Hyperbaric Oxygen Therapy and Tissue Regeneration: A Literature Survey
Abstract
:1. Introduction
2. Hyperbaric Oxygen and Regeneration
2.1. The Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)—Axis
Wound Healing
2.2. Nitric Oxide
2.2.1. Wound Healing
2.2.2. Muscle Regeneration
2.2.3. Abrogating Ischemia-Reperfusion Injury
2.3. Hypoxia Inducible Factor 1α ( HIF-1α)
2.3.1. Wound Healing
2.3.2. Regeneration following Stroke
2.3.3. Bone Regeneration
2.4. Matrix Metalloproteinases (MMP)
2.4.1. Wound Healing
2.4.2. Regeneration following Spinal Cord Injury and CO-Intoxication
2.4.3. Cardiac Remodeling
2.5. Mechanistic/Mammalian Target of Rapamycin (mTOR)
Regeneration following Spinal Cord Injury and Peripheral Nerve Injury
2.6. High-Mobility Group Protein B1/Toll-like Receptor 4/NFĸB Pathway
Regeneration following Spinal Cord Injury
2.7. Protein Kinase B (Akt), Extracellular-Signal Regulated Kinases (ERK), c-Jun-N-Terminal Kinases (JNK)
2.7.1. Regeneration following Brain Injury
2.7.2. Bone Regeneration
2.8. Rho-Associated Protein Kinase
Restoring Intestinal Barrier Function
2.9. Wnt/ß-Catenin Signaling
Bone Regeneration
2.10. Micro-RNA (Non-Coding RNA)
2.10.1. Neuronal Regeneration (Stroke Model)
2.10.2. Regeneration of Cartilage
2.10.3. Angiogenesis
2.11. Integrins
Wound Healing
3. Conclusions
Effector Protein/Molecule | Abbreviation | Field of Action | Change |
---|---|---|---|
A-4 integrin [70] | IA4 (CD49D) | Adhesion | ↔ |
A-4beta-1 integrin (very late activation antigen 4) [70] | VLA-4 (CD49DCD29) | Adhesion | ↓ |
Angiogenin (Ribonuclease 5) [22] | ANG (RNASE5) | Transcription | ↑ |
Anti-apoptotic B-cell lymphoma 2 [32,42] | Bcl-2 | anti-apoptotic | ↑ |
Bcl-2-associated X protein [42,67] | Bax | pro-apoptotic | ↓ |
Beta catenin-1 [54,62] | CTNNB1 | Adhesion; tissue homeostasis | ↑ |
Beta-2 integrin [70] | CD18 | Adhesion | ↓ |
C-Jun-N terminal kinases [12,55,56,57,65] | JNK | Stress induced kinases; pro-apoptotic | ↑↓ |
Cleaved caspase 3 [64] | CASP-3 | Apoptosis | ↓ |
Cryopyrin [64] | NLRP3 (NACHT) | interacts with components of damaged cells; forms NLRP-inflammasome | ↓ |
Cyclooxygenase 2 (Prostaglandin synthase 2) [32] | COX-2 (PGHS-2) | Pro-inflammatory signaling | ↓ |
CxC motic chemokine Ligand 1 [55] | CXCL1 | Inflammatory chemoattractant | ↓ |
CxC motiv chemokine 10 [11] (interferon gamma induced protein) | CXCL10 | Inflammation, Signaling | ↑ |
CxC motiv chemokine 12 [31] | SDF-1 | Inflammation, Signaling | ↑ |
CxC motiv chemokine ligand 8 [11] (Interleukin 8) | CXCL8 (IL-8) | Transcription, inflammation | ↑↓ |
CXC-Motiv-Chemokinreceptor 2 (IL-8 Receptor beta) [55] | CXCR2 | Signaling; pro inflammatory | ↓ |
CXC-motiv-chemokinreceptor 4 [31] | CXCR4 | Inflammation, Signaling | ↑ |
Dendritic cell-specific transmembrane protein [35] | Dc-STAMP | co-regulator in osteoclast development | ↓ |
Endothelial nitric oxide gene expression [11,22,24] | eNOS | Signaling (vascular) | ↑ |
Epidermal growth factor [11] | EGF | Induction of mitosis in epithelial cells | ↑ |
Extracellular signal-regulated protein kinase [53,55,56,65] | ERK | Regulates growth and differentiation | ↑↓ |
Fibroblast growth factor 2 (basic fibroblast growth factor 2) [11,17,56] | FGF-2 | Transcription | ↑ |
FOS protein [12] | FOS (AP-1; c-fos) | Transcription | ↑ |
FOSB protein [12] | FOSB (G0/G1 switch regula-tory protein 3; G0S3) | Transcription | ↑ |
Glycogen synthase kinase-3 [54,62] | GSK3 beta | proliferation, differentiation, energy metabolism, neuronal development | ↑↓ |
High mobility group box 1 protein [48,65,66] | HMGB1 | Cytokine mediator of inflammation | ↓ |
Hypoxia inducible factor 1 α subunit [29,30,31,32,33,35] | HIF-1α (HIF1A) | Regulator of cellular response to oxygen levels | ↑↓ |
Inducible nitric oxide synthase [21,66] | i-NOS (NOS-2) | Signaling | ↓↑ |
Interferon gamma [11,30] | IFG | Cytokine | ↓ |
Interleukin 1beta [51,57] | IL-1 ß (IL-1; IL1B) | Pro-inflammatory cytokine | ↓ |
Interleukin-6 [30,46] (Interferon beta 2) | IL-6 (IFNB2) | apoptosis and proliferation of leucocytes | ↑↓ |
Intracellular adhesion molecule- 1 [23] | ICAM-1 (CD54) | Adhesion | ↓ |
Krüppel-like factor 2 [68] | KLF-2 | Vasoprotective; Inhibited by miR-92a | ↑ |
Matrix Metalloproteinase-9 [40,41,42,43,65,66] | MMP-9 (GELB) | Signaling (vascular), migration | ↓ |
Matrix Metalloproteinase-2 [41,43,65,66] | MMP-2 (CLG4A) | tissue remodeling, angiogenesis and cell migration | ↓ |
Matrix Metalloproteinase-13 [65,66] | MMP-13 (CLG3) | Cleaves Type II collagen | ↓ |
Mechanistic target of rapamycin [46,79] | m-TOR (FRAP-1) | Proliferation, differentiation, autophagy | ↓ |
Metastasis associated lung adenocarcinoma transcript 1 [68] | MALAT 1 | Transcription | ↑ |
Micro-RNA 92a [68] | miR-92a | Downregulates KLF-2 | ↓ |
Monocyte chemotactic protein 1 (CC chemokine ligand 2) [11] | MCP1 (CCL2) | Chemokine secreted by inflammatory cells. Binds to epithelia, attracting and fixating mainly monocytes | ↑↓ |
Nitric oxide (endothelium derived relaxing factor) [17,18,19,20,21,22,23,24,66] | NO (EDRF) | Free radical, causes vasodilation | ↑ |
Nuclear factor erythroid 2-related factor 2 [11,12] | Nrf2 | Transcription of cytoprotective genes | ↑ |
Nuclear factor kappa-B [29,31,48,49,50,51,55,56] | NF-ĸB | Transcription, Inflammation | ↓↑ |
Nuclear factor of activated T-cells, cytoplasmic 1 [35] | NFATc1 | factor in gene transcription during immune response; involved in regulation of bone-mass | ↓ |
Occludin [59] | OCLN | Tight junctions; preserves barrier function of epithelia | ↑ |
p53 [32] | p53 | Transcription | ↓ |
phosphorylated/unphosphorylated glycogen synthase kinase 3 [54,62] | pGSK3beta/GSK3beta | Neuronal Apoptosis | ↓ |
Platelet derived growth factor [11] | PDGF | Transcription | ↑ |
Protein kinase B [54] (phophorylized Akt) | p-Akt | Transcription; regulates proliferation and cell death | ↑↓ |
Protein kinase C A [56] | Pkc α | Adhesion, tight junctions | ↑ |
Receptor for advanced glycation end products [65,66] | RAGE | Induces cell survival, differentiation or apoptosis according to activity | ↓ |
Rho-associtaed protein kinase [59] | ROCK | Regulates cell shape and migration | ↓ |
Runt-related transcription factor 2 [62] | Runx 2 | Master regulator of bone development | ↑ |
Toll-like receptor 4 [50,66] | TLR4 | pro-inflammatory cytokine signaling | ↓ |
Toll-like receptor 2 [51,66] | TLR2 | Pathogen recognition signaling | ↓ |
Transforming growth factor beta 1 [43] | TGFB1 | Proliferation, differentiation | ↓ |
Transcription factor JUNB [12] | JUNB | Transcription | ↑ |
Tumor necrosis factor α [22,43,51] | TNF-α | Transcription; pro inflammatory | ↓ |
Reactive oxygen species [31,33,40] | ROS | Signaling; dose dependent effect | ↑↓ |
Vascular cell adhesion molecule-1 [23] | VCAM-1 (CD106) | Adhesion | ↓ |
Vascular endothelial growth factor [11,17,30,31,43,53] | VEGF | Transcription, vascular signaling | ↓↑ |
Wnt family member 3a [62] | Wnt-3a | skeletal differentiation and development; maintenance of bone-mass | ↑ |
Zonula occludens-1 [59] | ZO-1 | cross-links and anchors tight junction proteins | ↑ |
Ref. No | N HBO Total | N HBO Day | Pressure (bar) | Duration (min) | Species | Tissue/Indication/Experiment |
---|---|---|---|---|---|---|
[11] | 25 | 1 | 2.2 | 60 | Human (patients) | Diabetic foot ulcer |
[12] | 1 | 1 | 2.4 | 60 | Human | Cells (endothelial, microvascular) |
[17] | 5 | 1 | 2.5 | 120 | Rat | Contused muscle |
[18] | 5–8 | 1 | 2.4 | 90 | Mouse | Limb ischemia |
[19] | 5 | 1 | 2.8 | 60 | Human | Cells (fibroblasts, epithelia) |
[20] | 20 | 1 | 2.0 | 90 | Human (patients) | Chronic wound |
[21] | 5 | 1 | 2.5 | 120 | Mouse | Wound model |
[22] | 1 | 1 | 2.4 | 90 | Human | Cells (chronic wound condition) |
[23] | 1 | 2 | 2.4 | 90 | Human | Umbilical cord. neutrophils |
[24] | 1 | 1 | 2.5 | 90 | Rat | Muscle (Reperfusion injury) |
[29] | 1 | 1 | 2.5 | 60 | Human | Cells (monocytes, fibroblasts) |
1 | 1 | 2.0 | 90 | Mouse | Diabetic wound model | |
[30] | 20 | 1 | 2.4 | 70 | Human (patients) | Diabetic foot ulcer |
[31] | 30 | 1 | 2.0 | 90 | Mouse | Diabetic wound model |
[32] | 3–14 | 1 | 2.4 | 90 | Rat | Ischemic wound model |
[33] | 7 | 1 | 2.5 | 90 | Rat | Stroke model |
[35] | 4 | 1 | 2.4 | 90 | Human | Cells (RAW 264.7, macrophages) |
[40] | 10 | 1 | 2.0 | 90 | Mouse | Wound model |
[41] | 2–10 | 2 | 2.5 | 60 | Rat | Spinal cord injury |
[42] | 1–21 | 1 | 2.5 | 90 | Rat | CO-poisoning |
[43] | 35 | 1 | 2.5 | 60 | Rat | Diabetic heart model |
[46] | 5 | 1 | 2.0 | 60 | Rat | Nerve ligation |
[48] | 2–20 | 1–2 | 2.5 | 70 | Rat | Spinal cord injury |
[49] | 30 | 1 | 2.0 | 115 | Human (patients) | Spinal cord injury |
[50] | 1–14 | 1 | 2.0 | 70 | Rat | Spinal cord injury |
[51] | 1 | 1 | 2.4 | 60 | Rat | Spinal cord injury |
[53] | 7 | 1 | 2.0 | 110 | Rat | Traumatic brain injury |
[54] | 1 | 1 | 2.8 | 90 | Mouse | Traumatic brain injury |
[55] | 3 | 1 | 2.0 | 60 | Rat | Traumatic brain injury |
[56] | 4 | 1 | 2.5 | 80 | Mouse | Cells (osteoblast-like) |
[57] | 1 | every 2nd day | 0.5 | 90 | Rat | Chondrocytes |
[59] | 1–14 | 1 | 2.0 | 60 | Rat | Spinal cord injury |
[62] | 1–7 | every 3rd day | 2.5 | 90 | Mouse | Traumatic brain inury |
[64] | 1 | 1 | 2.0 | 70 | Mouse | Cells (Neurons hippocampus) |
[65] | 3 | every 2nd day | 2.5 | 120 | Human | Cells (nucleus pulposus cells) |
[66] | 3 | every 2nd day | 2.5 | 90 | Human | Cells (Chondrocytes) |
[67] | 3 | every 2nd day | 2.5 | 120 | Human | Cells (degenerated disc cells) |
[68] | 1–14 | 1 | 2.5 | 60 | Rat | Myocardial infarction model |
[70] | 15 | 1 | 2.45 | 90 | Human (patients) | Chronic wound |
[79] | 10 | 1 | 2.0 | 100 | Rat | Spinal cord injury |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindenmann, J.; Smolle, C.; Kamolz, L.P.; Smolle-Juettner, F.M.; Graier, W.F. Survey of Molecular Mechanisms of Hyperbaric Oxygen in Tissue Repair. Int. J. Mol. Sci. 2021, 22, 11754. [Google Scholar] [CrossRef]
- Mathieu, D.; Marroni, A.; Kot, J. Tenth European Consensus Conference on Hyperbaric Medicine: Recommendations for accepted and non-accepted clinical indications and practic of hyperbaric oxygten treatment. Diving Hyperb. Med. 2017, 47, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cho, Y. Comparative gene expression profiling reveals the mechanisms of axon regeneration. FEBS J. 2021, 288, 4786–4797. [Google Scholar] [CrossRef]
- Das, D.; Fletcher, R.B.; Ngai, J. Cellular mechanisms of epithelial stem cell self-renewal and differentiation during homeostasis and repair. Wiley Interdiscip. Rev. Dev. Biol. 2020, 9, e361. [Google Scholar] [CrossRef]
- Julier, Z.; Park, A.J.; Briquez, P.S.; Martino, M.M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 2017, 53, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Fão, L.; Mota, S.I.; Rego, A.C. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res Rev. 2019, 54, 100942. [Google Scholar] [CrossRef] [PubMed]
- Victor, P.; Sarada, D.; Ramkumar, K.M. Pharmacological activation of Nrf2 promotes wound healing. Eur. J. Pharmacol. 2020, 886, 173395. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wu, Z.; Wu, L.N.; Jiang, J.; Hu, G.N. Theaflavin Attenuates TBHP-Induced Endothelial Cells Oxidative Stress by Activating PI3K/AKT/Nrf2 and Accelerates Wound Healing in Rats. Front. Bioeng. Biotechnol. 2022, 10, 830574. [Google Scholar] [CrossRef]
- Meng, X.E.; Zhang, Y.; Li, N.; Fan, D.F.; Yang, C.; Li, H.; Guo, D.Z.; Pan, S.Y. Effects of hyperbaric oxygen on the Nrf2 signaling pathway in secondary injury following traumatic brain injury. Genet. Mol. Res. 2016, 15, 1–7. [Google Scholar] [CrossRef]
- Li, Y.; Shen, C.; Zhou, X.; Zhang, J.; Lai, X.; Zhang, Y. Local Treatment of Hydrogen-Rich Saline Promotes Wound Healing In Vivo by Inhibiting Oxidative Stress via Nrf-2/HO-1 Pathway. Oxid. Med. Cell. Longev. 2022, 2022, 2949824. [Google Scholar] [CrossRef]
- Dhamodharan, U.; Karan, A.; Sireesh, D.; Vaishnavi, A.; Somasundar, A.; Rajesh, K.; Ramkumar, K.M. Tissue-specific role of Nrf2 in the treatment of diabetic foot ulcers during hyperbaric oxygen therapy. Free Radic. Biol. Med. 2019, 138, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Godman, C.A.; Chheda, K.P.; Hightower, L.E.; Perdrizet, G.; Shin, D.-G.; Giardina, C. Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 2010, 15, 431–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malone-Povolny, M.J.; Maloney, S.E.; Schoenfisch, M.H. Nitric Oxide Therapy for Diabetic Wound Healing. Adv. Health Mater. 2019, 8, e1801210. [Google Scholar] [CrossRef] [PubMed]
- Man, M.Q.; Wakefield, J.S.; Mauro, T.M.; Elias, P.M. Regulatory Role of Nitric Oxide in Cutaneous Inflammation. Inflammation 2022, 45, 949–964. [Google Scholar] [CrossRef] [PubMed]
- Van der Vliet, A.; Eiserich, J.P.; Cross, C.E. Nitric oxide: A pro-inflammatory mediator in lung disease? Respir. Res. 2000, 1, 67–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broughton, G., 2nd; Janis, J.E.; Attinger, C.E. The basic science of wound healing. Plast. Reconstr. Surg. 2006, 117 (Suppl. S7), 12S–34S. [Google Scholar] [CrossRef]
- Yamamoto, N.; Oyaizu, T.; Enomoto, M.; Horie, M.; Yuasa, M.; Okawa, A.; Yagishita, K. VEGF and bFGF induction by nitric oxide is associated with hyperbaric oxygen-induced angiogenesis and muscle regeneration. Sci. Rep. 2020, 10, 2744. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, L.J.; Gallagher, K.A.; Bauer, S.M.; Bauer, R.J.; Baireddy, V.; Liu, Z.J.; Buerk, D.G.; Thom, S.R.; Velazquez, O.C. Endothelial progenitor cell release into circulation is triggered by hyperoxia-induced increases in bone marrow nitric oxide. Stem Cells 2006, 24, 2309–2318. [Google Scholar] [CrossRef]
- Venetsanou, K.; Fildissis, G.; Tokta, R.; Brinias, C.; Baltopoulos, G. The role of nitric oxide in cellular response to hyperbaric conditions. Eur. J. Appl. Physiol. 2012, 112, 677–687. [Google Scholar] [CrossRef]
- Boykin, J.V., Jr.; Baylis, C. Hyperbaric oxygen therapy mediates increased nitric oxide production associated with wound healing: A preliminary study. Adv. Skin Wound Care 2007, 20, 382–388. [Google Scholar] [CrossRef]
- Gajendrareddy, P.K.; Sen, C.K.; Horan, M.P.; Marucha, P.T. Hyperbaric oxygen therapy ameliorates stress-impaired dermal wound healing. Brain Behav. Immun. 2005, 19, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Kendall, A.C.; Whatmore, J.L.; Harries, L.W.; Winyard, P.G.; Smerdon, G.R.; Eggleton, P. Changes in inflammatory gene expression induced by hyperbaric oxygen treatment in human endothelial cells under chronic wound conditions. Exp. Cell Res. 2012, 318, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Kendall, A.C.; Whatmore, J.L.; Winyard, P.G.; Smerdon, G.R.; Eggleton, P. Hyperbaric oxygen treatment reduces neutrophil-endothelial adhesion in chronic wound conditions through S-nitrosation. Wound Repair Regen. 2013, 21, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Baynosa, R.C.; Naig, A.L.; Murphy, P.S.; Fang, X.H.; Stephenson, L.L.; Khiabani, K.T.; Wang, W.Z.; Zamboni, W.A. The effect of hyperbaric oxygen on nitric oxide synthase activity and expression in ischemia-reperfusion injury. J. Surg. Res. 2013, 183, 355–361. [Google Scholar] [CrossRef]
- Hutami, I.R.; Izawa, T.; Khurel-Ochir, T.; Sakamaki, T.; Iwasa, A.; Tanaka, E. Macrophage Motility in Wound Healing Is Regulated by HIF-1α via S1P Signaling. Int. J. Mol. Sci. 2021, 22, 8992. [Google Scholar] [CrossRef]
- Li, G.; Ko, C.N.; Li, D.; Yang, C.; Wang, W.; Yang, G.J.; Di Primo, C.; Wong, V.K.W.; Xiang, Y.; Lin, L.; et al. A small molecule HIF-1α stabilizer that accelerates diabetic wound healing. Nat. Commun. 2021, 12, 3363. [Google Scholar] [CrossRef]
- Goggins, B.J.; Minahan, K.; Sherwin, S.; Soh, W.S.; Pryor, J.; Bruce, J.; Liu, G.; Mathe, A.; Knight, D.; Horvat, J.C.; et al. Pharmacological HIF-1 stabilization promotes intestinal epithelial healing through regulation of α-integrin expression and function. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G420–G438. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Jia, Y.; Xu, J.; Chai, Y. Roxadustat promotes angiogenesis through HIF-1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen. 2019, 27, 324–334. [Google Scholar] [CrossRef]
- Sunkari, V.G.; Lind, F.; Botusan, I.R.; Kashif, A.; Liu, Z.-J.; Yla-Herttuala, S.; Brismar, K.; Velazquez, O.; Catrina, S.B. Hyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic mice. Wound Repair Regen. 2015, 23, 98–103. [Google Scholar] [CrossRef]
- Anguiano-Hernandez, Y.M.; Contreras-Mendez, L.; de Los Angeles Hernandez-Cueto, M.; Muand Oz-Medina, J.E.; Santillan-Verde, M.A.; Barbosa-Cabrera, R.E.; Delgado-Quintana, C.A.; Trejo-Rosas, S.; Santacruz-Tinoco, C.E.; Gonzalez-Ibarra, J.; et al. Modification of HIF-1α, NF-aκB, IGFBP-3, VEGF and adiponectin in diabetic foot ulcers treated with hyperbaric oxygen. Undersea Hyperb. Med. 2019, 46, 35–44. [Google Scholar] [CrossRef]
- Huang, X.; Liang, P.; Jiang, B.; Zhang, P.; Yu, W.; Duan, M.; Guo, L.; Cui, X.; Huang, M.; Huang, X. Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis. Life Sci. 2020, 259, 118246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chang, Q.; Cox, R.A.; Gong, X.; Gould, L.J. Hyperbaric oxygen attenuates apoptosis and decreases inflammation in an ischemic wound model. J. Investig. Dermatol. 2008, 128, 2102–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.; Liang, X.; Chen, D.; Chen, Y.; Doycheva, D.; Tang, J.; Tang, J.; Zhang, J.H. Delayed hyperbaric oxygen therapy promotes neurogenesis through reactive oxygen species/hypoxia-inducible factor-1α/β-catenin pathway in middle cerebral artery occlusion rats. Stroke 2014, 45, 1807–1814. [Google Scholar] [CrossRef] [PubMed]
- Hadanny, A.; Efrati, S. The Hyperoxic-Hypoxic Paradox. Biomolecules 2020, 10, 958. [Google Scholar] [CrossRef] [PubMed]
- Al Hadi, H.; Smerdon, G.R.; Fox, S.W. Hyperbaric oxygen therapy suppresses osteoclast formation and bone resorption. J. Orthop. Res. 2013, 31, 1839–1844. [Google Scholar] [CrossRef]
- Dai, J.; Shen, J.; Chai, Y.; Chen, H. IL-1β Impaired Diabetic Wound Healing by Regulating MMP-2 and MMP-9 through the p38 Pathway. Mediat. Inflamm. 2021, 2021, 6645766. [Google Scholar] [CrossRef]
- Hingorani, D.V.; Lippert, C.N.; Crisp, J.L.; Savariar, E.N.; Hasselmann, J.P.C.; Kuo, C.; Nguyen, Q.T.; Tsien, R.Y.; Whitney, M.A.; Ellies, L.G. Impact of MMP-2 and MMP-9 enzyme activity on wound healing, tumor growth and RACPP cleavage. PLoS ONE 2018, 13, e0198464. [Google Scholar] [CrossRef]
- Bobadilla, M.; Sáinz, N.; Rodriguez, J.A.; Abizanda, G.; Orbe, J.; de Martino, A.; García Verdugo, J.M.; Páramo, J.A.; Prósper, F.; Pérez-Ruiz, A. MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy. Stem Cells 2014, 32, 447–461. [Google Scholar] [CrossRef]
- Jones, J.I.; Nguyen, T.T.; Peng, Z.; Chang, M. Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals 2019, 12, 79. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Jones, J.I.; Wolter, W.R.; Perez, R.L.; Schroeder, V.A.; Champion, M.M.; Hesek, D.; Lee, M.; Suckow, M.A.; Mobashery, S.; et al. Hyperbaric oxygen therapy accelerates wound healing in diabetic mice by decreasing active matrix metalloproteinase-9. Wound Repair Regen. 2020, 28, 194–201. [Google Scholar] [CrossRef]
- Yang, J.; Wang, G.; Gao, C.; Shao, G.; Kang, N. Effects of hyperbaric oxygen on MMP-2 and MMP-9 expression and spinal cord edema after spinal cord injury. Life Sci. 2013, 93, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Wang, W.L.; Li, Y.; Gong, X.; Bao, J.X.; Zhang, H.J.; Xie, X.P.; Chang, Y.M.; Li, J.S. Effects of hyperbaric oxygen on hippocampal neuronal apoptosis in rats with acute carbon monoxide poisoning. Undersea Hyperb. Med. 2017, 44, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.S.; de Souza, K.S.C.; Galdino, O.A.; de Moraes, M.V.; Ishikawa, U.; Medeiros, M.A.; Lima, J.P.M.S.; de Paula Medeiros, K.C.; da Silva Farias, N.B.; de Araújo Júnior, R.F.; et al. Hyperbaric oxygen therapy mitigates left ventricular remodeling, upregulates MMP-2 and VEGF, and inhibits the induction of MMP-9, TGF-β1, and TNF-α in streptozotocin-induced diabetic rat heart. Life Sci. 2022, 295, 120393. [Google Scholar] [CrossRef] [PubMed]
- Lund-Ricard, Y.; Cormier, P.; Morales, J.; Boutet, A. mTOR Signaling at the Crossroad between Metazoan Regeneration and Human Diseases. Int. J. Mol. Sci. 2020, 21, 2718. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, W.; Nong, Z.; Nie, Y.; Chen, X.; Pan, X.; Guo, Y.; Yao, M.; Deng, W. Hyperbaric oxygen alleviated cognitive impairments in mice induced by repeated cerebral ischemia-reperfusion injury via inhibition of autophagy. Life Sci. 2020, 241, 117170. [Google Scholar] [CrossRef]
- Liu, Y.D.; Wang, Z.B.; Han, G.; Zhao, P. Hyperbaric oxygen treatment attenuates neuropathic pain by elevating autophagy flux via inhibiting mTOR pathway. Am. J. Transl. Res. 2017, 9, 2629–2638. [Google Scholar]
- Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Zhou, Y.; Wang, G.; Gao, C.; Su, Q. Hyperbaric oxygen alleviates experimental (spinal cord) injury by downregulating HMGB1/NF-kappaB expression. Spine 2013, 38, E1641–E1648. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, L.; Li, P.; Liu, X.; Liang, F.; Jiang, Y.; Kang, N.; Gao, C.; Yang, J. Effect of hyperbaric oxygen therapy on HMGB1/NF-kappaB expression and prognosis of acute spinal cord injury: A randomized clinical trial. Neurosci. Lett. 2019, 692, 47–52. [Google Scholar] [CrossRef]
- Kang, N.; Hai, Y.; Yang, J.; Liang, F.; Gao, C.J. Hyperbaric oxygen intervention reduces secondary spinal cord injury in rats via regulation of HMGB1/TLR4/NF-κB signaling pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 1141–1153. [Google Scholar]
- Tan, J.; Zhang, F.; Liang, F.; Wang, Y.; Li, Z.; Yang, J.; Liu, X. Protective effects of hyperbaric oxygen treatment against spinal cord injury in rats via toll-like receptor 2/nuclear factor-kappaB signaling. Int. J. Clin. Exp. Pathol. 2014, 7, 1911–1919. [Google Scholar] [PubMed]
- Gao, Q. Oxidative Stress and Autophagy. Adv. Exp. Med. Biol. 2019, 1206, 179–198. [Google Scholar] [PubMed]
- Yang, Y.; Wei, H.; Zhou, X.; Zhang, F.; Wang, C. Hyperbaric oxygen promotes neural stem cell proliferation by activating vascular endothelial growth factor/extracellular signal-regulated kinase signaling after traumatic brain injury. Neuroreport 2017, 28, 1232–1238. [Google Scholar] [CrossRef]
- He, H.; Li, X.; He, Y. Hyperbaric oxygen therapy attenuates neuronal apoptosis induced by traumatic brain injury via Akt/GSK3beta/beta-catenin pathway. Neuropsychiatr. Dis. Treat. 2019, 15, 369–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, A.; Huang, H.; You, W.; Liu, Y.; Wu, H.; Liu, S. The neuroprotection of hyperbaric oxygen therapy against traumatic brain injury via NF-κB/MAPKs-CXCL1 signaling pathways. Exp. Brain Res. 2022, 240, 207–220. [Google Scholar] [CrossRef]
- Hsieh, C.P.; Chiou, Y.L.; Lin, C.Y. Hyperbaric oxygen-stimulated proliferation and growth of osteoblasts may be mediated through the FGF-2/MEK/ERK 1/2/NF-κB and PKC/JNK pathways. Connect. Tissue Res. 2010, 51, 497–509. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, G.; Chen, H.; Chen, L.; Chen, H.; Zhu, G.; Zhao, H. Hyperbaric oxygen protects type II collagen in interleukin-1β-induced mandibular condylar chondrocyte via inhibiting the JNK/c-Jun signaling pathway. Oncotarget 2017, 8, 60312–60323. [Google Scholar] [CrossRef] [Green Version]
- Nunes, K.P.; Webb, R.C. New insights into RhoA/Rho-kinase signaling: A key regulator of vascular contraction. Small GTPases 2021, 12, 458–469. [Google Scholar] [CrossRef]
- Liu, X.; Liang, F.; Zhang, J.; Li, Z.; Yang, J.; Kang, N. Hyperbaric Oxygen Treatment Improves Intestinal Barrier Function After Spinal Cord Injury in Rats. Front. Neurol. 2020, 11, 563281. [Google Scholar] [CrossRef]
- Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell 2012, 149, 1192–1205. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.S.; Ueng, S.W.; Niu, C.C.; Yuan, L.J.; Yang, C.Y.; Chen, W.J.; Lee, M.S.; Chen, J.K. Effects of hyperbaric oxygen on the osteogenic differentiation of mesenchymal stem cells. BMC Musculoskelet. Disord. 2014, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.M.; Mott, J.L. Overview of microRNA biology. Semin. Liver Dis. 2015, 35, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Y.; Feng, Z.; Tian, S.; Yang, Y.; Jia, Y.; Wang, G.; Wang, J.; Bai, W.; Li, J.; He, X. HBO Alleviates Neural Stem Cell Pyroptosis via lncRNA-H19/miR-423-5p/NLRP3 Axis and Improves Neurogenesis after Oxygen Glucose Deprivation. Oxid. Med. Cell. Longev. 2022, 2022, 9030771. [Google Scholar] [CrossRef]
- Niu, C.C.; Lin, S.S.; Yuan, L.J.; Lu, M.L.; Ueng, S.W.N.; Yang, C.Y.; Tsai, T.T.; Lai, P.L. Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells. Arthritis Res. Ther. 2019, 21, 42. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.S.; Yuan, L.J.; Niu, C.C.; Tu, Y.K.; Yang, C.Y.; Ueng, S.W.N. Hyperbaric oxygen inhibits the HMGB1/RAGE signaling pathway by upregulating Mir-107 expression in human osteoarthritic chondrocytes. Osteoarthr. Cartil. 2019, 27, 1372–1381. [Google Scholar] [CrossRef]
- Lin, S.S.; Niu, C.C.; Yuan, L.J.; Tsai, T.T.; Lai, P.L.; Chong, K.Y.; Wei, K.C.; Huang, C.Y.; Lu, M.L.; Yang, C.Y.; et al. Mir-573 regulates cell proliferation and apoptosis by targeting Bax in human degenerative disc cells following hyperbaric oxygen treatment. J. Orthop. Surg. Res. 2021, 16, 16. [Google Scholar] [CrossRef]
- Shyu, K.G.; Wang, B.W.; Fang, W.J.; Pan, C.M.; Lin, C.M. Hyperbaric oxygen-induced long non-coding RNA MALAT1 exosomes suppress MicroRNA-92a expression in a rat model of acute myocardial infarction. J. Cell. Mol. Med. 2020, 24, 12945–12954. [Google Scholar] [CrossRef]
- Ginsberg, M.H. Integrin activation. BMB Rep. 2014, 47, 655–659. [Google Scholar] [CrossRef]
- Baiula, M.; Greco, R.; Ferrazzano, L.; Caligiana, A.; Hoxha, K.; Bandini, D.; Longobardi, P.; Spampinato, S.; Tolomelli, A. Integrin-mediated adhesive properties of neutrophils are reduced by hyperbaric oxygen therapy in patients with chronic non-healing wound. PLoS ONE 2020, 15, e0237746. [Google Scholar] [CrossRef]
- Bennett, M.H.; Mitchell, S.J. Emerging indications for hyperbaric oxygen. Curr. Opin. Anaesthesiol. 2019, 32, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Khalatbary, A.R. A review on the neuroprotective effects of hyperbaric oxygen therapy. Med. Gas Res. 2021, 11, 72–82. [Google Scholar] [PubMed]
- De Wolde, S.D.; Hulskes, R.H.; Weenink, R.P.; Hollmann, M.W.; van Hulst, R.A. The Effects of Hyperbaric Oxygenation on Oxidative Stress, Inflammation and Angiogenesis. Biomolecules 2021, 11, 1210. [Google Scholar] [CrossRef] [PubMed]
- Gottfried, I.; Schottlender, N.; Ashery, U. Hyperbaric Oxygen Treatment-From Mechanisms to Cognitive Improvement. Biomolecules 2021, 11, 1520. [Google Scholar] [CrossRef] [PubMed]
- Oropallo, A.R.; Serena, T.E.; Armstrong, D.G.; Niederauer, M.Q. Molecular Biomarkers of Oxygen Therapy in Patients with Diabetic Foot Ulcers. Biomolecules 2021, 11, 925. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.A.; Fraile-Martinez, O.; García-Montero, C.; Callejón-Peláez, E.; Sáez, M.A.; Álvarez-Mon, M.A.; García-Honduvilla, N.; Monserrat, J.; Álvarez-Mon, M.; Bujan, J.; et al. A General Overview on the Hyperbaric Oxygen Therapy: Applications, Mechanisms and Translational Opportunities. Medicina 2021, 57, 864. [Google Scholar] [CrossRef]
- Smolle, C.; Lindenmann, J.; Kamolz, L.; Smolle-Juettner, F.M. The History and Development of Hyperbaric Oxygenation (HBO) in Thermal Burn Injury. Medicina 2021, 57, 49. [Google Scholar] [CrossRef]
- Camporesi, E.M.B.G. Mechanisms of action of hyperbaric oxygen therapy. Undersea Hyperb. Med. 2018, 41, 247–252. [Google Scholar]
- Chen, H.; Xu, G.; Wu, Y.; Wang, X.; Wang, F.; Zhang, Y. HBO-PC Promotes Locomotor Recovery by Reducing Apoptosis and Inflammation in SCI Rats: The Role of the mTOR Signaling Pathway. Cell. Mol. Neurobiol. 2020, 41, 1537–1547. [Google Scholar] [CrossRef]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Ridiandries, A.; Tan, J.T.M.; Bursill, C.A. The Role of Chemokines in Wound Healing. Int. J. Mol. Sci. 2018, 19, 3217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida, L.G.N.; Thode, H.; Eslambolchi, Y.; Chopra, S.; Young, D.; Gill, S.; Devel, L.; Dufour, A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol. Rev. 2022, 74, 712–768. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindenmann, J.; Kamolz, L.; Graier, W.; Smolle, J.; Smolle-Juettner, F.-M. Hyperbaric Oxygen Therapy and Tissue Regeneration: A Literature Survey. Biomedicines 2022, 10, 3145. https://doi.org/10.3390/biomedicines10123145
Lindenmann J, Kamolz L, Graier W, Smolle J, Smolle-Juettner F-M. Hyperbaric Oxygen Therapy and Tissue Regeneration: A Literature Survey. Biomedicines. 2022; 10(12):3145. https://doi.org/10.3390/biomedicines10123145
Chicago/Turabian StyleLindenmann, J., L. Kamolz, W. Graier, J. Smolle, and F.-M. Smolle-Juettner. 2022. "Hyperbaric Oxygen Therapy and Tissue Regeneration: A Literature Survey" Biomedicines 10, no. 12: 3145. https://doi.org/10.3390/biomedicines10123145