Designing a Clinical Trial with Olfactory Ensheathing Cell Transplantation-Based Therapy for Spinal Cord Injury: A Position Paper
Abstract
:1. Introduction
2. What to Translate to a Clinical Trial?
2.1. What Makes OECs Suitable Candidates for the SCI Repair?
2.2. What about the Trials so Far?
2.3. Anatomical Origin of Cells Used in Trials
2.4. Autologous vs. Allogenic Cell Source
2.5. Cell Purity and Characterisation
2.6. Cell Dosage
2.7. Patient Recruitment
2.8. Trial Design
2.9. Rehabilitation as an Adjuvant Intervention
2.10. Outcome Measures
2.11. Safety Concerns
2.12. Conclusions of the Past Clinical Trials
3. How to Design a Clinical Trial?
3.1. Olfactory Mucosa as a Source of the Cells
3.2. Comprehensive Assessment of Cell Purity and Function
3.3. A 3D Construct Is Warranted
3.4. Cell Dose and Treatment Volume
3.5. Surgical Approach for Transplantation
3.6. Patient Recruitment Should Be Carried out Based on the Clinical Trial Phase
3.6.1. Complete or Incomplete Injuries
3.6.2. Time since Injury
3.7. Adaptive Trial Design May Be Beneficial
3.8. Outcome Measures Must Be Selected Strategically
3.9. Rehabilitation Is Crucial for Functional Recovery
3.10. Prehabilitation Is Indicated
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spinal Cure Australia. Spinal Cord Injury in Australia: The Case for Investing in New Treatments; Spinal Cure Australia: Sydney, Australia, 2020. [Google Scholar]
- Bracken, M.B.; Holford, T.R. Neurological and functional status 1 year after acute spinal cord injury: Estimates of functional recovery in National Acute Spinal Cord Injury Study II from results modeled in National Acute Spinal Cord Injury Study III. J. Neurosurg. 2002, 96, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, N.A.; Sousa, N.; Reis, R.L.; Salgado, A.J. From basics to clinical: A comprehensive review on spinal cord injury. Prog. Neurobiol. 2014, 114, 25–57. [Google Scholar] [CrossRef] [PubMed]
- Chio, J.C.T.; Xu, K.J.; Popovich, P.; David, S.; Fehlings, M.G. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp. Neurol. 2021, 341, 113704. [Google Scholar] [CrossRef]
- Reshamwala, R.; Shah, M.; St John, J.; Ekberg, J. Survival and Integration of Transplanted Olfactory Ensheathing Cells are Crucial for Spinal Cord Injury Repair: Insights from the Last 10 Years of Animal Model Studies. Cell Transplant. 2019, 28, 132S–159S. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, C.S.; Mothe, A.; Khazaei, M.; Badhiwala, J.H.; Gilbert, E.A.; Kooy, D.; Morshead, C.M.; Tator, C.; Fehlings, M.G. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl. Med. 2020, 9, 1509–1530. [Google Scholar] [CrossRef] [PubMed]
- Kressler, J.; Thomas, C.K.; Field-Fote, E.C.; Sanchez, J.; Widerstrom-Noga, E.; Cilien, D.C.; Gant, K.; Ginnety, K.; Gonzalez, H.; Martinez, A.; et al. Understanding therapeutic benefits of overground bionic ambulation: Exploratory case series in persons with chronic, complete spinal cord injury. Arch. Phys. Med. Rehabil. 2014, 95, 1878–1887.e1874. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, L.R.; Serruya, M.D.; Friehs, G.M.; Mukand, J.A.; Saleh, M.; Caplan, A.H.; Branner, A.; Chen, D.; Penn, R.D.; Donoghue, J.P. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006, 442, 164–171. [Google Scholar] [CrossRef]
- Pizzolato, C.; Saxby, D.J.; Palipana, D.; Diamond, L.E.; Barrett, R.S.; Teng, Y.D.; Lloyd, D.G. Neuromusculoskeletal Modeling-Based Prostheses for Recovery After Spinal Cord Injury. Front. Neurorobot. 2019, 13, 97. [Google Scholar] [CrossRef] [Green Version]
- Gilmour, A.D.; Reshamwala, R.; Wright, A.A.; Ekberg, J.A.K.; St John, J.A. Optimizing Olfactory Ensheathing Cell Transplantation for Spinal Cord Injury Repair. J. Neurotrauma 2020, 37, 817–829. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Pedro, K.; Hejrati, N. The Management of Acute Spinal Cord Injury: Where have we been? Where are we now? Where are we going? J. Neurotrauma, 2022; ahead of print. [Google Scholar] [CrossRef]
- Willison, A.G.; Smith, S.; Davies, B.M.; Kotter, M.R.N.; Barnett, S.C. A scoping review of trials for cell-based therapies in human spinal cord injury. Spinal Cord 2020, 58, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Oieni, F.; Reshamwala, R.; St John, J. Olfactory Ensheathing Cells for Spinal Cord Injury: The Cellular Superpowers for Nerve Repair. Neuroglia 2022, 3, 139–143. [Google Scholar] [CrossRef]
- Ekberg, J.A.; Amaya, D.; Mackay-Sim, A.; St John, J.A. The migration of olfactory ensheathing cells during development and regeneration. Neuro-Signals 2012, 20, 147–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carwardine, D.; Prager, J.; Neeves, J.; Muir, E.M.; Uney, J.; Granger, N.; Wong, L.F. Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury. PLoS ONE 2017, 12, e0188967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, D.; Raisman, G. Functional Repair of Rat Corticospinal Tract Lesions Does Not Require Permanent Survival of an Immunoincompatible Transplant. Cell Transplant. 2016, 25, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Radtke, C.; Akiyama, Y.; Brokaw, J.; Lankford, K.L.; Wewetzer, K.; Fodor, W.L.; Kocsis, J.D. Remyelination of the nonhuman primate spinal cord by transplantation of H-transferase transgenic adult pig olfactory ensheathing cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2004, 18, 335–337. [Google Scholar] [CrossRef] [Green Version]
- Ramon-Cueto, A.; Cordero, M.I.; Santos-Benito, F.F.; Avila, J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 2000, 25, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Ramon-Cueto, A.; Nieto-Sampedro, M. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp. Neurol. 1994, 127, 232–244. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, M.D.; Hsu, D.; Takeoka, A.; Zhong, H.; Ramon-Cueto, A.; Phelps, P.E.; Roy, R.R.; Edgerton, V.R. Further evidence of olfactory ensheathing glia facilitating axonal regeneration after a complete spinal cord transection. Exp. Neurol. 2011, 229, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Féron, F.; Perry, C.; Cochrane, J.; Licina, P.; Nowitzke, A.; Urquhart, S.; Geraghty, T.; Mackay-Sim, A. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 2005, 128, 2951–2960. [Google Scholar] [CrossRef]
- Lima, C.; Pratas-Vital, J.; Escada, P.; Hasse-Ferreira, A.; Capucho, C.; Peduzzi, J.D. Olfactory Mucosa Autografts in Human Spinal Cord Injury: A Pilot Clinical Study. J. Spinal Cord Med. 2006, 29, 191–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay-Sim, A.; Féron, F.; Cochrane, J.; Bassingthwaighte, L.; Bayliss, C.; Davies, W.; Fronek, P.; Gray, C.; Kerr, G.; Licina, P.; et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: A 3-year clinical trial. Brain 2008, 131, 2376–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhabra, H.S.; Lima, C.; Sachdeva, S.; Mittal, A.; Nigam, V.; Chaturvedi, D.; Arora, M.; Aggarwal, A.; Kapur, R.; Khan, T.A. Autologous olfactory [corrected] mucosal transplant in chronic spinal cord injury: An Indian Pilot Study. Spinal Cord 2009, 47, 887–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, C.; Escada, P.; Pratas-Vital, J.; Branco, C.; Arcangeli, C.A.; Lazzeri, G.; Maia, C.A.; Capucho, C.; Hasse-Ferreira, A.; Peduzzi, J.D. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabilit. Neural Repair 2010, 24, 10–22. [Google Scholar] [CrossRef]
- Wu, J.; Sun, T.; Ye, C.; Yao, J.; Zhu, B.; He, H. Clinical observation of fetal olfactory ensheathing glia transplantation (OEGT) in patients with complete chronic spinal cord injury. Cell Transplant. 2012, 21 (Suppl. 1), S33–S37. [Google Scholar] [CrossRef] [Green Version]
- Larson, C.A.; Dension, P.M. Effectiveness of intense, activity-based physical therapy for individuals with spinal cord injury in promoting motor and sensory recovery: Is olfactory mucosa autograft a factor? J. Spinal Cord Med. 2013, 36, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Tabakow, P.; Jarmundowicz, W.; Czapiga, B.; Fortuna, W.; Miedzybrodzki, R.; Czyz, M.; Huber, J.; Szarek, D.; Okurowski, S.; Szewczyk, P.; et al. Transplantation of Autologous Olfactory Ensheathing Cells in Complete Human Spinal Cord Injury. Cell Transplant. 2013, 22, 1591–1612. [Google Scholar] [CrossRef]
- Rao, Y.; Zhu, W.; Liu, H.; Jia, C.; Zhao, Q.; Wang, Y. Clinical application of olfactory ensheathing cells in the treatment of spinal cord injury. J. Int. Med. Res. 2013, 41, 473–481. [Google Scholar] [CrossRef]
- Chen, L.; Huang, H.; Xi, H.; Zhang, F.; Liu, Y.; Chen, D.; Xiao, J. A prospective randomized double-blind clinical trial using a combination of olfactory ensheathing cells and Schwann cells for the treatment of chronic complete spinal cord injuries. Cell Transplant. 2014, 23 (Suppl. 1), S35–S44. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lu, J.; Li, Y.A.; Zhou, H.; Ni, W.F.; Zhang, X.L.; Zhu, S.P.; Chen, B.B.; Xu, H.; Wang, X.Y.; et al. Autologous Olfactory Lamina Propria Transplantation for Chronic Spinal Cord Injury: Three-Year Follow-Up Outcomes from a Prospective Double-Blinded Clinical Trial. Cell Transplant. 2016, 25, 141–157. [Google Scholar] [CrossRef]
- Chehrehasa, F.; Windus, L.C.E.; Ekberg, J.A.K.; Scott, S.E.; Amaya, D.; Mackay-Sim, A.; St John, J.A. Olfactory glia enhance neonatal axon regeneration. Mol. Cell. Neurosci. 2010, 45, 277–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeoka, A.; Jindrich, D.L.; Munoz-Quiles, C.; Zhong, H.; van den Brand, R.; Pham, D.L.; Ziegler, M.D.; Ramon-Cueto, A.; Roy, R.R.; Edgerton, V.R.; et al. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation. J. Neurosci. 2011, 31, 4298–4310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.; Li, D.; Liadi, M.; Tabakow, P.; Fortuna, W.; Raisman, G.; Li, Y. Partial Recovery of Proprioception in Rats with Dorsal Root Injury after Human Olfactory Bulb Cell Transplantation. J. Neurotrauma 2018, 35, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Delarue, Q.; Robac, A.; Massardier, R.; Marie, J.P.; Guerout, N. Comparison of the effects of two therapeutic strategies based on olfactory ensheathing cell transplantation and repetitive magnetic stimulation after spinal cord injury in female mice. J. Neurosci. Res. 2021, 99, 1835–1849. [Google Scholar] [CrossRef] [PubMed]
- Khankan, R.R.; Griffis, K.G.; Haggerty-Skeans, J.R.; Zhong, H.; Roy, R.R.; Edgerton, V.R.; Phelps, P.E. Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration. J. Neurosci. 2016, 36, 6269–6286. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ji, Z.Q.; Ahsan, S.M.; Zhang, Y.; Zhang, P.; Fan, Z.H.; Shen, Y.X. Intrathecal transplantation of olfactory ensheathing cells by lumbar puncture for thoracic spinal cord injury in mice. J. Neurorestoratol. 2017, 5, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Nazareth, L.; Lineburg, K.E.; Chuah, M.I.; Tello Velasquez, J.; Chehrehasa, F.; St John, J.A.; Ekberg, J.A. Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. J. Comp. Neurol. 2015, 523, 479–494. [Google Scholar] [CrossRef] [Green Version]
- Nazareth, L.; Tello Velasquez, J.; Lineburg, K.E.; Chehrehasa, F.; St John, J.A.; Ekberg, J.A. Differing phagocytic capacities of accessory and main olfactory ensheathing cells and the implication for olfactory glia transplantation therapies. Mol. Cell. Neurosci. 2015, 65, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.; Gao, Z.; Li, X.; Guo, L.; Lu, T.; Li, Y.; He, X. Conditioned medium of olfactory ensheathing cells promotes the functional recovery and axonal regeneration after contusive spinal cord injury. Brain Res. 2017, 1654, 43–54. [Google Scholar] [CrossRef]
- Wright, A.A.; Todorovic, M.; Tello-Velasquez, J.; Rayfield, A.J.; St John, J.A.; Ekberg, J.A. Enhancing the Therapeutic Potential of Olfactory Ensheathing Cells in Spinal Cord Repair Using Neurotrophins. Cell Transplant. 2018, 27, 867–878. [Google Scholar] [CrossRef]
- Yao, R.; Murtaza, M.; Velasquez, J.T.; Todorovic, M.; Rayfield, A.; Ekberg, J.; Barton, M.; St John, J. Olfactory Ensheathing Cells for Spinal Cord Injury: Sniffing out the Issues. Cell Transplant. 2018, 27, 879–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Li, Y.; Dai, J.; He, Y.; Sun, D.; Dai, C.; Xu, H.; Yin, Z.Q. Olfactory Ensheathing Cells Grafted into the Retina of RCS Rats Suppress Inflammation by Down-Regulating the JAK/STAT Pathway. Front. Cell. Neurosci. 2019, 13, 341. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.A.; Todorovic, M.; Murtaza, M.; St John, J.A.; Ekberg, J.A. Macrophage migration inhibitory factor and its binding partner HTRA1 are expressed by olfactory ensheathing cells. Mol. Cell. Neurosci. 2020, 102, 103450. [Google Scholar] [CrossRef] [PubMed]
- Gómez, R.M.; Sánchez, M.Y.; Portela-Lomba, M.; Ghotme, K.; Barreto, G.E.; Sierra, J.; Moreno-Flores, M.T. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). GLIA 2018, 66, 1267–1301. [Google Scholar] [CrossRef] [Green Version]
- Lakatos, A.; Franklin, R.J.; Barnett, S.C. Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. GLIA 2000, 32, 214–225. [Google Scholar] [CrossRef]
- Santos-Silva, A.; Fairless, R.; Frame, M.C.; Montague, P.; Smith, G.M.; Toft, A.; Riddell, J.S.; Barnett, S.C. FGF/Heparin Differentially Regulates Schwann Cell and Olfactory Ensheathing Cell Interactions with Astrocytes: A Role in Astrocytosis. J. Neurosci. 2007, 27, 7154–7167. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Jones, L.L.; Snyder, E.Y.; Tuszynski, M.H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 2003, 181, 115–129. [Google Scholar] [CrossRef]
- Teli, P.; Kale, V.; Vaidya, A. Extracellular vesicles isolated from mesenchymal stromal cells primed with neurotrophic factors and signaling modifiers as potential therapeutics for neurodegenerative diseases. Curr. Res. Transl. Med. 2021, 69, 103286. [Google Scholar] [CrossRef]
- Trzyna, A.; Banaś-Ząbczyk, A. Adipose-Derived Stem Cells Secretome and Its Potential Application in “Stem Cell-Free Therapy”. Biomolecules 2021, 11, 878. [Google Scholar] [CrossRef]
- Carvalho, L.A.; Teng, J.; Fleming, R.L.; Tabet, E.I.; Zinter, M.; de Melo Reis, R.A.; Tannous, B.A. Olfactory Ensheathing Cells: A Trojan Horse for Glioma Gene Therapy. J. Natl. Cancer Inst. 2019, 111, 283–291. [Google Scholar] [CrossRef]
- Murtaza, M.; Chacko, A.; Delbaz, A.; Reshamwala, R.; Rayfield, A.; McMonagle, B.; St John, J.A.; Ekberg, J.A.K. Why are olfactory ensheathing cell tumors so rare? Cancer Cell Int. 2019, 19, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabakow, P.; Raisman, G.; Fortuna, W.; Czyz, M.; Huber, J.; Li, D.; Szewczyk, P.; Okurowski, S.; Miedzybrodzki, R.; Czapiga, B.; et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant. 2014, 23, 1631–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Xi, H.; Tan, K.; Huang, H. Recovering Voiding and Sex Function in a Patient with Chronic Complete Spinal Cord Injury by Olfactory Ensheathing Cell Transplantation. Case Rep. Neurol. Med. 2022, 2022, 9496652. [Google Scholar] [CrossRef] [PubMed]
- Mayeur, A.; Duclos, C.; Honore, A.; Gauberti, M.; Drouot, L.; do Rego, J.C.; Bon-Mardion, N.; Jean, L.; Verin, E.; Emery, E.; et al. Potential of olfactory ensheathing cells from different sources for spinal cord repair. PLoS ONE 2013, 8, e62860. [Google Scholar] [CrossRef] [Green Version]
- Ekberg, J.A.; St John, J.A. Olfactory ensheathing cells for spinal cord repair: Crucial differences between subpopulations of the glia. Neural Regen. Res. 2015, 10, 1395–1396. [Google Scholar] [CrossRef] [Green Version]
- Dlouhy, B.J.; Awe, O.; Rao, R.C.; Kirby, P.A.; Hitchon, P.W. Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient: Case report. J. Neurosurg. Spine 2014, 21, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Woodworth, C.F.; Jenkins, G.; Barron, J.; Hache, N. Intramedullary cervical spinal mass after stem cell transplantation using an olfactory mucosal cell autograft. CMAJ Can. Med. Assoc. J. J. De L’association Med. Can. 2019, 191, E761–E764. [Google Scholar] [CrossRef] [Green Version]
- Reshamwala, R.; Shah, M.; Belt, L.; Ekberg, J.A.K.; St John, J.A. Reliable cell purification and determination of cell purity: Crucial aspects of olfactory ensheathing cell transplantation for spinal cord repair. Neural Regen. Res. 2020, 15, 2016–2026. [Google Scholar] [CrossRef]
- Au, E.; Roskams, A.J. Olfactory ensheathing cells of the lamina propria in vivo and in vitro. GLIA 2003, 41, 224–236. [Google Scholar] [CrossRef]
- Kawaja, M.D.; Boyd, J.G.; Smithson, L.J.; Jahed, A.; Doucette, R. Technical Strategies to Isolate Olfactory Ensheathing Cells for Intraspinal Implantation. J. Neurotrauma 2009, 26, 155–177. [Google Scholar] [CrossRef]
- Geissler, S.A.; Sabin, A.L.; Besser, R.R.; Gooden, O.M.; Shirk, B.D.; Nguyen, Q.M.; Khaing, Z.Z.; Schmidt, C.E. Biomimetic hydrogels direct spinal progenitor cell differentiation and promote functional recovery after spinal cord injury. J. Neural Eng. 2018, 15, 025004. [Google Scholar] [CrossRef] [PubMed]
- Tukmachev, D.; Forostyak, S.; Koci, Z.; Zaviskova, K.; Vackova, I.; Vyborny, K.; Sandvig, I.; Sandvig, A.; Medberry, C.J.; Badylak, S.F.; et al. Injectable Extracellular Matrix Hydrogels as Scaffolds for Spinal Cord Injury Repair. Tissue Eng. Part A 2016, 22, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Gueye, Y.; Ferhat, L.; Sbai, O.; Bianco, J.; Ould-Yahoui, A.; Bernard, A.; Charrat, E.; Chauvin, J.P.; Risso, J.J.; Féron, F.; et al. Trafficking and secretion of matrix metalloproteinase-2 in olfactory ensheathing glial cells: A role in cell migration? GLIA 2011, 59, 750–770. [Google Scholar] [CrossRef] [PubMed]
- Roet, K.C.; Verhaagen, J. Understanding the neural repair-promoting properties of olfactory ensheathing cells. Exp. Neurol. 2014, 261, 594–609. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Transplantation Format | Cell Characterisation | Purity | Adverse/Severe Adverse Events | Safety Established | Efficacy |
---|---|---|---|---|---|---|
Féron et al., 2005 [21] | Isolated mucosal OECs (autograft) | GFAP + S100; p75NTR | >95%; 76–88% | None | Yes | Not assessed |
Lima et al., 2006 [22] | Olfactory mucosa pieces (autograft) | N/A | N/A | None | Yes | Modest improvement in ASIA scores |
Mackay-Sim et al., 2005 [23] | Isolated mucosal OECs (autograft) | N/A | N/A | Meningitis, CSF leakage, IBS, new visceral pain | Yes | No significant functional improvements |
Chhabra et al., 2009 [24] | Olfactory mucosa pieces (autograft) | N/A | N/A | 1 syrinx; 1- more sensory loss recovering gradually | Yes | No significant improvements, but statistically significant improvements in SCIM, BDI and ISCIS |
Lima et al., 2010 [25] | Olfactory mucosa pieces (autograft) | N/A | N/A | None | Yes | Possible with post-operative rehabilitation |
Wu et al., 2012 [26] | Foetal OB OECs (allograft) | GFAP and S100 Immuno-staining | One patient had reduced ASIA sensory with pain and tingling, transient pain resolving with analgesics. No SAEs | Yes | Moderate sensory and spasticity improvements, minimal locomotor improvements | |
Larson et al., 2013 [27] | Olfactory mucosa pieces (autograft) | N/A | N/A | N/A | Yes | Motor recovery was observed, no sensory improvement. Recovery was not significantly greater compared to the control group |
Tabakow et al., 2013 [28] | Isolated mucosal OECs (autograft) | S100, p75NTR | >5% | Some immediate adverse events over post-operative phase, resolving within 3–4 days. No AE or SAE over 1-year follow up. | Yes | 2 of the 3 patients improved ASIA scores, third patient had some neurological recovery without ASIA score improvement |
Rao et al., 2013 [29] | Isolated mucosal OECs (autograft) | morphology | Not reported | No SAEs | Yes | 3/8 patients had substantial sensorimotor recovery; 2/8 had bladder function restored |
Chen et al., 2014 [30] | Foetal OB OECs (allograft) | p75NTR, S100 for OECs; S100 for SCs | 94% | One patient had fever, No SAEs | Yes | 4/5 treated patients showed significant electrophysiological improvements, 5/5 showed some functional improvement |
Wang et al. [31] | Olfactory lamina propria pieces (autograft) | N/A | N/A | No SAEs | Yes | Limited functional recovery; 2/8 patients had ASIA score improvement |
Author, Year | Cells Transplanted | Cell Concentration | Injection Volume | Flow Rate | Number of Total Injections |
---|---|---|---|---|---|
Féron et al., 2005 [21] | 12 million, 24 million, and 28 million, respectively, injected in 3 patients | not mentioned | 1.1 µL/injection, ~132 µL total | not mentioned | 4 depths in a 3 × 5 grid, both rostrally and caudally = 120 injections |
Wu et al., 2012 [26] | 500,000 cells | 100,000 cells/µL | 5 µL | not mentioned | 2 injections, 1 each rostrally and caudally from the injury |
Tabakow et al., 2013 [28] | 1.8 million, 1.9 million, and 21 million cells, respectively, in 3 patients | 30,000–200,000 cells/µL | 60, 64, and 106 µL, respectively | 2 µL/min | 120, 128 and 210 injections, respectively, 0.5 µL per injection |
Rao et al., 2013 [29] | 1 million cells | 50,000 cells/µL | 2 mL | not mentioned | 6 injections total |
Chen et al., 2014 [30] | 1 million cells | 20,000 cells/µL | 50 µL | not mentioned | 2 injections, 1 each rostrally and caudally from the injury |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reshamwala, R.; Murtaza, M.; Chen, M.; Shah, M.; Ekberg, J.; Palipana, D.; Vial, M.-L.; McMonagle, B.; St John, J. Designing a Clinical Trial with Olfactory Ensheathing Cell Transplantation-Based Therapy for Spinal Cord Injury: A Position Paper. Biomedicines 2022, 10, 3153. https://doi.org/10.3390/biomedicines10123153
Reshamwala R, Murtaza M, Chen M, Shah M, Ekberg J, Palipana D, Vial M-L, McMonagle B, St John J. Designing a Clinical Trial with Olfactory Ensheathing Cell Transplantation-Based Therapy for Spinal Cord Injury: A Position Paper. Biomedicines. 2022; 10(12):3153. https://doi.org/10.3390/biomedicines10123153
Chicago/Turabian StyleReshamwala, Ronak, Mariyam Murtaza, Mo Chen, Megha Shah, Jenny Ekberg, Dinesh Palipana, Marie-Laure Vial, Brent McMonagle, and James St John. 2022. "Designing a Clinical Trial with Olfactory Ensheathing Cell Transplantation-Based Therapy for Spinal Cord Injury: A Position Paper" Biomedicines 10, no. 12: 3153. https://doi.org/10.3390/biomedicines10123153
APA StyleReshamwala, R., Murtaza, M., Chen, M., Shah, M., Ekberg, J., Palipana, D., Vial, M.-L., McMonagle, B., & St John, J. (2022). Designing a Clinical Trial with Olfactory Ensheathing Cell Transplantation-Based Therapy for Spinal Cord Injury: A Position Paper. Biomedicines, 10(12), 3153. https://doi.org/10.3390/biomedicines10123153