamamoto, K.; Miyake, M.; Haraguchi, N.; Nishikawa, K.; Hirao, M.; et al. Prognostic impact of preoperative NLR and CA19-9 in pancreatic cancer. Pancreatology 2016, 16, 434–440. [Google Scholar] [CrossRef]
  31. Sugiura, T.; Uesaka, K.; Kanemoto, H.; Mizuno, T.; Okamura, Y. Elevated preoperative neutrophil-to-lymphocyte ratio as a predictor of survival after gastroenterostomy in patients with advanced pancreatic adenocarcinoma. Ann. Surg. Oncol. 2013, 20, 4330–4337. [Google Scholar] [CrossRef] [PubMed]
  32. Mano, Y.; Shirabe, K.; Yamashita, Y.; Harimoto, N.; Tsujita, E.; Takeishi, K.; Aishima, S.; Ikegami, T.; Yoshizumi, T.; Yamanaka, T.; et al. Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after hepatectomy for hepatocellular carcinoma: A retrospective analysis. Ann. Surg. 2013, 258, 301–305. [Google Scholar] [CrossRef] [PubMed]
  33. Shaul, E.M.; Fridlender, Z.G. Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 2019, 16, 601–620. [Google Scholar] [CrossRef] [PubMed]
  34. Galdiero, R.M.; Garlanda, C.; Jaillon, S.; Marone, G.; Mantovani, A. Tumor associated macrophages and neutrophils in tumor progression. J. Cell Physiol. 2013, 228, 1404–1412. [Google Scholar] [CrossRef]
  35. Loffredo, S.; Borriello, F.; Iannone, R.; Ferrara, A.L.; Galdiero, M.R.; Gigantino, V.; Esposito, P.; Varricchi, G.; Lambeau, G.; Cassatella, M.A.; et al. Group V Secreted Phospholipase A2 Induces the Release of Proangiogenic and Antiangiogenic Factors by Human Neutrophils. Front. Immunol. 2017, 8, 443. [Google Scholar] [CrossRef] [Green Version]
  36. Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef]
  37. Fridlender, G.Z.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009, 16, 183–194. [Google Scholar] [CrossRef] [Green Version]
  38. Hubert, P.; Heitzmann, A.; Viel, S.; Nicolas, A.; Sastre-Garau, X.; Oppezzo, P.; Pritsch, O.; Osinaga, E.; Amigorena, S. Antibody-dependent cell cytotoxicity synapses form in mice during tumor-specific antibody immunotherapy. Cancer Res. 2011, 71, 5134–5143. [Google Scholar] [CrossRef] [Green Version]
  39. Beauvillain, C.; Delneste, Y.; Scotet, M.; Peres, A.; Gascan, H.; Guermonprez, P.; Barnaba, V.; Jeannin, P. Neutrophils efficiently cross-prime naive T cells in vivo. Blood 2007, 110, 2965–2973. [Google Scholar] [CrossRef]
  40. Van Gisbergen, K.P.; Geijtenbeek, T.B.; van Kooyk, Y. Close encounters of neutrophils and DCs. Trends Immunol. 2005, 26, 626–631. [Google Scholar] [CrossRef]
  41. Jablonska, J.; Leschner, S.; Westphal, K.; Lienenklaus, S.; Weiss, S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J. Clin. Investig. 2010, 120, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
  42. Granot, Z.; Fridlender, Z.G. Plasticity beyond cancer cells and the “immunosuppressive switch”. Cancer Res. 2015, 75, 4441–4445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Sionov, V.R.; Fridlender, Z.G.; Granot, Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron 2015, 8, 125–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Andzinski, L.; Kasnitz, N.; Stahnke, S.; Wu, C.F.; Gereke, M.; von Kockritz-Blickwede, M.; Schilling, B.; Brandau, S.; Weiss, S.; Jablonska, J. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int. J. Cancer 2016, 138, 1982–1993. [Google Scholar] [CrossRef]
  45. Schmielau, J.; Finn, O.J. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 2001, 61, 4756–4760. [Google Scholar]
  46. Brandau, S.; Trellakis, S.; Bruderek, K.; Schmaltz, D.; Steller, G.; Elian, M.; Suttmann, H.; Schenck, M.; Welling, J.; Zabel, P.; et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J. Leukoc. Biol. 2011, 89, 311–317. [Google Scholar] [CrossRef]
  47. Sagiv, Y.J.; Michaeli, J.; Assi, S.; Mishalian, I.; Kisos, H.; Levy, L.; Damti, P.; Lumbroso, D.; Polyansky, L.; Sionov, R.V.; et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015, 10, 562–573. [Google Scholar] [CrossRef] [Green Version]
  48. Lang, S.; Bruderek, K.; Kaspar, C.; Hoing, B.; Kanaan, O.; Dominas, N.; Hussain, T.; Droege, F.; Eyth, C.; Hadaschik, B.; et al. Clinical Relevance and Suppressive Capacity of Human Myeloid-Derived Suppressor Cell Subsets. Clin. Cancer Res. 2018, 24, 4834–4844. [Google Scholar] [CrossRef] [Green Version]
  49. Ley, K.; Hoffman, H.M.; Kubes, P.; Cassatella, M.A.; Zychlinsky, A.; Hedrick, C.C.; Catz, S.D. Neutrophils: New insights and open questions. Sci. Immunol. 2018, 3, eaat4579. [Google Scholar] [CrossRef] [Green Version]
  50. Xie, X.; Shi, Q.; Wu, P.; Zhang, X.; Kambara, H.; Su, J.; Yu, H.; Park, S.Y.; Guo, R.; Ren, Q.; et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 2020, 21, 1119–1133. [Google Scholar] [CrossRef]
  51. Veglia, F.; Hashimoto, A.; Dweep, H.; Sanseviero, E.; de Leo, A.; Tcyganov, E.; Kossenkov, A.; Mulligan, C.; Nam, B.; Masters, G.; et al. Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J. Exp. Med. 2021, 218. [Google Scholar] [CrossRef] [PubMed]
  52. Tak, T.; Wijten, P.; Heeres, M.; Pickkers, P.; Scholten, A.; Heck, A.J.R.; Vrisekoop, N.; Leenen, L.P.; Borghans, J.A.M.; Tesselaar, K.; et al. Human CD62L(dim) neutrophils identified as a separate subset by proteome profiling and in vivo pulse-chase labeling. Blood 2017, 129, 3476–3485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Zilionis, R.; Engblom, C.; Pfirschke, C.; Savova, V.; Zemmour, D.; Saatcioglu, H.D.; Krishnan, I.; Maroni, G.; Meyerovitz, C.V.; Kerwin, C.M.; et al. Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity 2019, 50, 1317–1334.e10. [Google Scholar] [CrossRef] [PubMed]
  54. Governa, V.; Trella, E.; Mele, V.; Tornillo, L.; Amicarella, F.; Cremonesi, E.; Muraro, M.G.; Xu, H.; Droeser, R.; Daster, S.R.; et al. The Interplay Between Neutrophils and CD8(+) T Cells Improves Survival in Human Colorectal Cancer. Clin. Cancer Res. 2017, 23, 3847–3858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  55. Granot, Z.; Henke, E.; Comen, E.A.; King, T.A.; Norton, L.; Benezra, R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 2011, 20, 300–314. [Google Scholar] [CrossRef] [Green Version]
  56. Hagerling, C.; Gonzalez, H.; Salari, K.; Wang, C.Y.; Lin, C.; Robles, I.; van Gogh, M.; Dejmek, A.; Jirstrom, K.; Werb, Z. Immune effector monocyte-neutrophil cooperation induced by the primary tumor prevents metastatic progression of breast cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 21704–21714. [Google Scholar] [CrossRef] [Green Version]
  57. Patel, S.; Fu, S.; Mastio, J.; Dominguez, G.A.; Purohit, A.; Kossenkov, A.; Lin, C.; Alicea-Torres, K.; Sehgal, M.; Nefedova, Y.; et al. Unique pattern of neutrophil migration and function during tumor progression. Nat. Immunol. 2018, 19, 1236–1247. [Google Scholar] [CrossRef]
  58. Wculek, K.S.; Bridgeman, V.L.; Peakman, F.; Malanchi, I. Early Neutrophil Responses to Chemical Carcinogenesis Shape Long-Term Lung Cancer Susceptibility. iScience 2020, 23, 101277. [Google Scholar] [CrossRef]
  59. Ballesteros, I.; Rubio-Ponce, A.; Genua, M.; Lusito, E.; Kwok, I.; Fernandez-Calvo, G.; Khoyratty, T.E.; van Grinsven, E.; Gonzalez-Hernandez, S.; Nicolas-Avila, J.A.; et al. Co-option of Neutrophil Fates by Tissue Environments. Cell 2020, 183, 1282–1297.e18. [Google Scholar] [CrossRef]
  60. Shaul, E.M.; Fridlender, Z.G. Cancer-related circulating and tumor-associated neutrophils—subtypes, sources and function. FEBS J. 2018, 285, 4316–4342. [Google Scholar] [CrossRef]
  61. Rayes, E.T.; Catena, R.; Lee, S.; Stawowczyk, M.; Joshi, N.; Fischbach, C.; Powell, C.A.; Dannenberg, A.J.; Altorki, N.K.; Gao, D.; et al. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc. Natl. Acad. Sci. USA 2015, 112, 16000–16005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  62. Faget, J.; Groeneveld, S.; Boivin, G.; Sankar, M.; Zangger, N.; Garcia, M.; Guex, N.; Zlobec, I.; Steiner, L.; Piersigilli, A.; et al. Neutrophils and Snail Orchestrate the Establishment of a Pro-tumor Microenvironment in Lung Cancer. Cell Rep. 2017, 21, 3190–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Szczerba, M.B.; Castro-Giner, F.; Vetter, M.; Krol, I.; Gkountela, S.; Landin, J.; Scheidmann, M.C.; Donato, C.; Scherrer, R.; Singer, J.; et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 2019, 566, 553–557. [Google Scholar] [CrossRef] [PubMed]
  64. Li, P.; Lu, M.; Shi, J.; Gong, Z.; Hua, L.; Li, Q.; Lim, B.; Zhang, X.H.; Chen, X.; Li, S.; et al. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat. Immunol. 2020, 21, 1444–1455. [Google Scholar] [CrossRef] [PubMed]
  65. Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020, 5. [Google Scholar] [CrossRef] [Green Version]
  66. Albrengues, J.; Shields, M.A.; Ng, D.; Park, C.G.; Ambrico, A.; Poindexter, M.E.; Upadhyay, P.; Uyeminami, D.L.; Pommier, A.; Kuttner, V.; et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018, 361. [Google Scholar] [CrossRef] [Green Version]
  67. Rayes, F.R.; Vourtzoumis, P.; Rjeily, M.B.; Seth, R.; Bourdeau, F.; Giannias, B.; Berube, J.; Huang, Y.H.; Rousseau, S.; Camilleri-Broet, S.; et al. Neutrophil Extracellular Trap-Associated CEACAM1 as a Putative Therapeutic Target to Prevent Metastatic Progression of Colon Carcinoma. J. Immunol. 2020, 204, 2285–2294. [Google Scholar] [CrossRef]
  68. Teijeira, A.; Garasa, S.; Gato, M.; Alfaro, C.; Migueliz, I.; Cirella, A.; de Andrea, C.; Ochoa, M.C.; Otano, I.; Etxeberria, I.; et al. CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity 2020, 52, 856–871.e8. [Google Scholar] [CrossRef]
  69. Demers, M.; Wagner, D.D. NETosis: A new factor in tumor progression and cancer-associated thrombosis. Semin Thromb. Hemost. 2014, 40, 277–283. [Google Scholar] [CrossRef] [Green Version]
  70. Mauracher, M.L.; Posch, F.; Martinod, K.; Grilz, E.; Daullary, T.; Hell, L.; Brostjan, C.; Zielinski, C.; Ay, C.; Wagner, D.D.; et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J. Thromb. Haemost. 2018, 16, 508–518. [Google Scholar] [CrossRef]
  71. Pieterse, E.; Rother, N.; Garsen, M.; Hofstra, J.M.; Satchell, S.C.; Hoffmann, M.; Loeven, M.A.; Knaapen, H.K.; van der Heijden, O.W.H.; Berden, J.H.M.; et al. Neutrophil Extracellular Traps Drive Endothelial-to-Mesenchymal Transition. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1371–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Zhu, T.; Zou, X.; Yang, C.; Li, L.; Wang, B.; Li, R.; Li, H.; Xu, Z.; Huang, D.; Wu, Q. Neutrophil extracellular traps promote gastric cancer metastasis by inducing epithelialmesenchymal transition. Int. J. Mol. Med. 2021, 48. [Google Scholar] [CrossRef] [PubMed]
  73. Cristinziano, L.; Modestino, L.; Loffredo, S.; Varricchi, G.; Braile, M.; Ferrara, A.L.; de Paulis, A.; Antonelli, A.; Marone, G.; Galdiero, M.R. Anaplastic Thyroid Cancer Cells Induce the Release of Mitochondrial Extracellular DNA Traps by Viable Neutrophils. J. Immunol. 2020, 204, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
  74. Cools-Lartigue, J.; Spicer, J.; McDonald, B.; Gowing, S.; Chow, S.; Giannias, B.; Bourdeau, F.; Kubes, P.; Ferri, L. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Investig. 2013. [Google Scholar] [CrossRef]
  75. Park, J.; Wysocki, R.W.; Amoozgar, Z.; Maiorino, L.; Fein, M.R.; Jorns, J.; Schott, A.F.; Kinugasa-Katayama, Y.; Lee, Y.; Won, N.H.; et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 2016, 8, 361ra138. [Google Scholar] [CrossRef] [Green Version]
  76. Miller-Ocuin, L.J.; Liang, X.; Boone, B.A.; Doerfler, W.R.; Singhi, A.D.; Tang, D.; Kang, R.; Lotze, M.T.; Zeh, H.J., 3rd. DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth. Oncoimmunology 2019, 8, e1605822. [Google Scholar] [CrossRef]
  77. Nie, M.; Yang, L.; Bi, X.; Wang, Y.; Sun, P.; Yang, H.; Liu, P.; Li, Z.; Xia, Y.; Jiang, W. Neutrophil Extracellular Traps Induced by IL8 Promote Diffuse Large B-cell Lymphoma Progression via the TLR9 Signaling. Clin. Cancer Res. 2019, 25, 1867–1879. [Google Scholar] [CrossRef]
  78. Yang, L.; Liu, L.; Zhang, R.; Hong, J.; Wang, Y.; Wang, J.; Zuo, J.; Zhang, J.; Chen, J.; Hao, H. IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J. Cancer 2020, 11, 4384–4396. [Google Scholar] [CrossRef]
  79. Yang, L.; Liu, Q.; Zhang, X.; Liu, X.; Zhou, B.; Chen, J.; Huang, D.; Li, J.; Li, H.; Chen, F.; et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 2020, 583, 133–138. [Google Scholar] [CrossRef]
  80. Martins-Cardoso, K.; Almeida, V.H.; Bagri, K.M.; Rossi, M.I.D.; Mermelstein, C.S.; Konig, S.; Monteiro, R.Q. Neutrophil Extracellular Traps (NETs) Promote Pro-Metastatic Phenotype in Human Breast Cancer Cells through Epithelial-Mesenchymal Transition. Cancers (Basel) 2020, 12, 1542. [Google Scholar] [CrossRef]
  81. Demers, M.; Wong, S.L.; Martinod, K.; Gallant, M.; Cabral, J.E.; Wang, Y.; Wagner, D.D. Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 2016, 5, e1134073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  82. Niu, Z.; Tang, W.; Liu, T.; Xu, P.; Zhu, D.; Ji, M.; Huang, W.; Ren, L.; Wei, Y.; Xu, J. Cell-free DNA derived from cancer cells facilitates tumor malignancy through Toll-like receptor 9 signaling-triggered interleukin-8 secretion in colorectal cancer. Acta Biochim. Biophys. Sin. (Shanghai) 2018, 50, 1007–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  83. Scapini, P.; Calzetti, F.; Cassatella, M.A. On the detection of neutrophil-derived vascular endothelial growth factor (VEGF). J. Immunol. Methods 1999, 232, 121–129. [Google Scholar] [CrossRef]
  84. Webb, J.N.; Myers, C.R.; Watson, C.J.; Bottomley, M.J.; Brenchley, P.E. Activated human neutrophils express vascular endothelial growth factor (VEGF). Cytokine 1998, 10, 254–257. [Google Scholar] [CrossRef] [PubMed]
  85. Aldabbous, L.; Abdul-Salam, V.; McKinnon, T.; Duluc, L.; Pepke-Zaba, J.; Southwood, M.; Ainscough, A.J.; Hadinnapola, C.; Wilkins, M.R.; Toshner, M.; et al. Neutrophil Extracellular Traps Promote Angiogenesis: Evidence From Vascular Pathology in Pulmonary Hypertension. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2078–2087. [Google Scholar] [CrossRef] [Green Version]
  86. Lavoie, S.S.; Dumas, E.; Vulesevic, B.; Neagoe, P.E.; White, M.; Sirois, M.G. Synthesis of Human Neutrophil Extracellular Traps Contributes to Angiopoietin-Mediated In Vitro Proinflammatory and Proangiogenic Activities. J. Immunol. 2018, 200, 3801–3813. [Google Scholar] [CrossRef] [PubMed]
  87. Grenier, A.; Chollet-Martin, S.; Crestani, B.; Delarche, C.; el Benna, J.; Boutten, A.; Andrieu, V.; Durand, G.; Gougerot-Pocidalo, M.A.; Aubier, M.; et al. Presence of a mobilizable intracellular pool of hepatocyte growth factor in human polymorphonuclear neutrophils. Blood 2002, 99, 2997–3004. [Google Scholar] [CrossRef] [Green Version]
  88. Scapini, P.; Morini, M.; Tecchio, C.; Minghelli, S.; di Carlo, E.; Tanghetti, E.; Albini, A.; Lowell, C.; Berton, G.; Noonan, D.M.; et al. CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J. Immunol. 2004, 172, 5034–5040. [Google Scholar] [CrossRef] [Green Version]
  89. Najmeh, S.; Cools-Lartigue, J.; Rayes, R.F.; Gowing, S.; Vourtzoumis, P.; Bourdeau, F.; Giannias, B.; Berube, J.; Rousseau, S.; Ferri, L.E.; et al. Neutrophil extracellular traps sequester circulating tumor cells via beta1-integrin mediated interactions. Int. J. Cancer 2017, 140, 2321–2330. [Google Scholar] [CrossRef] [Green Version]
  90. Wen, F.; Shen, A.; Choi, A.; Gerner, E.W.; Shi, J. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res. 2013, 73, 4256–4266. [Google Scholar] [CrossRef] [Green Version]
  91. Rayes, F.R.; Mouhanna, J.G.; Nicolau, I.; Bourdeau, F.; Giannias, B.; Rousseau, S.; Quail, D.; Walsh, L.; Sangwan, V.; Bertos, N.; et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight 2019, 5, e128008. [Google Scholar] [CrossRef] [Green Version]
  92. Milette, S.; Quail, D.F.; Spicer, J.D. Neutrophil DNA Webs Untangled. Cancer Cell 2020, 38, 164–166. [Google Scholar] [CrossRef]
  93. Demers, M.; Krause, D.S.; Schatzberg, D.; Martinod, K.; Voorhees, J.R.; Fuchs, T.A.; Scadden, D.T.; Wagner, D.D. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl. Acad. Sci. USA 2012, 109, 13076–13081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Razak, A.N.; Elaskalani, O.; Metharom, P. Pancreatic Cancer-Induced Neutrophil Extracellular Traps: A Potential Contributor to Cancer-Associated Thrombosis. Int. J. Mol. Sci. 2017, 18. [Google Scholar]
  95. Pertiwi, R.K.; de Boer, O.J.; Mackaaij, C.; Pabittei, D.R.; de Winter, R.J.; Li, X.; van der Wal, A.C. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis. J. Pathol. 2019, 247, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Demers, M.; Wagner, D.D. Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology 2013, 2, e22946. [Google Scholar] [CrossRef] [Green Version]
  97. Maugeri, N.; Campana, L.; Gavina, M.; Covino, C.; de Metrio, M.; Panciroli, C.; Maiuri, L.; Maseri, A.; D’Angelo, A.; Bianchi, M.E.; et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 2014, 12, 2074–2088. [Google Scholar] [CrossRef]
  98. Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D., Jr.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef] [Green Version]
  99. McDonald, B.; Davis, R.P.; Kim, S.J.; Tse, M.; Esmon, C.T.; Kolaczkowska, E.; Jenne, C.N. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017, 129, 1357–1367. [Google Scholar] [CrossRef] [Green Version]
  100. Wolach, O.; Sellar, R.S.; Martinod, K.; Cherpokova, D.; McConkey, M.; Chappell, R.J.; Silver, A.J.; Adams, D.; Castellano, C.A.; Schneider, R.K.; et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
  101. Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473, 298–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  102. Taylor, M.; Coleman, R.L.; Sood, A.K. The role of angiogenesis in cancer. Target. Ther. Transl. Cancer Res. 2015, 64–71. [Google Scholar] [CrossRef]
  103. Fagiani, E.; Christofori, G. Angiopoietins in angiogenesis. Cancer Lett. 2013, 328, 18–26. [Google Scholar] [CrossRef] [PubMed]
  104. Karamysheva, A.F. Mechanisms of angiogenesis. Biochemistry (Mosc) 2008, 73, 751–762. [Google Scholar] [CrossRef] [PubMed]
  105. Bupathi, M.; Kaseb, A.; Janku, F. Angiopoietin 2 as a therapeutic target in hepatocellular carcinoma treatment: Current perspectives. Onco Targets Ther 2014, 7, 1927–1932. [Google Scholar] [PubMed] [Green Version]
  106. Bartoszewska, S.; Collawn, J.F. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell. Mol. Biol. Lett. 2020, 25, 18. [Google Scholar] [CrossRef] [Green Version]
  107. Rajabi, M.; Mousa, S.A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef] [Green Version]
  108. Leplina, O.; Smetanenko, E.; Tikhonova, M.; Batorov, E.; Tyrinova, T.; Pasman, N.; Ostanin, A.; Chernykh, E. Binding of the placental growth factor to VEGF receptor type 1 modulates human T cell functions. J. Leukoc. Biol. 2020, 108, 1013–1024. [Google Scholar] [CrossRef]
  109. Palma, D.M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 2017, 17, 457–474. [Google Scholar] [CrossRef]
  110. Marcella, S.; Petraroli, A.; Braile, M.; Parente, R.; Ferrara, A.L.; Galdiero, M.R.; Modestino, L.; Cristinziano, L.; Rossi, F.W.; Varricchi, G.; et al. Vascular endothelial growth factors and angiopoietins as new players in mastocytosis. Clin. Exp. Med. 2021, 21, 415–427. [Google Scholar] [CrossRef]
  111. Song, E.; Mao, T.; Dong, H.; Boisserand, L.S.B.; Antila, S.; Bosenberg, M.; Alitalo, K.; Thomas, J.L.; Iwasaki, A. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 2020, 577, 689–694. [Google Scholar] [CrossRef] [PubMed]
  112. Cristinziano, L.; Poto, R.; Criscuolo, G.; Ferrara, A.L.; Galdiero, M.R.; Modestino, L.; Loffredo, S.; de Paulis, A.; Marone, G.; Spadaro, G.; et al. IL-33 and Superantigenic Activation of Human Lung Mast Cells Induce the Release of Angiogenic and Lymphangiogenic Factors. Cells 2021, 10, 145. [Google Scholar] [CrossRef] [PubMed]
  113. Varricchi, G.; Granata, F.; Loffredo, S.; Genovese, A.; Marone, G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J. Am. Acad. Dermatol. 2015, 73, 144–153. [Google Scholar] [CrossRef] [PubMed]
  114. Saharinen, P.; Eklund, L.; Alitalo, K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat. Rev. Drug Discov. 2017, 16, 635–661. [Google Scholar] [CrossRef] [PubMed]
  115. Thomas, M.; Augustin, H.G. The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 2009, 12, 125–137. [Google Scholar] [CrossRef]
  116. Fiedler, U.; Scharpfenecker, M.; Koidl, S.; Hegen, A.; Grunow, V.; Schmidt, J.M.; Kriz, W.; Thurston, G.; Augustin, H.G. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 2004, 103, 4150–4156. [Google Scholar] [CrossRef]
  117. Thurston, G.; Daly, C. The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb. Perspect Med. 2012, 2, a006550. [Google Scholar] [CrossRef] [Green Version]
  118. Eklund, L.; Saharinen, P. Angiopoietin signaling in the vasculature. Exp. Cell Res. 2013, 319, 1271–1280. [Google Scholar] [CrossRef]
  119. Varricchi, G.; Loffredo, S.; Bencivenga, L.; Ferrara, A.L.; Gambino, G.; Ferrara, N.; de Paulis, A.; Marone, G.; Rengo, G. Angiopoietins, Vascular Endothelial Growth Factors and Secretory Phospholipase A2 in Ischemic and Non-Ischemic Heart Failure. J. Clin. Med. 2020, 9, 1928. [Google Scholar] [CrossRef]
  120. Varricchi, G.; Loffredo, S.; Galdiero, M.R.; Marone, G.; Cristinziano, L.; Granata, F. Innate effector cells in angiogenesis and lymphangiogenesis. Curr. Opin. Immunol. 2018, 53, 152–160. [Google Scholar] [CrossRef]
  121. Parikh, S.M. Angiopoietins and Tie2 in vascular inflammation. Curr. Opin. Hematol. 2017, 24, 432–438. [Google Scholar] [CrossRef]
  122. Kim, M.; Allen, B.; Korhonen, E.A.; Nitschke, M.; Yang, H.W.; Baluk, P.; Saharinen, P.; Alitalo, K.; Daly, C.; Thurston, G.; et al. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J. Clin. Investig. 2016, 126, 3511–3525. [Google Scholar] [CrossRef] [PubMed]
  123. Akwii, G.R.; Sajib, M.S.; Zahra, F.T.; Mikelis, C.M. Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells 2019, 8, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Tecchio, C.; Cassatella, M.A. Neutrophil-derived cytokines involved in physiological and pathological angiogenesis. Chem. Immunol. Allergy 2014, 99, 123–137. [Google Scholar] [PubMed]
  125. Gaudry, M.; Bregerie, O.; Andrieu, V.; el Benna, J.; Pocidalo, M.A.; Hakim, J. Intracellular pool of vascular endothelial growth factor in human neutrophils. Blood 1997, 90, 4153–4161. [Google Scholar] [CrossRef] [PubMed]
  126. Neagoe, E.P.; Brkovic, A.; Hajjar, F.; Sirois, M.G. Expression and release of angiopoietin-1 from human neutrophils: Intracellular mechanisms. Growth Factors 2009, 27, 335–344. [Google Scholar] [CrossRef] [PubMed]
  127. McCourt, M.; Wang, J.H.; Sookhai, S.; Redmond, H.P. Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch. Surg. 1999, 134, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
  128. Ohki, Y.; Heissig, B.; Sato, Y.; Akiyama, H.; Zhu, Z.; Hicklin, D.J.; Shimada, K.; Ogawa, H.; Daida, H.; Hattori, K.; et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J. 2005, 19, 2005–2007. [Google Scholar] [CrossRef]
  129. Harper, J.S.; Bates, D.O. VEGF-A splicing: The key to anti-angiogenic therapeutics? Nat. Rev. Cancer 2008, 8, 880–887. [Google Scholar] [CrossRef] [Green Version]
  130. Ferrara, N.; Henzel, W.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 1989, 161, 851–858. [Google Scholar] [CrossRef]
  131. Ferrara, N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev. 2004, 25, 581–611. [Google Scholar] [CrossRef] [PubMed]
  132. Peiris-Pages, M. The role of VEGF 165b in pathophysiology. Cell Adh. Migr. 2012, 6, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  133. Bates, O.D.; Cui, T.G.; Doughty, J.M.; Winkler, M.; Sugiono, M.; Shields, J.D.; Peat, D.; Gillatt, D.; Harper, S.J. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 2002, 62, 4123–4131. [Google Scholar] [PubMed]
  134. Bates, O.D.; Mavrou, A.; Qiu, Y.; Carter, J.G.; Hamdollah-Zadeh, M.; Barratt, S.; Gammons, M.V.; Millar, A.B.; Salmon, A.H.; Oltean, S.; et al. Detection of VEGF-A(xxx)b isoforms in human tissues. PLoS ONE 2013, 8, e68399. [Google Scholar] [CrossRef] [Green Version]
  135. Manetti, M.; Guiducci, S.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Impaired angiogenesis in systemic sclerosis: The emerging role of the antiangiogenic VEGF(165)b splice variant. Trends Cardiovasc. Med. 2011, 21, 204–210. [Google Scholar] [CrossRef]
  136. Manetti, M.; Guiducci, S.; Romano, E.; Ceccarelli, C.; Bellando-Randone, S.; Conforti, M.L.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circ. Res. 2011, 109, e14–e26. [Google Scholar] [CrossRef] [Green Version]
  137. Kikuchi, R.; Nakamura, K.; MacLauchlan, S.; Ngo, D.T.; Shimizu, I.; Fuster, J.J.; Katanasaka, Y.; Yoshida, S.; Qiu, Y.; Yamaguchi, T.P.; et al. An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. Nat. Med. 2014, 20, 1464–1471. [Google Scholar] [CrossRef] [Green Version]
  138. Ardi, V.C.; Kupriyanova, T.A.; Deryugina, E.I.; Quigley, J.P. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc. Natl. Acad. Sci. USA 2007, 104, 20262–20267. [Google Scholar] [CrossRef] [Green Version]
  139. Kuang, D.M.; Zhao, Q.Y.; Wu, Y.; Peng, C.; Wang, J.N.; Xu, Z.Q.; Yin, X.Y.; Zheng, L.M. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J. Hepatol. 2011, 54, 948–955. [Google Scholar] [CrossRef]
  140. Sainz-Jaspeado, M.; Claesson-Welsh, L. Cytokines regulating lymphangiogenesis. Curr. Opin. Immunol. 2018, 53, 58–63. [Google Scholar] [CrossRef]
  141. Zhang, L.; Zhou, F.; Han, W.; Shen, B.; Luo, J.; Shibuya, M.; He, Y. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 2010, 20, 1319–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  142. Granata, F.; Frattini, A.; Loffredo, S.; Staiano, R.I.; Petraroli, A.; Ribatti, D.; Oslund, R.; Gelb, M.H.; Lambeau, G.; Marone, G.; et al. Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. J. Immunol. 2010, 184, 5232–5241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  143. Braile, M.; Fiorelli, A.; Sorriento, D.; di Crescenzo, R.M.; Galdiero, M.R.; Marone, G.; Santini, M.; Varricchi, G.; Loffredo, S. Human Lung-Resident Macrophages Express and Are Targets of Thymic Stromal Lymphopoietin in the Tumor Microenvironment. Cells 2021, 10, 2012. [Google Scholar] [CrossRef] [PubMed]
  144. Marone, G.; Rossi, F.W.; Pecoraro, A.; Pucino, V.; Criscuolo, G.; Paulis, A.; Spadaro, G.; Varricchi, G. HIV gp120 Induces the Release of Proinflammatory, Angiogenic, and Lymphangiogenic Factors from Human Lung Mast Cells. Vaccines (Basel) 2020, 8, 208. [Google Scholar] [CrossRef] [PubMed]
  145. Martinelli, S.; Urosevic, M.; Daryadel, A.; Oberholzer, P.A.; Baumann, C.; Fey, M.F.; Dummer, R.; Simon, H.U.; Yousefi, S. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J. Biol. Chem. 2004, 279, 44123–44132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  146. Amini, P.; Stojkov, D.; Felser, A.; Jackson, C.B.; Courage, C.; Schaller, A.; Gelman, L.; Soriano, M.E.; Nuoffer, J.M.; Scorrano, L.; et al. Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production. Nat. Commun. 2018, 9, 2958. [Google Scholar] [CrossRef] [Green Version]
  147. Pilsczek, F.H.; Salina, D.; Poon, K.K.; Fahey, C.; Yipp, B.G.; Sibley, C.D.; Robbins, S.M.; Green, F.H.; Surette, M.G.; Sugai, M.; et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol. 2010, 185, 7413–7425. [Google Scholar] [CrossRef] [Green Version]
  148. Robledo-Avila, F.H.; Ruiz-Rosado, J.D.; Brockman, K.L.; Kopp, B.T.; Amer, A.O.; McCoy, K.; Bakaletz, L.O.; Partida-Sanchez, S. Dysregulated Calcium Homeostasis in Cystic Fibrosis Neutrophils Leads to Deficient Antimicrobial Responses. J. Immunol. 2018, 201, 2016–2027. [Google Scholar] [CrossRef]
  149. Yousefi, S.; Gold, J.A.; Andina, N.; Lee, J.J.; Kelly, A.M.; Kozlowski, E.; Schmid, I.; Straumann, A.; Reichenbach, J.; Gleich, G.J.; et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 2008, 14, 949–953. [Google Scholar] [CrossRef]
  150. Muniz, V.S.; Silva, J.C.; Braga, Y.A.V.; Melo, R.C.N.; Ueki, S.; Takeda, M.; Hebisawa, A.; Asano, K.; Figueiredo, R.T.; Neves, J.S. Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J. Allergy Clin. Immunol. 2018, 141, 571–585.e7. [Google Scholar] [CrossRef] [Green Version]
  151. Silva, J.C.; Rodrigues, N.C.; Thompson-Souza, G.A.; Muniz, V.S.; Neves, J.S.; Figueiredo, R.T. Mac-1 triggers neutrophil DNA extracellular trap formation to Aspergillus fumigatus independently of PAD4 histone citrullination. J. Leukoc. Biol. 2020, 107, 69–83. [Google Scholar] [CrossRef] [PubMed]
  152. Sivanandham, R.; Brocca-Cofano, E.; Krampe, N.; Falwell, E.; Venkatraman, S.M.K.; Ribeiro, R.M.; Apetrei, C.; Pandrea, I. Neutrophil extracellular trap production contributes to pathogenesis in SIV-infected nonhuman primates. J. Clin. Investig. 2018, 128, 5178–5183. [Google Scholar] [CrossRef] [PubMed]
  153. Yazdani, H.O.; Roy, E.; Comerci, A.J.; van der Windt, D.J.; Zhang, H.J.; Huang, H.; Loughran, P.; Shiva, S.; Geller, D.A.; Bartlett, D.L.; et al. Neutrophil Extracellular Traps Drive Mitochondrial Homeostasis in Tumors to Augment Growth. Cancer Res. 2019, 79, 5626–5639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  154. Saitoh, T.; Komano, J.; Saitoh, Y.; Misawa, T.; Takahama, M.; Kozaki, T.; Uehata, T.; Iwasaki, H.; Omori, H.; Yamaoka, S.; et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 2012, 12, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  155. Takei, H.; Araki, A.; Watanabe, H.; Ichinose, A.; Sendo, F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J. Leukoc. Biol. 1996, 59, 229–240. [Google Scholar] [CrossRef] [PubMed]
  156. Caielli, S.; Athale, S.; Domic, B.; Murat, E.; Chandra, M.; Banchereau, R.; Baisch, J.; Phelps, K.; Clayton, S.; Gong, M.; et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 2016, 213, 697–713. [Google Scholar] [CrossRef]
  157. Urban, C.F.; Reichard, U.; Brinkmann, V.; Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 2006, 8, 668–676. [Google Scholar] [CrossRef]
  158. Raftery, M.J.; Lalwani, P.; Krautkrmer, E.; Peters, T.; Scharffetter-Kochanek, K.; Kruger, R.; Hofmann, J.; Seeger, K.; Kruger, D.H.; Schonrich, G. beta2 integrin mediates hantavirus-induced release of neutrophil extracellular traps. J. Exp. Med. 2014, 211, 1485–1497. [Google Scholar] [CrossRef] [PubMed]
  159. Ben-Smith, A.; Dove, S.K.; Martin, A.; Wakelam, M.J.; Savage, C.O. Antineutrophil cytoplasm autoantibodies from patients with systemic vasculitis activate neutrophils through distinct signaling cascades: Comparison with conventional Fcgamma receptor ligation. Blood 2001, 98, 1448–1455. [Google Scholar] [CrossRef] [Green Version]
  160. Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007, 13, 463–469. [Google Scholar] [CrossRef] [PubMed]
  161. Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007, 176, 231–241. [Google Scholar] [CrossRef] [PubMed]
  162. Parker, H.; Dragunow, M.; Hampton, M.B.; Kettle, A.J.; Winterbourn, C.C. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J. Leukoc. Biol. 2012, 92, 841–849. [Google Scholar] [CrossRef] [PubMed]
  163. Douda, D.N.; Yip, L.; Khan, M.A.; Grasemann, H.; Palaniyar, N. Akt is essential to induce NADPH-dependent NETosis and to switch the neutrophil death to apoptosis. Blood 2014, 123, 597–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  164. Keshari, R.S.; Verma, A.; Barthwal, M.K.; Dikshit, M. Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J. Cell. Biochem. 2013, 114, 532–540. [Google Scholar] [CrossRef]
  165. Yoo, D.G.; Winn, M.; Pang, L.; Moskowitz, S.M.; Malech, H.L.; Leto, T.L.; Rada, B. Release of cystic fibrosis airway inflammatory markers from Pseudomonas aeruginosa-stimulated human neutrophils involves NADPH oxidase-dependent extracellular DNA trap formation. J. Immunol. 2014, 192, 4728–4738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  166. Remijsen, Q.; Berghe, T.V.; Wirawan, E.; Asselbergh, B.; Parthoens, E.; de Rycke, R.; Noppen, S.; Delforge, M.; Willems, J.; Vandenabeele, P. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011, 21, 290–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  167. Hakkim, A.; Fuchs, T.A.; Martinez, N.E.; Hess, S.; Prinz, H.; Zychlinsky, A.; Waldmann, H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 2011, 7, 75–77. [Google Scholar] [CrossRef]
  168. Metzler, K.D.; Goosmann, C.; Lubojemska, A.; Zychlinsky, A.; Papayannopoulos, V. A Myeloperoxidase-Containing Complex Regulates Neutrophil Elastase Release and Actin Dynamics during NETosis. Cell Rep. 2014, 8, 883–896. [Google Scholar] [CrossRef] [Green Version]
  169. Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 2010, 191, 677–691. [Google Scholar] [CrossRef] [Green Version]
  170. Neeli, I.; Dwivedi, N.; Khan, S.; Radic, M. Regulation of extracellular chromatin release from neutrophils. J. Innate Immun. 2009, 1, 194–201. [Google Scholar] [CrossRef]
  171. Wang, Y.; Li, M.; Stadler, S.; Correll, S.; Li, P.; Wang, D.; Hayama, R.; Leonelli, L.; Han, H.; Grigoryev, S.A.; et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 2009, 184, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  172. Brinkmann, V. Neutrophil Extracellular Traps in the Second Decade. J. Innate Immun. 2018, 10, 414–421. [Google Scholar] [CrossRef] [PubMed]
  173. Yipp, B.G.; Kubes, P. NETosis: How vital is it? Blood 2013, 122, 2784–2794. [Google Scholar] [CrossRef] [PubMed]
  174. Jorch, S.K.; Kubes, P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 2017, 23, 279–287. [Google Scholar] [CrossRef] [PubMed]
  175. Stojkov, D.; Amini, P.; Oberson, K.; Sokollik, C.; Duppenthaler, A.; Simon, H.U.; Yousefi, S. ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation. J. Cell Biol. 2017, 216, 4073–4090. [Google Scholar] [CrossRef] [PubMed]
  176. Sendo, F.; Tsuchida, H.; Takeda, Y.; Gon, S.; Takei, H.; Kato, T.; Hachiya, O.; Watanabe, H. Regulation of neutrophil apoptosis--its biological significance in inflammation and the immune response. Hum. Cell 1996, 9, 215–222. [Google Scholar]
  177. Yipp, B.G.; Petri, B.; Salina, D.; Jenne, C.N.; Scott, B.N.; Zbytnuik, L.D.; Pittman, K.; Asaduzzaman, M.; Wu, K.; Meijndert, H.C.; et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 2012, 18, 1386–1393. [Google Scholar] [CrossRef] [Green Version]
  178. Garcia-Romo, G.S.; Caielli, S.; Vega, B.; Connolly, J.; Allantaz, F.; Xu, Z.; Punaro, M.; Baisch, J.; Guiducci, C.; Coffman, R.L.; et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 2011, 3, 73ra20. [Google Scholar] [CrossRef] [Green Version]
  179. Hakkim, A.; Furnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 2010, 107, 9813–9818. [Google Scholar] [CrossRef] [Green Version]
  180. Van den Hoogen, L.L.; van der Linden, M.; Meyaard, L.; Fritsch-Stork, R.D.E.; van Roon, J.A.; Radstake, T.R. Neutrophil extracellular traps and low-density granulocytes are associated with the interferon signature in systemic lupus erythematosus, but not in antiphospholipid syndrome. Ann. Rheum. Dis. 2020, 79, e135. [Google Scholar] [CrossRef] [Green Version]
  181. Xiao, F.; Jiang, Y.; Wang, X.; Jiang, W.; Wang, L.; Zhuang, X.; Zheng, C.; Ni, Y.; Chen, L. NETosis may play a role in the pathogenesis of Hashimoto’s thyroiditis. Int. J. Clin. Exp. Pathol. 2018, 11, 537–547. [Google Scholar] [PubMed]
  182. Chen, X.; Li, Y.; Qin, L.; He, R.; Hu, C. Neutrophil Extracellular Trapping Network Promotes the Pathogenesis of Neutrophil-associated Asthma through Macrophages. Immunol. Investig. 2020, 1–18. [Google Scholar] [CrossRef] [PubMed]
  183. Dworski, R.; Simon, H.U.; Hoskins, A.; Yousefi, S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J. Allergy Clin. Immunol. 2011, 127, 1260–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  184. Hudock, K.M.; Collins, M.S.; Imbrogno, M.; Snowball, J.; Kramer, E.L.; Brewington, J.J.; Gollomp, K.; McCarthy, C.; Ostmann, A.J.; Kopras, E.J.; et al. Neutrophil extracellular traps activate IL-8 and IL-1 expression in human bronchial epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L137–L147. [Google Scholar] [CrossRef]
  185. Lachowicz-Scroggins, M.E.; Dunican, E.M.; Charbit, A.R.; Raymond, W.; Looney, M.R.; Peters, M.C.; Gordon, E.D.; Woodruff, P.G.; Lefrancais, E.; Phillips, B.R.; et al. Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 1076–1085. [Google Scholar] [CrossRef]
  186. Morshed, M.; Hlushchuk, R.; Simon, D.; Walls, A.F.; Obata-Ninomiya, K.; Karasuyama, H.; Djonov, V.; Eggel, A.; Kaufmann, T.; Simon, H.U.; et al. NADPH oxidase-independent formation of extracellular DNA traps by basophils. J. Immunol. 2014, 192, 5314–5323. [Google Scholar] [CrossRef] [Green Version]
  187. Toussaint, M.; Jackson, D.J.; Swieboda, D.; Guedan, A.; Tsourouktsoglou, T.D.; Ching, Y.M.; Radermecker, C.; Makrinioti, H.; Aniscenko, J.; Bartlett, N.W.; et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat. Med. 2017, 23, 681–691. [Google Scholar] [CrossRef] [Green Version]
  188. Wan, R.; Jiang, J.; Hu, C.; Chen, X.; Chen, C.; Zhao, B.; Hu, X.; Zheng, Z.; Li, Y. Neutrophil extracellular traps amplify neutrophil recruitment and inflammation in neutrophilic asthma by stimulating the airway epithelial cells to activate the TLR4/ NF-kappaB pathway and secrete chemokines. Aging (Albany NY) 2020, 12, 16820–16836. [Google Scholar] [CrossRef]
  189. Varricchi, G.; Modestino, L.; Poto, R.; Cristinziano, L.; Gentile, L.; Postiglione, L.; Spadaro, G.; Galdiero, M.R. Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin. Exp. Med. 2021. [Google Scholar] [CrossRef]
  190. Hoshino, M.; Takahashi, M.; Aoike, N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J. Allergy Clin. Immunol. 2001, 107, 295–301. [Google Scholar] [CrossRef]
  191. Chetta, A.; Zanini, A.; Foresi, A.; del Donno, M.; Castagnaro, A.; D’Ippolito, R.; Baraldo, S.; Testi, R.; Saetta, M.; Olivieri, D. Vascular component of airway remodeling in asthma is reduced by high dose of fluticasone. Am. J. Respir. Crit. Care Med. 2003, 167, 751–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  192. An, Z.; Li, J.; Yu, J.; Wang, X.; Gao, H.; Zhang, W.; Wei, Z.; Zhang, J.; Zhang, Y.; Zhao, J.; et al. Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-kappaB signaling in macrophages. Cell Cycle 2019, 18, 2928–2938. [Google Scholar] [CrossRef] [PubMed]
  193. Novotny, J.; Oberdieck, P.; Titova, A.; Pelisek, J.; Chandraratne, S.; Nicol, P.; Hapfelmeier, A.; Joner, M.; Maegdefessel, L.; Poppert, H.; et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology 2020, 94, e2346–e2360. [Google Scholar] [CrossRef] [PubMed]
  194. Varricchi, G.; Marone, G.; Kovanen, P.T. Cardiac Mast Cells: Underappreciated Immune Cells in Cardiovascular Homeostasis and Disease. Trends Immunol. 2020, 41, 734–746. [Google Scholar] [PubMed]
  195. Faiotto, V.B.; Franci, D.; Hubert, R.M.E.; de Souza, G.R.; Fiusa, M.M.L.; Hounkpe, B.W.; Santos, T.M.; Carvalho-Filho, M.A.; de Paula, E.V. Circulating levels of the angiogenesis mediators endoglin, HB-EGF, BMP-9 and FGF-2 in patients with severe sepsis and septic shock. J. Crit. Care 2017, 42, 162–167. [Google Scholar] [CrossRef] [PubMed]
  196. Jimenez-Alcazar, M.; Rangaswamy, C.; Panda, R.; Bitterling, J.; Simsek, Y.J.; Long, A.T.; Bilyy, R.; Krenn, V.; Renne, C.; Renne, T.; et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 2017, 358, 1202–1206. [Google Scholar] [CrossRef] [Green Version]
  197. Al-Haidari, A.A.; Algethami, N.; Lepsenyi, M.; Rahman, M.; Syk, I.; Thorlacius, H. Neutrophil extracellular traps promote peritoneal metastasis of colon cancer cells. Oncotarget 2019, 10, 1238–1249. [Google Scholar] [CrossRef] [Green Version]
  198. Arelaki, S.; Arampatzioglou, A.; Kambas, K.; Papagoras, C.; Miltiades, P.; Angelidou, I.; Mitsios, A.; Kotsianidis, I.; Skendros, P.; Sivridis, E.; et al. Gradient Infiltration of Neutrophil Extracellular Traps in Colon Cancer and Evidence for Their Involvement in Tumour Growth. PLoS ONE 2016, 11, e0154484. [Google Scholar] [CrossRef]
  199. Boone, B.A.; Murthy, P.; Miller-Ocuin, J.; Doerfler, W.R.; Ellis, J.T.; Liang, X.; Ross, M.A.; Wallace, C.T.; Sperry, J.L.; Lotze, M.T.; et al. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer 2018, 18, 678. [Google Scholar]
  200. Hisada, Y.; Grover, S.P.; Maqsood, A.; Houston, R.; Ay, C.; Noubouossie, D.F.; Cooley, B.C.; Wallen, H.; Key, N.S.; Thalin, C.; et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica 2020, 105, 218–225. [Google Scholar] [CrossRef] [Green Version]
  201. Tohme, S.; Yazdani, H.O.; Al-Khafaji, A.B.; Chidi, A.P.; Loughran, P.; Mowen, K.; Wang, Y.M.; Simmons, R.L.; Huang, H.; Tsung, A. Neutrophil Extracellular Traps Promote the Development and Progression of Liver Metastases after Surgical Stress. Cancer Res. 2016, 76, 1367–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  202. Yousefi, S.; Stojkov, D.; Germic, N.; Simon, D.; Wang, X.; Benarafa, C.; Simon, H.U. Untangling “NETosis” from NETs. Eur. J. Immunol. 2019, 49, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  203. Apel, F.; Zychlinsky, A.; Kenny, E.F. The role of neutrophil extracellular traps in rheumatic diseases. Nat. Rev. Rheumatol. 2018, 14, 467–475. [Google Scholar] [CrossRef]
  204. Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Dassler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 2020, 217. [Google Scholar] [CrossRef]
  205. Daniel, C.; Leppkes, M.; Munoz, L.E.; Schley, G.; Schett, G.; Herrmann, M. Extracellular DNA traps in inflammation, injury and healing. Nat. Rev. Nephrol. 2019, 15, 559–575. [Google Scholar] [PubMed]
  206. SenGupta, S.; Subramanian, B.C.; Parent, C.A. Getting TANned: How the tumor microenvironment drives neutrophil recruitment. J. Leukoc. Biol. 2019, 105, 449–462. [Google Scholar] [CrossRef] [PubMed]
  207. Sollberger, G.; Tilley, D.O.; Zychlinsky, A. Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Dev. Cell 2018, 44, 542–553. [Google Scholar] [CrossRef] [Green Version]
  208. Cristinziano, L.; Modestino, L.; Antonelli, A.; Marone, G.; Simon, H.U.; Varricchi, G.; Galdiero, M.R. Neutrophil extracellular traps in cancer. Semin. Cancer Biol. 2021. [Google Scholar] [CrossRef]
  209. Visciano, C.; Liotti, F.; Prevete, N.; Cali, G.; Franco, R.; Collina, F.; de Paulis, A.; Marone, G.; Santoro, M.; Melillo, R.M. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene 2015, 34, 5175–5186. [Google Scholar] [CrossRef]
  210. Boone, B.A.; Orlichenko, L.; Schapiro, N.E.; Loughran, P.; Gianfrate, G.C.; Ellis, J.T.; Singhi, A.D.; Kang, R.; Tang, D.; Lotze, M.T.; et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther. 2015, 22, 326–334. [Google Scholar] [CrossRef] [Green Version]
  211. Lee, W.; Ko, S.Y.; Mohamed, M.S.; Kenny, H.A.; Lengyel, E.; Naora, H. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J. Exp. Med. 2019, 216, 176–194. [Google Scholar] [CrossRef] [PubMed]
  212. Guglietta, S.; Chiavelli, A.; Zagato, E.; Krieg, C.; Gandini, S.; Ravenda, P.S.; Bazolli, B.; Lu, B.; Penna, G.; Rescigno, M. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat. Commun. 2016, 7, 11037. [Google Scholar] [CrossRef] [PubMed]
  213. Schedel, F.; Mayer-Hain, S.; Pappelbaum, K.I.; Metze, D.; Stock, M.; Goerge, T.; Loser, K.; Sunderkotter, C.; Luger, T.A.; Weishaupt, C. Evidence and impact of neutrophil extracellular traps in malignant melanoma. Pigment. Cell Melanoma Res. 2020, 33, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  214. Bates, A.M.; Hernandez, M.P.G.; Lanzel, E.A.; Qian, F.; Brogden, K.A. Matrix metalloproteinase (MMP) and immunosuppressive biomarker profiles of seven head and neck squamous cell carcinoma (HNSCC) cell lines. Transl. Cancer Res. 2018, 7, 533–542. [Google Scholar] [CrossRef] [PubMed]
  215. Idorn, M.; Skadborg, S.K.; Kellermann, L.; Halldorsdottir, H.R.; Olofsson, G.H.; Met, O.; Straten, P.T. Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model. Oncoimmunology 2018, 7, e1450715. [Google Scholar] [CrossRef]
  216. Alfaro, C.; Teijeira, A.; Onate, C.; Perez, G.; Sanmamed, M.F.; Andueza, M.P.; Alignani, D.; Labiano, S.; Azpilikueta, A.; Rodriguez-Paulete, A.; et al. Tumor-Produced Interleukin-8 Attracts Human Myeloid-Derived Suppressor Cells and Elicits Extrusion of Neutrophil Extracellular Traps (NETs). Clin. Cancer Res. 2016, 22, 3924–3936. [Google Scholar] [CrossRef] [Green Version]
  217. Najmeh, S.; Cools-Lartigue, J.; Giannias, B.; Spicer, J.; Ferri, L.E. Simplified Human Neutrophil Extracellular Traps (NETs) Isolation and Handling. J. Vis. Exp. 2015. [Google Scholar] [CrossRef] [Green Version]
  218. Azevedo, P.O.; Paiva, A.E.; Santos, G.S.P.; Lousado, L.; Andreotti, J.P.; Sena, I.F.G.; Tagliati, C.A.; Mintz, A.; Birbrair, A. Cross-talk between lung cancer and bones results in neutrophils that promote tumor progression. Cancer Metastasis Rev. 2018, 37, 779–790. [Google Scholar] [CrossRef]
  219. Bertini, R.; Allegretti, M.; Bizzarri, C.; Moriconi, A.; Locati, M.; Zampella, G.; Cervellera, M.N.; di Cioccio, V.; Cesta, M.C.; Galliera, E.; et al. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: Prevention of reperfusion injury. Proc. Natl. Acad. Sci. USA 2004, 101, 11791–11796. [Google Scholar] [CrossRef] [Green Version]
  220. Erpenbeck, L.; Schon, M.P. Neutrophil extracellular traps: Protagonists of cancer progression? Oncogene 2017, 36, 2483–2490. [Google Scholar] [CrossRef]
  221. McDonald, B.; Spicer, J.; Giannais, B.; Fallavollita, L.; Brodt, P.; Ferri, L.E. Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int. J. Cancer 2009, 125, 1298–1305. [Google Scholar] [CrossRef]
  222. Spicer, J.D.; McDonald, B.; Cools-Lartigue, J.J.; Chow, S.C.; Giannias, B.; Kubes, P.; Ferri, L.E. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res. 2012, 72, 3919–3927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  223. Snoderly, H.T.; Boone, B.A.; Bennewitz, M.F. Neutrophil extracellular traps in breast cancer and beyond: Current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res. 2019, 21, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  224. Malladi, S.; Macalinao, D.G.; Jin, X.; He, L.; Basnet, H.; Zou, Y.; de Stanchina, E.; Massague, J. Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell 2016, 165, 45–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  225. Sosa, M.S.; Bragado, P.; Aguirre-Ghiso, J.A. Mechanisms of disseminated cancer cell dormancy: An awakening field. Nat. Rev. Cancer 2014, 14, 611–622. [Google Scholar] [CrossRef] [PubMed]
  226. Shojaei, F.; Singh, M.; Thompson, J.D.; Ferrara, N. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc. Natl. Acad. Sci. USA 2008, 105, 2640–2645. [Google Scholar]
  227. Tauriello, F.D.V.; Sancho, E.; Batlle, E. Overcoming TGFbeta-mediated immune evasion in cancer. Nat. Rev. Cancer 2022, 22, 25–44. [Google Scholar] [CrossRef] [PubMed]
  228. Rodriguez, P.C.; Ernstoff, M.S.; Hernandez, C.; Atkins, M.; Zabaleta, J.; Sierra, R.; Ochoa, A.C. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009, 69, 1553–1560. [Google Scholar] [CrossRef] [Green Version]
  229. Gungor, N.; Knaapen, A.M.; Munnia, A.; Peluso, M.; Haenen, G.R.; Chiu, R.K.; Godschalk, R.W.; van Schooten, F.J. Genotoxic effects of neutrophils and hypochlorous acid. Mutagenesis 2010, 25, 149–154. [Google Scholar] [CrossRef]
  230. Kummarapurugu, A.B.; Zheng, S.; Ma, J.; Ghosh, S.; Hawkridge, A.; Voynow, J.A. Neutrophil Elastase Triggers the Release of Macrophage Extracellular Traps: Relevance to Cystic Fibrosis. Am. J. Respir. Cell Mol. Biol. 2021, 66, 76–85. [Google Scholar] [CrossRef]
  231. Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; de Meyer, S.F.; Bhandari, A.A.; Wagner, D.D. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 2012, 10, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  232. Fuchs, T.A.; Brill, A.; Wagner, D.D. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1777–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  233. Mangold, A.; Alias, S.; Scherz, T.; Hofbauer, T.; Jakowitsch, J.; Panzenbock, A.; Simon, D.; Laimer, D.; Bangert, C.; Kammerlander, A.; et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ. Res. 2015, 116, 1182–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  234. von Bruhl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Kollnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef] [PubMed]
  235. Kruger, S.; Haas, M.; Burkl, C.; Goehring, P.; Kleespies, A.; Roeder, F.; Gallmeier, E.; Ormanns, S.; Westphalen, C.B.; Heinemann, V.; et al. Incidence, outcome and risk stratification tools for venous thromboembolism in advanced pancreatic cancer—A retrospective cohort study. Thromb. Res. 2017, 157, 9–15. [Google Scholar] [CrossRef]
  236. Petterson, T.M.; Marks, R.S.; Ashrani, A.A.; Bailey, K.R.; Heit, J.A. Risk of site-specific cancer in incident venous thromboembolism: A population-based study. Thromb. Res. 2015, 135, 472–478. [Google Scholar] [CrossRef] [Green Version]
  237. Wun, T.; White, R.H. Venous thromboembolism (VTE) in patients with cancer: Epidemiology and risk factors. Cancer Investig. 2009, 27 (Suppl. 1), 63–74. [Google Scholar] [CrossRef]
  238. Chew, H.K.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 2006, 166, 458–464. [Google Scholar] [CrossRef]
  239. Mandala, M.; Reni, M.; Cascinu, S.; Barni, S.; Floriani, I.; Cereda, S.; Berardi, R.; Mosconi, S.; Torri, V.; Labianca, R. Venous thromboembolism predicts poor prognosis in irresectable pancreatic cancer patients. Ann. Oncol. 2007, 18, 1660–1665. [Google Scholar] [CrossRef]
  240. Seo, J.D.; Gu, J.Y.; Jung, H.S.; Kim, Y.J.; Kim, H.K. Contact System Activation and Neutrophil Extracellular Trap Markers: Risk Factors for Portal Vein Thrombosis in Patients With Hepatocellular Carcinoma. Clin. Appl. Thromb. Hemost 2019, 25, 1076029618825310. [Google Scholar] [CrossRef] [Green Version]
  241. Bang, O.Y.; Chung, J.W.; Cho, Y.H.; Oh, M.J.; Seo, W.K.; Kim, G.M.; Ahn, M.J. Circulating DNAs, a Marker of Neutrophil Extracellular Traposis and Cancer-Related Stroke: The OASIS-Cancer Study. Stroke 2019, 50, 2944–2947. [Google Scholar] [CrossRef] [PubMed]
  242. Marin Oyarzun, C.P.; Carestia, A.; Lev, P.R.; Glembotsky, A.C.; Rios, M.A.C.; Moiraghi, B.; Molinas, F.C.; Marta, R.F.; Schattner, M.; Heller, P.G. Neutrophil extracellular trap formation and circulating nucleosomes in patients with chronic myeloproliferative neoplasms. Sci. Rep. 2016, 6, 38738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  243. Yousefi, S.; Simon, D.; Stojkov, D.; Karsonova, A.; Karaulov, A.; Simon, H.U. In vivo evidence for extracellular DNA trap formation. Cell Death Dis. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
  244. Cedervall, J.; Zhang, Y.; Huang, H.; Zhang, L.; Femel, J.; Dimberg, A.; Olsson, A.K. Neutrophil Extracellular Traps Accumulate in Peripheral Blood Vessels and Compromise Organ Function in Tumor-Bearing Animals. Cancer Res. 2015, 75, 2653–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  245. Tsourouktsoglou, T.D.; Warnatsch, A.; Ioannou, M.; Hoving, D.; Wang, Q.; Papayannopoulos, V. Histones, DNA, and Citrullination Promote Neutrophil Extracellular Trap Inflammation by Regulating the Localization and Activation of TLR4. Cell Rep. 2020, 31, 107602. [Google Scholar] [CrossRef]
  246. Domer, D.; Walther, T.; Moller, S.; Behnen, M.; Laskay, T. Neutrophil Extracellular Traps Activate Proinflammatory Functions of Human Neutrophils. Front. Immunol. 2021, 12, 636954. [Google Scholar] [CrossRef] [PubMed]
  247. Linhares-Lacerda, L.; Temerozo, J.R.; Ribeiro-Alves, M.; Azevedo, E.P.; Mojoli, A.; Nascimento, M.T.C.; Silva-Oliveira, G.; Savino, W.; Foguel, D.; Bou-Habib, D.C.; et al. Neutrophil extracellular trap-enriched supernatants carry microRNAs able to modulate TNF-alpha production by macrophages. Sci. Rep. 2020, 10, 2715. [Google Scholar] [CrossRef] [PubMed]
  248. Sammarco, G.; Varricchi, G.; Ferraro, V.; Ammendola, M.; de Fazio, M.; Altomare, D.F.; Luposella, M.; Maltese, L.; Curro, G.; Marone, G.; et al. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int. J. Mol. Sci. 2019, 20, 2106. [Google Scholar] [CrossRef] [Green Version]
  249. Marone, G.; Varricchi, G.; Loffredo, S.; Granata, F. Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis. Eur. J. Pharmacol. 2016, 778, 146–151. [Google Scholar] [CrossRef]
  250. Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010, 468, 562–566. [Google Scholar] [CrossRef] [Green Version]
  251. Fang, H.Y.; Hughes, R.; Murdoch, C.; Coffelt, S.B.; Biswas, S.K.; Harris, A.L.; Johnson, R.S.; Imityaz, H.Z.; Simon, M.C.; Fredlund, E.; et al. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 2009, 114, 844–859. [Google Scholar] [CrossRef] [Green Version]
  252. Prevete, N.; Staiano, R.I.; Granata, F.; Detoraki, A.; Necchi, V.; Ricci, V.; Triggiani, M.; de Paulis, A.; Marone, G.; Genovese, A. Expression and function of Angiopoietins and their tie receptors in human basophils and mast cells. J. Biol. Regul. Homeost. Agents 2013, 27, 827–839. [Google Scholar] [PubMed]
  253. Davis, S.; Aldrich, T.H.; Jones, P.F.; Acheson, A.; Compton, D.L.; Jain, V.; Ryan, T.E.; Bruno, J.; Radziejewski, C.; Maisonpierre, P.C.; et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996, 87, 1161–1169. [Google Scholar] [CrossRef] [Green Version]
  254. Suri, C.; Jones, P.F.; Patan, S.; Bartunkova, S.; Maisonpierre, P.C.; Davis, S.; Sato, T.N.; Yancopoulos, G.D. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996, 87, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
  255. Gehling, U.M.; Ergun, S.; Schumacher, U.; Wagener, C.; Pantel, K.; Otte, M.; Schuch, G.; Schafhausen, P.; Mende, T.; Kilic, N.; et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000, 95, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
  256. Maliba, R.; Lapointe, S.; Neagoe, P.E.; Brkovic, A.; Sirois, M.G. Angiopoietins-1 and -2 are both capable of mediating endothelial PAF synthesis: Intracellular signalling pathways. Cell Signal. 2006, 18, 1947–1957. [Google Scholar] [CrossRef] [PubMed]
  257. Patel, A.S.; Smith, A.; Nucera, S.; Biziato, D.; Saha, P.; Attia, R.Q.; Humphries, J.; Mattock, K.; Grover, S.P.; Lyons, O.T.; et al. TIE2-expressing monocytes/macrophages regulate revascularization of the ischemic limb. EMBO Mol. Med. 2013, 5, 858–869. [Google Scholar] [CrossRef]
  258. Sturn, D.H.; Feistritzer, C.; Mosheimer, B.A.; Djanani, A.; Bijuklic, K.; Patsch, J.R.; Wiedermann, C.J. Angiopoietin affects neutrophil migration. Microcirculation 2005, 12, 393–403. [Google Scholar] [CrossRef]
  259. Lemieux, C.; Maliba, R.; Favier, J.; Theoret, J.F.; Merhi, Y.; Sirois, M.G. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood 2005, 105, 1523–1530. [Google Scholar] [CrossRef]
  260. Haddad, L.E.; Sirois, M.G. Angiopoietin-1 upregulates de novo expression of IL-1beta and Il1-Ra, and the exclusive release of Il1-Ra from human neutrophils. PLoS ONE 2014, 9, e88980. [Google Scholar] [CrossRef]
  261. Neagoe, P.E.; Dumas, E.; Hajjar, F.; Sirois, M.G. Angiopoietin-1 but not angiopoietin-2 induces IL-8 synthesis and release by human neutrophils. J. Cell Physiol. 2012, 227, 3099–3110. [Google Scholar] [CrossRef] [PubMed]
  262. Balestrieri, B.; Granata, F.; Loffredo, S.; Petraroli, A.; Scalia, G.; Morabito, P.; Cardamone, C.; Varricchi, G.; Triggiani, M. Phenotypic and Functional Heterogeneity of Low-Density and High-Density Human Lung Macrophages. Biomedicines 2021, 9, 505. [Google Scholar] [CrossRef] [PubMed]
  263. Suh, S.H.; Choe, K.; Hong, S.P.; Jeong, S.H.; Makinen, T.; Kim, K.S.; Alitalo, K.; Surh, C.D.; Koh, G.Y.; Song, J.H. Gut microbiota regulates lacteal integrity by inducing VEGF-C in intestinal villus macrophages. EMBO Rep. 2019, 20, e46927. [Google Scholar] [CrossRef] [PubMed]
  264. Locati, M.; Curtale, G.; Mantovani, A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu. Rev. Pathol. 2020, 15, 123–147. [Google Scholar] [CrossRef] [Green Version]
  265. Ferrari, S.M.; Fallahi, P.; Galdiero, M.R.; Ruffilli, I.; Elia, G.; Ragusa, F.; Paparo, S.R.; Patrizio, A.; Mazzi, V.; Varricchi, G.; et al. Immune and Inflammatory Cells in Thyroid Cancer Microenvironment. Int. J. Mol. Sci. 2019, 20, 4413. [Google Scholar] [CrossRef] [Green Version]
  266. Okubo, K.; Kurosawa, M.; Kamiya, M.; Urano, Y.; Suzuki, A.; Yamamoto, K.; Hase, K.; Homma, K.; Sasaki, J.; Miyauchi, H.; et al. Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat. Med. 2018, 24, 232–238. [Google Scholar] [CrossRef]
  267. Chen, T.; Wang, Y.; Nan, Z.; Wu, J.; Li, A.; Zhang, T.; Qu, X.; Li, C. Interaction Between Macrophage Extracellular Traps and Colon Cancer Cells Promotes Colon Cancer Invasion and Correlates With Unfavorable Prognosis. Front. Immunol. 2021, 12, 779325. [Google Scholar] [CrossRef]
  268. Doster, R.S.; Rogers, L.M.; Gaddy, J.A.; Aronoff, D.M. Macrophage Extracellular Traps: A Scoping Review. J. Innate Immun. 2018, 10, 3–13. [Google Scholar] [CrossRef]
  269. Von Kockritz-Blickwede, M.; Goldmann, O.; Thulin, P.; Heinemann, K.; Norrby-Teglund, A.; Rohde, M.; Medina, E. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 2008, 111, 3070–3080. [Google Scholar] [CrossRef]
  270. Lin, A.M.; Rubin, C.J.; Khandpur, R.; Wang, J.Y.; Riblett, M.; Yalavarthi, S.; Villanueva, E.C.; Shah, P.; Kaplan, M.J.; Bruce, A.T. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 2011, 187, 490–500. [Google Scholar] [CrossRef] [Green Version]
  271. Clark, M.; Kim, J.; Etesami, N.; Shimamoto, J.; Whalen, R.V.; Martin, G.; Okumura, C.Y.M. Group A Streptococcus Prevents Mast Cell Degranulation to Promote Extracellular Trap Formation. Front. Immunol. 2018, 9, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  272. Campillo-Navarro, M.; Leyva-Paredes, K.; Donis-Maturano, L.; Rodriguez-Lopez, G.M.; Soria-Castro, R.; Garcia-Perez, B.E.; Puebla-Osorio, N.; Ullrich, S.E.; Luna-Herrera, J.; Flores-Romo, L.; et al. Mycobacterium tuberculosis Catalase Inhibits the Formation of Mast Cell Extracellular Traps. Front. Immunol. 2018, 9, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  273. Naqvi, N.; Ahuja, K.; Selvapandiyan, A.; Dey, R.; Nakhasi, H.; Puri, N. Role of Mast Cells in clearance of Leishmania through extracellular trap formation. Sci. Rep. 2017, 7, 13240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  274. Mollerherm, H.; von Kockritz-Blickwede, M.; Branitzki-Heinemann, K. Antimicrobial Activity of Mast Cells: Role and Relevance of Extracellular DNA Traps. Front. Immunol. 2016, 7, 265. [Google Scholar] [CrossRef] [Green Version]
  275. Schorn, C.; Janko, C.; Latzko, M.; Chaurio, R.; Schett, G.; Herrmann, M. Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Front. Immunol. 2012, 3, 277. [Google Scholar] [CrossRef] [Green Version]
  276. Ueki, S.; Konno, Y.; Takeda, M.; Moritoki, Y.; Hirokawa, M.; Matsuwaki, Y.; Honda, K.; Ohta, N.; Yamamoto, S.; Takagi, Y.; et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes. J. Allergy Clin. Immunol. 2016, 137, 258–267. [Google Scholar] [CrossRef] [Green Version]
  277. Choi, Y.; Kim, Y.M.; Lee, H.R.; Mun, J.; Sim, S.; Lee, D.H.; Pham, D.L.; Kim, S.H.; Shin, Y.S.; Lee, S.W.; et al. Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy 2020, 75, 95–103. [Google Scholar] [CrossRef]
  278. Gevaert, E.; Zhang, N.; Krysko, O.; Lan, F.; Holtappels, G.; de Ruyck, N.; Nauwynck, H.; Yousefi, S.; Simon, H.U.; Bachert, C. Extracellular eosinophilic traps in association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe airway inflammation. J. Allergy Clin. Immunol. 2017, 139, 1849–1860.e6. [Google Scholar] [CrossRef] [Green Version]
  279. Yousefi, S.; Morshed, M.; Amini, P.; Stojkov, D.; Simon, D.; von Gunten, S.; Kaufmann, T.; Simon, H.U. Basophils exhibit antibacterial activity through extracellular trap formation. Allergy 2015, 70, 1184–1188. [Google Scholar] [CrossRef]
  280. Varricchi, G.; Marone, G. Mast Cells: Fascinating but Still Elusive after 140 Years from Their Discovery. Int. J. Mol. Sci. 2020, 21, 464. [Google Scholar] [CrossRef] [Green Version]
  281. Afferni, C.; Buccione, C.; Andreone, S.; Galdiero, M.R.; Varricchi, G.; Marone, G.; Mattei, F.; Schiavoni, G. The Pleiotropic Immunomodulatory Functions of IL-33 and Its Implications in Tumor Immunity. Front. Immunol. 2018, 9, 2601. [Google Scholar] [CrossRef] [PubMed]
  282. Thanabalasuriar, A.; Kubes, P. Rise and shine: Open your eyes to produce anti-inflammatory NETs. J. Leukoc. Biol. 2019, 105, 1083–1084. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Neutrophils can exert several pro-tumor activities in cancer. (A) Activated human neutrophils release VEGF-A [35,84,88,127,128], ANGPTs, Bv8 protein [226], CXCL8 [20,35], hepatocyte growth factor (HGF) [87], matrix metallopeptidase 9 (MMP-9) [138], and NETs that promote angiogenesis. (B) Human neutrophils can express ligands of immune checkpoints such as PD-L1. The interaction between PD-L1 and PD-1 on T cells inhibits the anti-tumor immune response of T cells. (C) TGF-α activates a surface receptor on neutrophils [227] inducing the release of arginase 1 (Arg-1), which causes T cell dysfunction and suppression of T cell-mediated anti-tumor immune response [37,228]. (D) Human neutrophils produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage and genetic instability in epithelial cells [57,58,229]. (E) Neutrophil extracellular traps (NETs) awaken dormant cancer cells (DCCs) [66], promote metastasis formation [71,223], and shield cancer cells, thus impairing the cytotoxicity mediated by CD8+ T cells and NK cells [68]. (F) Activated neutrophils release neutrophil elastase (NE), which triggers the release of macrophage extracellular traps (METs) [230] and produces several proinflammatory cytokines (e.g., IL-1β) that activate tumor-associated macrophages (TAMs).
Figure 1. Neutrophils can exert several pro-tumor activities in cancer. (A) Activated human neutrophils release VEGF-A [35,84,88,127,128], ANGPTs, Bv8 protein [226], CXCL8 [20,35], hepatocyte growth factor (HGF) [87], matrix metallopeptidase 9 (MMP-9) [138], and NETs that promote angiogenesis. (B) Human neutrophils can express ligands of immune checkpoints such as PD-L1. The interaction between PD-L1 and PD-1 on T cells inhibits the anti-tumor immune response of T cells. (C) TGF-α activates a surface receptor on neutrophils [227] inducing the release of arginase 1 (Arg-1), which causes T cell dysfunction and suppression of T cell-mediated anti-tumor immune response [37,228]. (D) Human neutrophils produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage and genetic instability in epithelial cells [57,58,229]. (E) Neutrophil extracellular traps (NETs) awaken dormant cancer cells (DCCs) [66], promote metastasis formation [71,223], and shield cancer cells, thus impairing the cytotoxicity mediated by CD8+ T cells and NK cells [68]. (F) Activated neutrophils release neutrophil elastase (NE), which triggers the release of macrophage extracellular traps (METs) [230] and produces several proinflammatory cytokines (e.g., IL-1β) that activate tumor-associated macrophages (TAMs).
Biomedicines 10 00431 g001
Table 1. Main protumorigenic mechanisms of NETs in cancer.
Table 1. Main protumorigenic mechanisms of NETs in cancer.
NETs drive endothelial-to-mesenchymal transition[71,72]
NETs promote experimental tumor growth[71,73,74,75,76,77,78,79,80]
NETs promote human tumor growth[73,74,75,77,78,80,81,82]
NETs promote angiogenesis[35,41,83,84,85,86,87,88]
NETs trap circulating cancer cells[68,74,89]
NETs awaken dormant cancer cells[66]
NETs promote metastasis formation[74,79,90,91,92]
NETs shield cancer cells from cytotoxicity[68]
NETs promote cancer-associated thrombosis[93,94,95,96,97,98,99,100]
Table 2. Main proangiogenic mechanisms of NETs.
Table 2. Main proangiogenic mechanisms of NETs.
NETs induce increased capillary tube length, number of sprouts, and sprouting area of endothelial cells[85]
Angiopoietin 1 (ANGPT1) and angiopoietin 2 (ANGPT2), alone or combined, induce NET formation[86]
ANGPT-mediated NETs increase human endothelial cell tube length and the number of loops[86]
Human neutrophils sustain angiogenesis through the release of VEGF-A, HGF, BV8, and MMP9[35,41,83,84,87,88]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Poto, R.; Cristinziano, L.; Modestino, L.; de Paulis, A.; Marone, G.; Loffredo, S.; Galdiero, M.R.; Varricchi, G. Neutrophil Extracellular Traps, Angiogenesis and Cancer. Biomedicines 2022, 10, 431.

AMA Style

Poto R, Cristinziano L, Modestino L, de Paulis A, Marone G, Loffredo S, Galdiero MR, Varricchi G. Neutrophil Extracellular Traps, Angiogenesis and Cancer. Biomedicines. 2022; 10(2):431.

Chicago/Turabian Style

Poto, Remo, Leonardo Cristinziano, Luca Modestino, Amato de Paulis, Gianni Marone, Stefania Loffredo, Maria Rosaria Galdiero, and Gilda Varricchi. 2022. "Neutrophil Extracellular Traps, Angiogenesis and Cancer" Biomedicines 10, no. 2: 431.

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop