Do Psychological Factors Influence the Elastic Properties of Soft Tissue in Subjects with Fibromyalgia? A Cross-Sectional Observational Study
Abstract
:1. Introduction
2. Method
2.1. Study Design
2.2. Sample
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
Level of Association between Psychological Factors and SEL in Painful Points
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, L.M.; Bennett, R.M.; Crofford, L.J.; Dean, L.E.; Clauw, D.J.; Goldenberg, D.L.; Fitzcharles, M.A.; Paiva, E.S.; Staud, R.; Sarzi-Puttini, P.; et al. AAPT Diagnostic Criteria for Fibromyalgia. J. Pain 2019, 20, 611–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-Ledesma, S.; Pruimboom, L.; Lluch, E.; Dueñas, L.; Mena-Del Horno, S.; Gonzalez-Muñoz, A. The Relationship between Daily Physical Activity, Psychological Factors, and Vegetative Symptoms in Women with Fibromyalgia: A Cross-Sectional Observational Study. Int. J. Environ. Res. Public Health 2022, 19, 11610. [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.C.; Ríos, M.C.G.; Ledesma, S.N.; Haro, R.M.T.; Barragán, A.C.; Correa-Rodríguez, M.; Ferrándiz, M.E.A. Functional Status and Body Mass Index in Postmenopausal Women with Fibromyalgia: A Case–Control Study. Int. J. Environ. Res. Public Health 2019, 16, 4540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Formación, C. Revista de La Sociedad Española del Dolor; Elsevier: Amsterdam, The Netherlands, 2009; Volume 16. [Google Scholar]
- Sosa-Reina, M.D.; Nunez-Nagy, S.; Gallego-Izquierdo, T.; Pecos-Martín, D.; Monserrat, J.; Álvarez-Mon, M. Effectiveness of Therapeutic Exercise in Fibromyalgia Syndrome: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Biomed. Res. Int. 2017, 2017, 2356346. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Ledesma, S.; Gonzalez-Muñoz, A.; Carroll, J.; Burton, P. Short- and long-term effects of whole-body photobiomodulation on pain, functionality, tissue quality, central sensitisation and psychological factors in a population suffering from fibromyalgia: Protocol for a triple-blinded randomised clinical trial. Ther. Adv. Chronic Dis. 2022, 13. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.-A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 Fibromyalgia Diagnostic Criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef]
- Mas, A.J.; Carmona, L.; Valverde, M. Prevalence and Impact of Fibromyalgia on Function and Quality of Life in Individuals from the General Population: Results from a Nationwide Study in Spain. Clin. Exp. Rheumatol. 2008, 26, 519–526. [Google Scholar]
- Wolfe, F.; Ross, K.; Anderson, J.; Russell, I.J. Aspects of Fibro- Myalgia in the General Population: Sex, Pain Threshold, and Fibromyalgia Symptoms. J. Rheumatol. 1995, 22, 151–156. [Google Scholar]
- Navarro-Ledesma, S.; Gonzalez-Muñoz, A.; Ríos, M.C.G.; de la Serna, D.; Pruimboom, L. Circadian Variation of Blood Pressure in Patients with Chronic Musculoskeletal Pain: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 6481. [Google Scholar] [CrossRef]
- Navarro-Ledesma, S.; Carroll, J.; González-Muñoz, A.; Pruimboom, L.; Burton, P. Changes in Circadian Variations in Blood Pressure, Pain Pressure Threshold and the Elasticity of Tissue after a Whole-Body Photobiomodulation Treatment in Patients with Fibromyalgia: A Tripled-Blinded Randomized Clinical Trial. Biomedicines 2022, 10, 2678. [Google Scholar] [CrossRef]
- Coppieters, I.; Meeus, M.; Kregel, J.; Caeyenberghs, K.; de Pauw, R.; Goubert, D.; Cagnie, B. Relations Between Brain Alterations and Clinical Pain Measures in Chronic Musculoskeletal Pain: A Systematic Review. J. Pain 2016, 17, 949–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malin, K.; Owen, G. Littlejohn Psychological Factors Mediate Key Symptoms of Fibromyalgia through Their Influence on Stress. Clin. Rheumatol. 2016, 35, 2353–2357. [Google Scholar] [CrossRef] [PubMed]
- Holstege, G. How the Emotional Motor System Controls the Pelvic Organs. Sex. Med. Rev. 2016, 4, 303–328. [Google Scholar] [CrossRef] [PubMed]
- Hassett, A.; Clauw, D.; Williams, D. Premature Aging in Fibromyalgia. Curr. Aging Sci. 2015, 8, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, R.; Sherratt, M.J.; Cruickshank, J.K.; Derby, B. Characterizing the Elastic Properties of Tissues. Mater. Today 2011, 14, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.T.; Jacobsen, T.D.; Chahine, N.O. Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues. ACS Biomater. Sci. Eng. 2017, 3, 2644–2656. [Google Scholar] [CrossRef]
- Schleip, R. Fascial Plasticity-A New Neurobiological Explanation: Part 1. J. Bodyw. Mov. 2003, 7, 11–19. [Google Scholar] [CrossRef]
- Thornton, K.G.S.; Robert, M. Prevalence of Pelvic Floor Disorders in the Fibromyalgia Population: A Systematic Review. J. Obs. Gynaecol. Can. 2020, 42, 72–79. [Google Scholar] [CrossRef]
- Kulshreshtha, P.; Deepak, K.K. Autonomic Nervous System Profile in Fibromyalgia Patients and Its Modulation by Exercise: A Mini Review. Clin. Physiol. Funct. Imaging 2013, 33, 83–91. [Google Scholar] [CrossRef]
- Feng, Y.N.; Li, Y.P.; Liu, C.L.; Zhang, Z.J. Assessing the Elastic Properties of Skeletal Muscle and Tendon Using Shearwave Ultrasound Elastography and MyotonPRO. Sci. Rep. 2018, 8, 17064. [Google Scholar] [CrossRef]
- Chan, S.T.; Fung, P.K.; Ng, N.Y.; Ngan, T.L.; Chong, M.Y.; Tang, C.N.; He, J.F.; Zheng, Y.P. Dynamic Changes of Elasticity, Cross-Sectional Area, and Fat Infiltration of Multifidus at Different Postures in Men with Chronic Low Back Pain. Spine J. 2012, 12, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Salvador, E.M.E.S.; Franco, K.F.M.; Miyamoto, G.C.; Franco, Y.R.D.S.; Cabral, C.M.N. Analysis of the Measurement Properties of the Brazilian-Portuguese Version of the Tampa Scale for Kinesiophobia-11 in Patients with Fibromyalgia. Braz. J. Phys. Ther. 2021, 25, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Larsson, C.; Ekvall Hansson, E.; Sundquist, K.; Jakobsson, U. Kinesiophobia and Its Relation to Pain Characteristics and Cognitive Affective Variables in Older Adults with Chronic Pain. BMC Geriatr. 2016, 16, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Roig, S.; Pastor-Mira, M.-Á.; Núñez, R.; Nardi, A.; Ivorra, S.; León, E.; Peñacoba, C. Assessing Self-Efficacy for Physical Activity and Walking Exercise in Women with Fibromyalgia. Pain Manag. Nurs. 2021, 22, 571–578. [Google Scholar] [CrossRef]
- Molero Jurado, M.D.M.; Pérez-Fuentes, M.D.C.; Oropesa Ruiz, N.F.; Simón Márquez, M.D.M.; Gázquez Linares, J.J. Self-Efficacy and Emotional Intelligence as Predictors of Perceived Stress in Nursing Professionals. Medicina 2019, 55, 237. [Google Scholar] [CrossRef] [Green Version]
- Kozinc, Ž.; Šarabon, N. Shear-Wave Elastography for Assessment of Trapezius Muscle Stiffness: Reliability and Association with Low-Level Muscle Activity. PLoS ONE 2020, 15, e0234359. [Google Scholar] [CrossRef]
- Valera-Calero, J.A.; Sánchez-Jorge, S.; Buffet-García, J.; Varol, U.; Gallego-Sendarrubias, G.M.; Álvarez-González, J. Is Shear-Wave Elastography a Clinical Severity Indicator of Myofascial Pain Syndrome? An Observational Study. J. Clin. Med. 2021, 10, 2895. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Dommerholt, J. International Consensus on Diagnostic Criteria and Clinical Considerations of Myofascial Trigger Points: A Delphi Study. Pain Med. 2018, 19, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Mukaka, M.M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Wittayer, M.; Dimova, V.; Birklein, F.; Schlereth, T. Correlates and Importance of Neglect-like Symptoms in Complex Regional Pain Syndrome. Pain 2018, 159, 978–986. [Google Scholar] [CrossRef]
- Pruimboom, L.; van Dam, A.C. Chronic Pain: A Non-Use Disease. Med. Hypotheses 2007, 68, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, L.; Halaki, M.; Kamper, S.J.; Haber, M.; Ginn, K.A. Does Muscle Guarding Play a Role in Range of Motion Loss in Patients with Frozen Shoulder? Musculoskelet Sci. Pract. 2018, 37, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Wasan, A.D.; Anderson, N.K.; Giddon, D.B. Differences in Pain, Psychological Symptoms, and Gender Distribution among Patients with Left- vs Right-Sided Chronic Spinal Pain. Pain Med. 2010, 11, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Wang, Y.; Gao, S.; Zhang, X.; Cui, R. Neural Mechanisms with Respect to Different Paradigms and Relevant Regulatory Factors in Empathy for Pain. Front. Neurosci. 2018, 12, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inal, S.; Inal, E.E.; Okyay, G.U.; Öztürk, G.T.; Öneç, K.; Güz, G. Fibromyalgia and Nondipper Circadian Blood Pressure Variability. J. Clin. Rheumatol. 2014, 20, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Vlaeyen, J.W.S.; Crombez, G.; Linton, S.J. The Fear-Avoidance Model of Pain. Pain 2016, 157, 1588–1589. [Google Scholar] [CrossRef] [Green Version]
- Simons, L.E.; Elman, I.; Borsook, D. Psychological Processing in Chronic Pain: A Neural Systems Approach. Neurosci. Biobehav. Rev. 2014, 39, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Burgmer, M.; Pogatzki-Zahn, E.; Gaubitz, M.; Stüber, C.; Wessoleck, E.; Heuft, G.; Pfleiderer, B. Fibromyalgia Unique Temporal Brain Activation during Experimental Pain: A Controlled FMRI Study. J. Neural Transm. 2010, 117, 123–131. [Google Scholar] [CrossRef]
- Burgmer, M.; Petzke, F.; Giesecke, T.; Gaubitz, M.; Heuft, G.; Pfleiderer, B. Cerebral Activation and Catastrophizing during Pain Anticipation in Patients with Fibromyalgia. Psychosom. Med. 2011, 73, 751–759. [Google Scholar] [CrossRef]
- Muro-Culebras, A.; Cuesta-Vargas, A.I. Sono-Myography and Sono-Myoelastography of the Tender Points of Women with Fibromyalgia. Ultrasound Med. Biol. 2013, 39, 1951–1957. [Google Scholar] [CrossRef]
- Karayol, K.C.; Karayol, S.S. A Comparison of Visual Analog Scale and Shear-Wave Ultrasound Elastography Data in Fibromyalgia Patients and the Normal Population. J. Phys. Sci. 2021, 33, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Sancar, M.; Keniş-Coşkun, Ö.; Gündüz, O.H.; Kumbhare, D. Quantitative Ultrasound Texture Feature Changes With Conservative Treatment of the Trapezius Muscle in Female Patients With Myofascial Pain Syndrome. Am. J. Phys. Med. Rehabil. 2021, 100, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Turo, D.; Otto, P.; Hossain, M.; Gebreab, T.; Armstrong, K.; Rosenberger, W.F.; Shao, H.; Shah, J.P.; Gerber, L.H.; Sikdar, S. Novel Use of Ultrasound Elastography to Quantify Muscle Tissue Changes After Dry Needling of Myofascial Trigger Points in Patients With Chronic Myofascial Pain. J. Ultrasound Med. 2015, 34, 2149–2161. [Google Scholar] [CrossRef] [PubMed]
- Buran Çirak, Y.; Yurdaişik, I.; Elbaşi, N.D.; Tütüneken, Y.E.; Köçe, K.; Çinar, B. Effect of Sustained Natural Apophyseal Glides on Stiffness of Lumbar Stabilizer Muscles in Patients With Nonspecific Low Back Pain: Randomized Controlled Trial. J. Manip. Physiol. Ther. 2021, 44, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Murillo, C.; Falla, D.; Rushton, A.; Sanderson, A.; Heneghan, N.R. Shear Wave Elastography Investigation of Multifidus Stiffness in Individuals with Low Back Pain. J. Electromyogr. Kinesiol. 2019, 47, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Eby, S.F.; Song, P.; Chen, S.; Chen, Q.; Greenleaf, J.F.; An, K.-N. Validation of Shear Wave Elastography in Skeletal Muscle. J. Biomech. 2013, 46, 2381–2387. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Ledesma, S.; Gonzalez-Muñoz, A. Short-Term Effects of 448 Kilohertz Radiofrequency Stimulation on Supraspinatus Tendon Elasticity Measured by Quantitative Ultrasound Elastography in Professional Badminton Players: A Double-Blinded Randomized Clinical Trial. Int. J. Hyperth. 2021, 38, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.M.S.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
Variable | Women Diagnosed with Fibromyalgia (n = 42) | |||
---|---|---|---|---|
Mean ± SD/Frequency (%) | 95% CI | W of Shapiro–Wilk (p) | ||
Age (years) | [50.3, 50.8] | 0.95 (0.159) | ||
Weight (kg) | [72.3, 84.1] | 0.93 (0.019) | ||
Height (m) | [1.61, 1.64] | 0.96 (0.273) | ||
BMI (kg/m2) | 29.40 ± 6.36 | [27.3, 31.4] | 0.87 (<0.001) | |
Years of diagnosed FM | 7.36 ± 1.81 | [6.79, 7.92] | 0.90 (0.002) | |
PCS | 0 | [23.6, 31.5] | 0.94 (0.029) | |
SES | [25.8, 28.9] | 0.97 (0.600) | ||
TSK-11 | [25.6, 29.9] | 0.95 (0.073) | ||
Occiput | ND | [2.11, 3.06] | 0.88 (<0.001) | |
D | [2.05, 2.74] | 0.94 (0.101) | ||
Low cervical | ND | [1.87, 2.49] | 0.96 (0.234) | |
D | [1.76, 2.32] | 0.91 (0.005) | ||
Trapezius | ND | [1.96, 2.79] | 0.90 (0.003) | |
D | [1.93, 2.76] | 0.90 (0.004) | ||
Supraspinatus | ND | [1.93, 2.76] | 0.95 (0.128) | |
D | [1.95, 2.54] | 0.96 (0.183) | ||
Paraspinous | ND | [2.12, 2.86] | 0.96 (0.284) | |
D | [2.48, 3.26] | 0.94 (0.038) | ||
Second rib | ND | [1.75, 2.31] | 0.95 (0.152) | |
D | [2.06, 2.61] | 0.98 (0.672) | ||
Lateral pectoral | ND | [1.99, 2.63] | 0.95 (0.47) | |
D | [1.65, 2.15] | 0.93 (0.022) | ||
Lateral epicondyle | ND | [1.25, 1.80] | 0.83 (<0.001) | |
D | [1.41, 2.06] | 0.92 (0.009) | ||
Medial epicondyle | ND | [1.33, 1.98] | 0.91 (0.006) | |
D | [1.24, 1.90] | 0.87 (<0.001) | ||
Forearm | ND | [2.10, 2.89] | 0.93 (0.017) | |
D | [2.09, 2.82] | 0.96 (0.284) | ||
Gluteus | ND | [1.35, 1.84] | 0.89 (0.001) | |
D | [1.48, 1.92] | 0.94 (0.064) | ||
Greater trochanter | ND | [1.53, 2.25] | 0.85 (<0.001) | |
D | [1.60, 2.39] | 0.82 (<0.001) | ||
Medial knee fat pad | ND | [1.31, 1.82] | 0.86 (<0.001) | |
D | [1.24, 1.93] | 0.738 (<0.001) |
PCS | SES | TSK-11 | |||
---|---|---|---|---|---|
Occiput | ND | Rho of Spearman (p) | −0.163 (0.314) | −0.155 (0.339) | −0.122 (0.451) |
D | R of Pearson (p) | −0.143 (0.377) | −0.289 (0.071) | −0.100 (0.539) | |
Low cervical | ND | R of Pearson (p) | 0.216 (0.180) | 0.198 (0.220) | 0.161 (0.322) |
D | Rho of Spearman (p) | −0.175 (0.280) | −0.067 (0.683) | −0.157 (0.333) | |
Trapezius | ND | Rho of Spearman (p) | −0.080 (0.623) | −0.072 (0.660) | 0.117 (0.473) |
D | Rho of Spearman (p) | 0.258 (0.108) | 0.028 (0.865) | 0.235 (0.145) | |
Supraspinatus | ND | R of Pearson (p) | −0.136 (0.404) | −0.338 * (0.033) | 0.024 (0.885) |
D | R of Pearson (p) | 0.048 (0.769) | −0.181 (0.263) | −0.095 (0.559) | |
Paraspinous | ND | R of Pearson (p) | 0.072 (0.658) | −0.143 (0.378) | 0.096 (0.554) |
D | Rho of Spearman (p) | 0.039 (0.813) | −0.066 (0.686) | −0.041 (0.801) | |
Second rib | ND | R of Pearson (p) | −0.053 (0.746) | 0.069 (0.673) | 0.001 (0.994) |
D | R of Pearson (p) | −0.097 (0.553) | −0.070 (0.667) | −0.035 (0.831) | |
Lateral pectoral | ND | R of Pearson (p) | −0.039 (0.812) | 0.047 (0.771) | 0.235 (0.145) |
D | Rho of Spearman (p) | −0.063 (0.701) | 0.021 (0.895) | −0.053 (0.744) | |
Lateral epicondyle | ND | Rho of Spearman (p) | −0.318 * (0.045) | −0.112 (0.490) | −0.046 (0.777) |
D | Rho of Spearman (p) | 0.197 (0.224) | −0.238 (0.140) | 0.403 ** (0.010) | |
Medial epicondyle | ND | Rho of Spearman (p) | −0.002 (0.990) | −0.326 * (0.040) | 0.161 (0.321) |
D | Rho of Spearman (p) | 0.143 (0.378) | −0.245 (0.128) | 0.304 (0.056) | |
Forearm | ND | Rho of Spearman (p) | 0.105 (0.520) | 0.212 (0.189) | 0.360 * (0.023) |
D | R of Pearson (p) | 0.194 (0.231) | 0.028 (0.864) | 0.219 (0.176) | |
Gluteus | ND | Rho of Spearman (p) | −0.074 (0.651) | −0.185 (0.253) | −0.086 (0.598) |
D | R of Pearson (p) | −0.084 (0.604) | −0.290 (0.069) | 0.033 (0.838) | |
Greater trochanter | ND | Rho of Spearman (p) | −0.147 (0.367) | 0.068 (0.678) | −0.304 (0.057) |
D | Rho of Spearman (p) | 0.032 (0.845) | −0.025 (0.878) | 0.043 (0.792) | |
Medial knee fat pad | ND | R of Pearson (p) | −0.186 (0.251) | −0.109 (0.503) | −0.349 * (0.027) |
D | Rho of Spearman (p) | −0.079 (0.628) | 0.233 (0.148) | −0.082 (0.616) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Ledesma, S.; Aguilar-García, M.; González-Muñoz, A.; Pruimboom, L.; Aguilar-Ferrándiz, M.E. Do Psychological Factors Influence the Elastic Properties of Soft Tissue in Subjects with Fibromyalgia? A Cross-Sectional Observational Study. Biomedicines 2022, 10, 3077. https://doi.org/10.3390/biomedicines10123077
Navarro-Ledesma S, Aguilar-García M, González-Muñoz A, Pruimboom L, Aguilar-Ferrándiz ME. Do Psychological Factors Influence the Elastic Properties of Soft Tissue in Subjects with Fibromyalgia? A Cross-Sectional Observational Study. Biomedicines. 2022; 10(12):3077. https://doi.org/10.3390/biomedicines10123077
Chicago/Turabian StyleNavarro-Ledesma, Santiago, María Aguilar-García, Ana González-Muñoz, Leo Pruimboom, and María Encarnación Aguilar-Ferrándiz. 2022. "Do Psychological Factors Influence the Elastic Properties of Soft Tissue in Subjects with Fibromyalgia? A Cross-Sectional Observational Study" Biomedicines 10, no. 12: 3077. https://doi.org/10.3390/biomedicines10123077