The Cytogenetic Profile of Primary and Secondary Plasma Cell Leukemia: Etiopathogenetic Perspectives, Prognostic Impact and Clinical Relevance to Newly Diagnosed Multiple Myeloma with Differential Circulating Clonal Plasma Cells
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Purification of Plasma Cells from BM and PB Samples
2.3. Interphase Fluorescent In-Situ Hybridization (i-FISH)
2.4. 13q Deletions
2.5. t(11;14)
2.6. Detection of Circulating Plasma Cells (CPCs) with Next-Generation Flow Cytometry (NGF)
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics of PCL and NDMM Patients
3.2. pPCL and sPCL Patients Have Distinct Cytogenetic Profiles
3.3. 13q Deletions in NDMM and PCL Patients
3.4. Unique Cytogenetic Pattern of t(11;14)(q13;q32) in pPCL
3.5. Clonal Evolution by Sequential Cytogenetic Analysis during Disease Progression
3.6. Differential Clinical Outcomes among PCL Patients and a Stratification Model for NDMM
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Sanz, R.; Orfão, A.; González, M.; Tabernero, M.D.; Bladé, J.; Moro, M.J.; Fernández-Calvo, J.; Sanz, M.A.; Pérez-Simón, J.A.; Rasillo, A.; et al. Primary plasma cell leukemia: Clinical, immunophenotypic, DNA ploidy, and cytogenetic characteristics. Blood 1999, 93, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Ramsingh, G.; Mehan, P.; Luo, J.; Vij, R.; Morgensztern, D. Primary plasma cell leukemia: A surveillance, epidemiology, and end results database analysis between 1973 and 2004. Cancer 2009, 115, 5734–5739. [Google Scholar] [CrossRef]
- Gundesen, M.T.; Lund, T.; Moeller, H.E.H.; Abildgaard, N. Plasma Cell Leukemia: Definition, Presentation, and Treatment. Curr. Oncol. Rep. 2019, 21, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyle, R.A.; Maldonado, J.E.; Bayrd, E.D. Plasma cell leukemia. Report on 17 cases. Arch. Intern. Med. 1974, 133, 813–818. [Google Scholar] [CrossRef]
- Gonsalves, W.I.; Rajkumar, S.V.; Gupta, V.; Morice, W.G.; Timm, M.M.; Singh, P.P.; Dispenzieri, A.; Buadi, F.K.; Lacy, M.Q.; Kapoor, P.; et al. Quantification of clonal circulating plasma cells in newly diagnosed multiple myeloma: Implications for redefining high-risk myeloma. Leukemia 2014, 28, 2060–2065. [Google Scholar] [CrossRef] [Green Version]
- Granell, M.; Calvo, X.; Garcia-Guiñón, A.; Escoda, L.; Abella, E.; Martínez, C.M.; Teixidó, M.; Gimenez, M.T.; Senín, A.; Sanz, P.; et al. Prognostic impact of circulating plasma cells in patients with multiple myeloma: Implications for plasma cell leukemia definition. Haematologica 2017, 102, 1099–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravi, P.; Kumar, S.K.; Roeker, L.; Gonsalves, W.; Buadi, F.; Lacy, M.Q.; Go, R.S.; Dispenzieri, A.; Kapoor, P.; Lust, J.A.; et al. Revised diagnostic criteria for plasma cell leukemia: Results of a Mayo Clinic study with comparison of outcomes to multiple myeloma. Blood Cancer J. 2018, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Musto, P.; Simeon, V.; Martorelli, M.C.; Petrucci, M.T.; Cascavilla, N.; Di Raimondo, F.; Caravita, T.; Morabito, F.; Offidani, M.; Olivieri, A.; et al. Lenalidomide and low-dose dexamethasone for newly diagnosed primary plasma cell leukemia. Leukemia 2014, 28, 222–225. [Google Scholar] [CrossRef]
- de Larrea, C.F.; Kyle, R.; Rosiñol, L.; Paiva, B.; Engelhardt, M.; Usmani, S.; Caers, J.; Gonsalves, W.; Schjesvold, F.; Merlini, G.; et al. Primary plasma cell leukemia: Consensus definition by the International Myeloma Working Group according to peripheral blood plasma cell percentage. Blood Cancer J. 2021, 11, 192. [Google Scholar] [CrossRef]
- Jurczyszyn, A.; Radocha, J.; Davila, J.; Fiala, M.A.; Gozzetti, A.; Grząśko, N.; Robak, P.; Hus, I.; Waszczuk-Gajda, A.; Guzicka-Kazimierczak, R.; et al. Prognostic indicators in primary plasma cell leukaemia: A multicentre retrospective study of 117 patients. Br. J. Haematol. 2018, 180, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suska, A.; Vesole, D.H.; Castillo, J.J.; Kumar, S.K.; Parameswaran, H.; Mateos, M.V.; Facon, T.; Gozzetti, A.; Mikala, G.; Szostek, M.; et al. Plasma Cell Leukemia—Facts and Controversies: More Questions than Answers? Clin. Hematol. Int. 2020, 2, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Tsakirakis, N.; Malandrakis, P.; Vitsos, P.; Metousis, A.; Orologas-Stavrou, N.; Ntanasis-Stathopoulos, I.; Kanellias, N.; Eleutherakis-Papaiakovou, E.; Pothos, P.; et al. Deep Phenotyping Reveals Distinct Immune Signatures Correlating with Prognostication, Treatment Responses, and MRD Status in Multiple Myeloma. Cancers 2020, 12, 3245. [Google Scholar] [CrossRef]
- Tiedemann, R.E.; Gonzalez-Paz, N.; Kyle, R.A.; Santana-Davila, R.; Price-Troska, T.; Van Wier, S.A.; Chng, W.J.; Ketterling, R.P.; Gertz, M.A.; Henderson, K.; et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia 2008, 22, 1044–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katodritou, E.; Terpos, E.; Kelaidi, C.; Kotsopoulou, M.; Delimpasi, S.; Kyrtsonis, M.-C.; Symeonidis, A.; Giannakoulas, N.; Stefanoudaki, A.; Christoulas, D.; et al. Treatment with bortezomib-based regimens improves overall response and predicts for survival in patients with primary or secondary plasma cell leukemia: Analysis of the Greek myeloma study group. Am. J. Hematol. 2014, 89, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Jurczyszyn, A.; Castillo, J.J.; Avivi, I.; Czepiel, J.; Davila, J.; Vij, R.; Fiala, M.A.; Gozzetti, A.; Grząśko, N.; Milunovic, V.; et al. Secondary plasma cell leukemia: A multicenter retrospective study of 101 patients. Leuk. Lymphoma 2019, 60, 118–123. [Google Scholar] [CrossRef]
- Kostopoulos, I.V.; Eleutherakis-Papaiakovou, E.; Rousakis, P.; Ntanasis-Stathopoulos, I.; Panteli, C.; Orologas-Stavrou, N.; Kanellias, N.; Malandrakis, P.; Liacos, C.-I.; Papaioannou, N.E.; et al. Aberrant Plasma Cell Contamination of Peripheral Blood Stem Cell Autografts, Assessed by Next-Generation Flow Cytometry, Is a Negative Predictor for Deep Response Post Autologous Transplantation in Multiple Myeloma; A Prospective Study in 199 Patients. Cancers 2021, 13, 4047. [Google Scholar] [CrossRef]
- Kostopoulos, I.V.; Paterakis, G.; Papadimitriou, K.; Pavlidis, D.; Tsitsilonis, O.E.; Papadhimitriou, S.I. Immunophenotypic analysis reveals heterogeneity and common biologic aspects in monoclonal B-cell lymphocytosis. Genes Chromosomes Cancer 2015, 54, 210–221. [Google Scholar] [CrossRef]
- Chretien, M.-L.; Corre, J.; Lauwers-Cances, V.; Magrangeas, F.; Cleynen, A.; Yon, E.; Hulin, C.; Leleu, X.; Orsini-Piocelle, F.; Blade, J.-S.; et al. Understanding the role of hyperdiploidy in myeloma prognosis: Which trisomies really matter? Blood 2015, 126, 2713–2719. [Google Scholar] [CrossRef] [Green Version]
- Samur, A.A.; Minvielle, S.; Shammas, M.; Fulciniti, M.; Magrangeas, F.; Richardson, P.G.; Moreau, P.; Attal, M.; Anderson, K.C.; Parmigiani, G.; et al. Deciphering the chronology of copy number alterations in Multiple Myeloma. Blood Cancer J. 2019, 9, 39. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Harousseau, J.-L.; Durie, B.; Anderson, K.C.; Dimopoulos, M.; Kyle, R.; Blade, J.; Richardson, P.; Orlowski, R.; Siegel, D.; et al. International Myeloma Workshop Consensus Panel 1. Consensus recommendations for the uniform reporting of clinical trials: Report of the International Myeloma Workshop Consensus Panel 1. Blood 2011, 117, 4691–4695. [Google Scholar] [CrossRef] [Green Version]
- Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; García-Sánchez, O.; Böttcher, S.; Van Der Velden, V.H.J.; Pérez-Morán, J.-J.; Vidriales, M.-B.; García-Sanz, R.; et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpos, E.; Kostopoulos, I.V.; Kastritis, E.; Ntanasis-Stathopoulos, I.; Migkou, M.; Rousakis, P.; Argyriou, A.T.; Kanellias, N.; Fotiou, D.; Eleutherakis-Papaiakovou, E.; et al. Impact of Minimal Residual Disease Detection by Next-Generation Flow Cytometry in Multiple Myeloma Patients with Sustained Complete Remission after Frontline Therapy. HemaSphere 2019, 3, e300. [Google Scholar] [CrossRef]
- Sanoja-Flores, L.; Flores-Montero, J.; Garcés, J.J.; Paiva, B.; Puig, N.; García-Mateo, A.; García-Sánchez, O.; Corral-Mateos, A.; Burgos, L.; Blanco, E.; et al. (EuroFlow consortium) Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC). Blood Cancer J. 2018, 8, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuazon, S.A.; Holmberg, L.A.; Nadeem, O.; Richardson, P.G. A clinical perspective on plasma cell leukemia; current status and future directions. Blood Cancer J. 2021, 11, 23. [Google Scholar] [CrossRef]
- Chang, H.; Sloan, S.; Li, D.; Patterson, B. Genomic aberrations in plasma cell leukemia shown by interphase fluorescence in situ hybridization. Cancer Genet. Cytogenet. 2005, 156, 150–153. [Google Scholar] [CrossRef]
- Chang, H.; Qi, X.; Yeung, J.; Reece, D.; Xu, W.; Patterson, B. Genetic aberrations including chromosome 1 abnormalities and clinical features of plasma cell leukemia. Leuk. Res. 2009, 33, 259–262. [Google Scholar] [CrossRef]
- Rotaru, I.; Găman, G.; Dumitrescu, D.; Foarfă, C. Secondary plasma cell leukemia. Rom. J. Morphol. Embryol. 2012, 53, 1073–1076. [Google Scholar]
- Glavey, S.V.; Flanagan, L.; Bleach, R.; Kelly, C.; Quinn, J.; Ni Chonghaile, T.; Murphy, P. Secondary plasma cell leukaemia treated with single agent venetoclax. Br. J. Haematol. 2020, 190, e242–e245. [Google Scholar] [CrossRef]
- Kupsh, A.; Arnall, J.; Voorhees, P. A successful case of venetoclax-based therapy in relapsed/refractory secondary plasma cell leukemia. J. Oncol. Pharm. Pract. 2019, 26, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Mina, R.; D’Agostino, M.; Cerrato, C.; Gay, F.; Palumbo, A. Plasma cell leukemia: Update on biology and therapy. Leuk. Lymphoma 2017, 58, 1538–1547. [Google Scholar] [CrossRef]
- Avet-Loiseau, H.; Daviet, A.; Brigaudeau, C.; Callet-Bauchu, E.; Terreé, C.; Lafage-Pochitaloff, M.; Deésangles, F.; Ramond, S.; Talmant, P.; Bataille, R. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: A study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myeélome and the Groupe Francçais de Cytogeéneétique Heématologique. Blood 2001, 97, 822–825. [Google Scholar] [CrossRef] [Green Version]
- Lionetti, M.; Musto, P.; Di Martino, M.T.; Fabris, S.; Agnelli, L.; Todoerti, K.; Tuana, G.; Mosca, L.; Cantafio, M.E.G.; Grieco, V.; et al. Biological and Clinical Relevance of miRNA Expression Signatures in Primary Plasma Cell Leukemia. Clin. Cancer Res. 2013, 19, 3130–3142. [Google Scholar] [CrossRef] [Green Version]
- Todoerti, K.; Agnelli, L.; Fabris, S.; Lionetti, M.; Tuana, G.; Mosca, L.; Lombardi, L.; Grieco, V.; Bianchino, G.; D’Auria, F.; et al. Transcriptional Characterization of a Prospective Series of Primary Plasma Cell Leukemia Revealed Signatures Associated with Tumor Progression and Poorer Outcome. Clin. Cancer Res. 2013, 19, 3247–3258. [Google Scholar] [CrossRef] [Green Version]
- Royer, B.; Minvielle, S.; Diouf, M.; Roussel, M.; Karlin, L.; Hulin, C.; Arnulf, B.; Macro, M.; Cailleres, S.; Brion, A.; et al. Bortezomib, Doxorubicin, Cyclophosphamide, Dexamethasone Induction Followed by Stem Cell Transplantation for Primary Plasma Cell Leukemia: A Prospective Phase II Study of the Intergroupe Francophone du Myélome. J. Clin. Oncol. 2016, 34, 2125–2132. [Google Scholar] [CrossRef]
- Lakshman, A.; Alhaj Moustafa, M.; Rajkumar, S.V.; Dispenzieri, A.; Gertz, M.A.; Buadi, F.K.; Lacy, M.Q.; Dingli, D.; Fonder, A.L.; Hayman, S.R.; et al. Natural history of t(11;14) multiple myeloma. Leukemia 2018, 32, 131–138. [Google Scholar] [CrossRef]
- An, G.; Xu, Y.; Shi, L.; Zou, D.; Deng, S.; Sui, W.; Xie, Z.; Hao, M.; Chang, H.; Qiu, L. t(11;14) multiple myeloma: A subtype associated with distinct immunological features, immunophenotypic characteristics but divergent outcome. Leuk. Res. 2013, 37, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Todoerti, K.; Taiana, E.; Puccio, N.; Favasuli, V.; Lionetti, M.; Silvestris, I.; Gentile, M.; Musto, P.; Morabito, F.; Gianelli, U.; et al. Transcriptomic Analysis in Multiple Myeloma and Primary Plasma Cell Leukemia with t(11;14) Reveals Different Expression Patterns with Biological Implications in Venetoclax Sensitivity. Cancers 2021, 13, 4898. [Google Scholar] [CrossRef] [PubMed]
- Janssen, J.W.; Vaandrager, J.W.; Heuser, T.; Jauch, A.; Kluin, P.M.; Geelen, E.; Bergsagel, P.L.; Kuehl, W.M.; Drexler, H.G.; Otsuki, T.; et al. Concurrent activation of a novel putative transforming gene, myeov, and cyclin D1 in a subset of multiple myeloma cell lines with t(11;14)(q13;q32). Blood 2000, 95, 2691–2698. [Google Scholar]
- Chiecchio, L.; Dagrada, G.P.; White, H.E.; Towsend, M.R.; Protheroe, R.K.; Cheung, K.L.; Stockley, D.M.; Orchard, K.H.; Cross, N.C.; Harrison, C.J.; et al. Frequent upregulation of MYC in plasma cell leukemia. Genes Chromosomes Cancer 2009, 48, 624–636. [Google Scholar] [CrossRef]
- Fonseca, R.; Oken, M.M.; Harrington, D.; Bailey, R.J.; Van Wier, S.A.; Henderson, K.J.; Kay, N.E.; Van Ness, B.; Greipp, P.R.; Dewald, G.W. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 2001, 15, 981–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxe, D.; Seo, E.J.; Bergeron, M.B.; Han, J.Y. Recent advances in cytogenetic characterization of multiple myeloma. Int. J. Lab. Hematol. 2019, 41, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagano, L.; Valentini, C.G.; De Stefano, V.; Venditti, A.; Visani, G.; Petrucci, M.T.; Candoni, A.; Specchia, G.; Visco, C.; Pogliani, E.M.; et al. Primary plasma cell leukemia: A retrospective multicenter study of 73 patients. Ann. Oncol. 2011, 22, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Schinke, C.; Boyle, E.M.; Ashby, C.; Wang, Y.; Lyzogubov, V.; Wardell, C.; Qu, P.; Hoering, A.; Deshpande, S.; Ryan, K.; et al. Genomic analysis of primary plasma cell leukemia reveals complex structural alterations and high-risk mutational patterns. Blood Cancer J. 2020, 10, 70. [Google Scholar] [CrossRef]
- Keats, J.J.; Chesi, M.; Egan, J.B.; Garbitt, V.M.; Palmer, S.E.; Braggio, E.; Van Wier, S.; Blackburn, P.R.; Baker, A.S.; Dispenzieri, A.; et al. Clonal competition with alternating dominance in multiple myeloma. Blood 2012, 120, 1067–1076. [Google Scholar] [CrossRef]
- Egan, J.B.; Shi, C.-X.; Tembe, W.; Christoforides, A.; Kurdoglu, A.; Sinari, S.; Middha, S.; Asmann, Y.; Schmidt, J.; Braggio, E.; et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood 2012, 120, 1060–1066. [Google Scholar] [CrossRef]
- Jones, J.R.; Weinhold, N.; Ashby, C.; Walker, B.A.; Wardell, C.; Pawlyn, C.; Rasche, L.; Melchor, L.; Cairns, D.A.; Gregory, W.M.; et al. Clonal evolution in myeloma: The impact of maintenance lenalidomide and depth of response on the genetics and subclonal structure of relapsed disease in uniformly treated newly diagnosed patients. Haematologica 2019, 104, 1440–1450. [Google Scholar] [CrossRef] [Green Version]
- Locher, M.; Steurer, M.; Jukic, E.; Keller, M.A.; Fresser, F.; Ruepp, C.; Wöll, E.; Verdorfer, I.; Gastl, G.; Willenbacher, W.; et al. The prognostic value of additional copies of 1q21 in multiple myeloma depends on the primary genetic event. Am. J. Hematol. 2020, 95, 1562–1571. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Qin, X.; Liu, J.; Fan, H.; Yan, W.; Liu, L.; Du, C.; Yu, Z.; Xu, Y.; Hao, M.; et al. Clonal phylogeny and evolution of critical cytogenetic aberrations in multiple myeloma at single cell level by QM-FISH. Blood Adv. 2021; 6, 441–451. [Google Scholar] [CrossRef]
- Mangiacavalli, S.; Pochintesta, L.; Cocito, F.; Pompa, A.; Bernasconi, P.; Cazzola, M.; Corso, A. Correlation between burden of 17P13.1 alteration and rapid escape to plasma cell leukaemia in multiple myeloma. Br. J. Haematol. 2013, 162, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, K.K.; Escure, G.; Demonchy, J.; Willaume, A.; Van De Wyngaert, Z.; Farhat, M.; Chauvet, P.; Facon, T.; Quesnel, B.; Manier, S. Deregulation and Targeting of TP53 Pathway in Multiple Myeloma. Front. Oncol. 2019, 8, 665. [Google Scholar] [CrossRef]
- Kostopoulos, I.V.; Paterakis, G.; Pavlidis, D.; Kastritis, E.; Terpos, E.; Tsitsilonis, O.E.; Papadhimitriou, S.I. Clonal evolution is a prognostic factor for the clinical progression of monoclonal B-cell lymphocytosis. Blood Cancer J. 2017, 7, e597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, M.; Rajkumar, S.V.; Ketterling, R.P.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Hayman, S.R.; Hwa, Y.L.; Zeldenrust, S.R.; et al. Occurrence and prognostic significance of cytogenetic evolution in patients with multiple myeloma. Blood Cancer J. 2016, 6, e401. [Google Scholar] [CrossRef] [PubMed]
- Colović, M.; Janković, G.; Suvajdzić, N.; Milić, N.; Dordević, V.; Janković, S. Thirty patients with primary plasma cell leukemia: A single center experience. Med. Oncol. 2008, 25, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.; Musto, P.; Todoerti, K.; Barbieri, M.; Agnelli, L.; Fabris, S.; Tuana, G.; Lionetti, M.; Bonaparte, E.; Sirchia, S.M.; et al. Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles. Am. J. Hematol. 2013, 88, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Lee, J.J.; Kim, K.; Suh, C.; Yoon, D.H.; Min, C.K.; Sohn, S.K.; Choi, C.W.; Lee, H.S.; Kim, H.J.; et al. Korean Multiple Myeloma Working Party. The role of frontline autologous stem cell transplantation for primary plasma cell leukemia: A retrospective multicenter study (KMM160). Oncotarget 2017, 8, 79517–79526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
pPCL n = 25 | sPCL n = 19 | NDMM n = 965 | p Value NDMM vs. pPCL | p Value NDMM vs. sPCL | p Value pPCL vs. sPCL | |
---|---|---|---|---|---|---|
age (years) | 60 (45–81) | 65 (42–80) | 68 (29–92) | <0.01 | n.s. | n.s. |
male sex (%) | 11/25 (44%) | 10/19 (52.6%) | 523/965 (54.2%) | n.s. | n.s. | n.s. |
lytic lesions | 10/22 (45.4%) | 11/16 (68.8%) | 276/410 (67.3%) | 0.04 | n.s. | n.s. |
extramedulary involvement | 4/20 (20%) | 4/15 (26.7%) | 23/301 (7.6%) | 0.07 | 0.03 | n.s. |
hemoglobin (g/dL) | 8.5 (5.8–13.6) | 9.1 (6.8–11.2) | 10.4 (4–18) | <0.001 | 0.002 | n.s. |
platelets (×109/L) | 108 (10–250) | 100 (30–300) | 244 (22–585) | <0.0001 | <0.0001 | n.s. |
WBC (×109/L) | 15 (3.5–40) | 15 (4.7–34.5) | 6.1 (2.2–70) | <0.0001 | <0.0001 | n.s. |
BM infiltration (%) | 70 (30–100) | 80 (35–100) | 55 (5–100) | <0.001 | <0.0001 | n.s. |
PB plasmacytosis (×109/L) | 5.4 (0.9–72) | 6.1 (1.2–65) | - | - | - | n.s. |
calcium (mg/dL) | 9.4 (8.3–14.4) | 9.6 (6.5–12.5) | 9.5 (6.3–15.5) | n.s. | n.s. | n.s. |
LDH (U/L) | 330 (100–690) | 232 (120–550) | 175 (68–860) | <0.0001 | <0.001 | 0.01 |
serum albumin (g/dL) | 3.7 (2.7–4.4) | 3.6 (2.5–4.9) | 3.9 (1.8–5.1) | n.s. | n.s. | n.s. |
creatinine >2 mg/dL | 9/25 (36%) | 4/19 (21.1%) | 101/708 (14.3%) | <0.007 | n.s. | n.s. |
b-2 microglobulin (mg/L) | 7.3 (1.4–11.2) | 3.8 (1.7–7.8) | 3.3 (0.38–70) | <0.0001 | n.s. | <0.0001 |
M-protein IgG IgA IgD light chain only non-secretory | 13/25 (52%) 3/25 (12%) 1/25 (4%) 5/25 (20%) 3/25 (12%) | 10/19 (52.6%) 4/19 (21.1%) 1/19 (5.3%) 4/19 (21.1%) 0/16 | 482/965 (49.9%) 221/965 (22.9%) 33/965 (3.4%) 150/965 (15.5%) 79/965 (8.2%) | n.s. | n.s. | n.s. |
kappa light chain | 12/20 (60%) | 7/15 (46.7%) | 569/965 (58.9%) | n.s. | n.s. | n.s. |
Phenotype 19+ 45+ 56+ 117+ | 0/11 2/11 (18.2%) 5/11 (45.4%) 1/11 (9.1%) | N/A N/A N/A N/A | 12/445 (2.7%) 80/445 (18%) 281/445 (63.1%) 181/445 (40.7%) | n.s. n.s. n.s. 0.03 | N/A | N/A |
Cytogenetic Abnormality | pPCL | sPCL | NDMM | p Value |
---|---|---|---|---|
del(13q) | 15/25 (59.1%) | 18/19 (94.7%) | 334/846 (39.5%) | <0.0001 a |
t(4;14) | 4/25 (16%) | 9/19 (47.4%) | 92/927 (9.9%) | 0.0006 a |
t(11;14) | 13/25 (52%) | 0/19 (0%) | 76/542 (14%) | <0.001 b |
t(14;16) | 2/25 (8%) | 1/19 (5.3%) | 21/862 (2.4%) | n.s |
−17/del(17p13) | 4/25 (16%) | 13/19 (68.4%) | 77/899 (8.6%) | <0.001 c |
t(8q24) | 10/25 (40%) | 5/19 (26.3%) | 24/265 (9.1%) | <0.0001 d |
del(1p32) | 7/25 (28%) | 9/19 (47.4%) | 42/289 (14.5%) | 0.003 a |
+1q21 | 8/25 (32%) | 10/19 (52.6%) | 191/605 (31.6%) | 0.038 a |
del(16q23) | 4/25 (16%) | 4/19 (21.1%) | 39/279 (14%) | n.s |
Hyperdiploidy | 5/25 (20%) | 6/19 (31.6%) | 151/290 (52.1%) | 0.0032 d |
Normal (no aberrations) | 0/25 | 0/19 | 38/252 e (15.1%) | 0.15 |
Only one aberration | 6/25 (24%) | 0/19 | 145/252 e (57.5%) | <0.001 |
Average number of abnormalities/patient | 2.9 | 3.9 | 1.4 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadhimitriou, S.I.; Terpos, E.; Liapis, K.; Pavlidis, D.; Marinakis, T.; Kastritis, E.; Dimopoulos, M.-A.; Tsitsilonis, O.E.; Kostopoulos, I.V. The Cytogenetic Profile of Primary and Secondary Plasma Cell Leukemia: Etiopathogenetic Perspectives, Prognostic Impact and Clinical Relevance to Newly Diagnosed Multiple Myeloma with Differential Circulating Clonal Plasma Cells. Biomedicines 2022, 10, 209. https://doi.org/10.3390/biomedicines10020209
Papadhimitriou SI, Terpos E, Liapis K, Pavlidis D, Marinakis T, Kastritis E, Dimopoulos M-A, Tsitsilonis OE, Kostopoulos IV. The Cytogenetic Profile of Primary and Secondary Plasma Cell Leukemia: Etiopathogenetic Perspectives, Prognostic Impact and Clinical Relevance to Newly Diagnosed Multiple Myeloma with Differential Circulating Clonal Plasma Cells. Biomedicines. 2022; 10(2):209. https://doi.org/10.3390/biomedicines10020209
Chicago/Turabian StylePapadhimitriou, Stefanos I., Evangelos Terpos, Konstantinos Liapis, Dimitrios Pavlidis, Theodoros Marinakis, Efstathios Kastritis, Meletios-Athanasios Dimopoulos, Ourania E. Tsitsilonis, and Ioannis V. Kostopoulos. 2022. "The Cytogenetic Profile of Primary and Secondary Plasma Cell Leukemia: Etiopathogenetic Perspectives, Prognostic Impact and Clinical Relevance to Newly Diagnosed Multiple Myeloma with Differential Circulating Clonal Plasma Cells" Biomedicines 10, no. 2: 209. https://doi.org/10.3390/biomedicines10020209
APA StylePapadhimitriou, S. I., Terpos, E., Liapis, K., Pavlidis, D., Marinakis, T., Kastritis, E., Dimopoulos, M.-A., Tsitsilonis, O. E., & Kostopoulos, I. V. (2022). The Cytogenetic Profile of Primary and Secondary Plasma Cell Leukemia: Etiopathogenetic Perspectives, Prognostic Impact and Clinical Relevance to Newly Diagnosed Multiple Myeloma with Differential Circulating Clonal Plasma Cells. Biomedicines, 10(2), 209. https://doi.org/10.3390/biomedicines10020209