Familial Hypercholesterolaemia as a Predisposing Factor for Atherosclerosis
Abstract
:1. Introduction
2. The Pathophysiology of Familial Hypercholesterolemia
3. Familial Hypercholesterolemia and Cardiovascular Disease
4. Genetic Variables in CV Risk in FH Population
5. LDL Cholesterol
6. Currently Used Treatment Strategies for Familial Hypercholesterolemia
6.1. Non-Pharmacological Treatment
6.2. Lipoprotein Apheresis
6.3. Pharmacotherapy
7. Efficacy of Ezetimibe in the Treatment of FH
8. Statins
9. PCSK9 Inhibitors
9.1. Inclisiran
9.2. Bile Acid Sequestrants
9.3. Probucol
10. Combined Therapy
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viigimaa, M.; Heinsar, S.; Lovic, D.; Katsimardou, A.; Piperidou, A.; Duishvili, D. New Horizons in the Pathogenesis, Pathophysiology and Treatment of Familial Hypercholesterolaemia. Curr. Pharm. Des. 2018, 24, 3599–3604. [Google Scholar] [CrossRef] [PubMed]
- Moradi, A.; Maleki, M.; Ghaemmaghami, Z.; Khajali, Z.; Noohi, F.; Moghadam, M.H.; Kalyinia, S.; Mowla, S.J.; Seidah, N.G.; Malakootian, M. Mutational Spectrum of LDLR and PCSK9 Genes Identified in Iranian Patients With Premature Coronary Artery Disease and Familial Hypercholesterolemia. Front Genet. 2021, 12, 625959. [Google Scholar] [CrossRef] [PubMed]
- Vrablik, M.; Tichý, L.; Freiberger, T.; Blaha, V.; Satny, M.; Hubacek, J.A. Genetics of Familial Hypercholesterolemia: New Insights. Front. Genet. 2020, 11, 574474. [Google Scholar] [CrossRef] [PubMed]
- Bouhairie, V.E.; Goldberg, A.C. Familial Hypercholesterolemia. Cardiol. Clin. 2015, 33, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Weissglas-Volkov, D.; Pajukanta, P. Genetic causes of high and low serum HDL-cholesterol. J. Lipid Res. 2010, 51, 2032–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Futema, M.; Taylor-Beadling, A.; Williams, M.; Humphries, S.E. Genetic testing for familial hypercholesterolemia—past, present, and future. J. Lipid Res. 2021, 62, 100139. [Google Scholar] [CrossRef]
- Bjelakovic, B.; Stefanutti, C.; Reiner, Z.; Watts, G.F.; Moriarty, P.; Marais, D.; Widhalm, K.; Cohen, H.; Harada-Shiba, M.; Banach, M. Risk Assessment and Clinical Management of Children and Adolescents with Heterozygous Familial Hypercholesterolaemia. A Position Paper of the Associations of Preventive Pediatrics of Serbia, Mighty Medic and International Lipid Expert Panel. J. Clin. Med. 2021, 10, 4930. [Google Scholar] [CrossRef] [PubMed]
- Korman, M.; Wisløff, T. Modelling the cost-effectiveness of PCSK9 inhibitors vs. ezetimibe through LDL-C reductions in a Norwegian setting. Eur. Hear. J.-Cardiovasc. Pharmacother. 2018, 4, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, R.; De Isla, L.P.; Muñiz-Grijalvo, O.; Diaz-Diaz, J.L.; Mata, P.; Foundation, M.S.F.H. Familial Hypercholesterolaemia Diagnosis and Management. Eur. Cardiol. Rev. 2018, 13, 14–20. [Google Scholar] [CrossRef]
- Civeira, F.F.; De Castro-Orós, I.; Pocoví, M. The genetic basis of familial hypercholesterolemia: Inheritance, linkage, and mutations. Appl. Clin. Genet. 2010, 3, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Varret, M.; Abifadel, M.; Rabès, J.-P.; Boileau, C. Genetic heterogeneity of autosomal dominant hypercholesterolemia. Clin. Genet. 2008, 73, 1–13. [Google Scholar] [CrossRef] [PubMed]
- McGowan, M.P.; Dehkordi, S.H.H.; Moriarty, P.M.; Duell, P.B. Diagnosis and Treatment of Heterozygous Familial Hypercholesterolemia. J. Am. Hear. Assoc. 2019, 8, e013225. [Google Scholar] [CrossRef] [PubMed]
- Safarova, M.S.; Kullo, I.J. My Approach to the Patient With Familial Hypercholesterolemia. Mayo Clin. Proc. 2016, 91, 770–786. [Google Scholar] [CrossRef] [Green Version]
- González-Lleó, A.M.; Sánchez-Hernández, R.M.; Boronat, M.; Wägner, A.M. Diabetes and Familial Hypercholesterolemia: Interplay between Lipid and Glucose Metabolism. Nutrients 2022, 14, 1503. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.J.; Ban, M.R.; Iacocca, M.A.; McIntyre, A.D.; Wang, J.; Hegele, R.A. Genetic Determinants of Myocardial Infarction Risk in Familial Hypercholesterolemia. CJC Open 2019, 1, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Maștaleru, A.; Cojocariu, S.A.; Oancea, A.; Constantin, M.M.L.; Roca, M.; Zota, I.M.; Abdulan, I.; Rusu, C.; Popescu, R.; Antoci, L.M.; et al. Genetic Polymorphisms in a Familial Hypercholesterolemia Population from North-Eastern Europe. J. Pers. Med. 2022, 12, 429. [Google Scholar] [CrossRef]
- Khera, A.V.; Won, H.-H.; Peloso, G.M.; Lawson, K.S.; Bartz, T.M.; Deng, X.; van Leeuwen, E.M.; Natarajan, P.; Emdin, C.A.; Bick, A.G.; et al. Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. J. Am. Coll. Cardiol. 2016, 67, 2578–2589. [Google Scholar] [CrossRef]
- Bhattacharyya, J.; Mihara, K.; Bhattacharjee, D.; Mukherjee, M. Telomere length as a potential biomarker of coronary artery disease. Indian J. Med. Res. 2017, 145, 730–737. [Google Scholar] [CrossRef]
- Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Hólm, H.; Ding, E.L.; Johnson, T.; et al. Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study. Lancet 2012, 380, 572–580, Erratum in Lancet 2012, 367, 189. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.H. Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Prim. Care Clin. Off. Pr. 2013, 40, 195–211. [Google Scholar] [CrossRef]
- Warren, J.B.; Dimmitt, S.B.; Stampfer, H.G. Cholesterol trials and mortality. Br. J. Clin. Pharmacol. 2016, 82, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Xie, J.; Zhou, J.; Xu, L.; Pan, Y.; Qu, Y.; Li, R.; Chong, M.; Song, L.; Wen, W.; et al. Supravalvular Aortic Stenosis and the Risk of Premature Death Among Patients With Homozygous Familial Hypercholesterolemia. Am. J. Cardiol. 2021, 145, 58–63. [Google Scholar] [CrossRef]
- Chemello, K.; García-Nafría, J.; Gallo, A.; Martín, C.; Lambert, G.; Blom, D. Lipoprotein metabolism in familial hypercholesterolemia. J. Lipid Res. 2021, 62, 100062. [Google Scholar] [CrossRef]
- Mabuchi, H. Half a Century Tales of Familial Hypercholesterolemia (FH) in Japan. J. Atheroscler. Thromb. 2017, 24, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Do, R.; Project, N.E.S.; Stitziel, N.; Won, H.-H.; Jørgensen, A.B.; Duga, S.; Merlini, P.A.; Kiezun, A.; Farrall, M.; Goel, A.; et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature 2014, 518, 102–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanchen, D.; Gencer, B.; Auer, R.; Räber, L.; Stefanini, G.G.; Klingenberg, R.; Schmied, C.M.; Cornuz, J.; Muller, O.; Vogt, P.; et al. Prevalence and management of familial hypercholesterolaemia in patients with acute coronary syndromes. Eur. Hear. J. 2015, 36, 2438–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainieri, F.; Tagi, V.M.; Chiarelli, F. Recent Advances on Familial Hypercholesterolemia in Children and Adolescents. Biomedicines 2022, 10, 1043. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Pilcher, G.J.; Panz, V.R.; van Deventer, H.E.; Brice, B.C.; Blom, D.J.; Marais, A.D. Reduction in Mortality in Subjects With Homozygous Familial Hypercholesterolemia Associated With Advances in Lipid-Lowering Therapy. Circulation 2011, 124, 2202–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Last, A.R.; Ference, J.D.; Menzel, E.R. Hyperlipidemia: Drugs for Cardiovascular Risk Reduction in Adults. Am. Fam. Physician 2017, 95, 78–87. [Google Scholar]
- Thompson, G.R. FH through the retrospectoscope. J. Lipid Res. 2021, 62, 100036. [Google Scholar] [CrossRef]
- Mytilinaiou, M.; Kyrou, I.; Khan, M.; Grammatopoulos, D.K.; Randeva, H.S. Familial Hypercholesterolemia: New Horizons for Diagnosis and Effective Management. Front. Pharmacol. 2018, 9, 707. [Google Scholar] [CrossRef] [PubMed]
- Masana, L.; Zamora, A.; Plana, N.; Comas-Cufí, M.; Garcia-Gil, M.; Martí-Lluch, R.; Ponjoan, A.; Alves-Cabratosa, L.; Elosua, R.; Marrugat, J.; et al. Incidence of Cardiovascular Disease in Patients with Familial Hypercholesterolemia Phenotype: Analysis of 5 Years Follow-Up of Real-World Data from More than 1.5 Million Patients. J. Clin. Med. 2019, 8, 1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayikcioglu, M. LDL Apheresis and Lp (a) Apheresis: A Clinician’s Perspective. Curr. Atheroscler. Rep. 2021, 23, 15. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Rakhit, R.D.; E Humphries, S.; Nair, D. Cardiovascular risk stratification in familial hypercholesterolaemia. Heart 2016, 102, 1003–1008. [Google Scholar] [CrossRef]
- Soran, H.; Adam, S.; Mohammad, J.B.; Ho, J.H.; Schofield, J.; Kwok, S.; Siahmansur, T.; Liu, Y.; Syed, A.; Dhage, S.S.; et al. Hypercholesterolaemia – practical information for non-specialists. Arch. Med. Sci. 2018, 1, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Hartgers, M.L.; Besseling, J.; Stroes, E.S.; Wittekoek, J.; Rutten, J.H.; de Graaf, J.; Visseren, F.; Imholz, B.P.; van Lennep, J.E.R.; Huijgen, R.; et al. Achieved LDL cholesterol levels in patients with heterozygous familial hypercholesterolemia: A model that explores the efficacy of conventional and novel lipid-lowering therapy. J. Clin. Lipidol. 2018, 12, 972–980.e1. [Google Scholar] [CrossRef]
- Arroyo-Olivares, R.; Alonso, R.; Quintana-Navarro, G.; Fuentes-Jiménez, F.; Mata, N.; Muñiz-Grijalvo, O.; Díaz-Díaz, J.L.; Zambón, D.; Arrieta, F.; García-Cruces, J.; et al. Adults with familial hypercholesterolaemia have healthier dietary and lifestyle habits compared with their non-affected relatives: The SAFEHEART study. Public Health Nutr. 2019, 22, 1433–1443. [Google Scholar] [CrossRef] [Green Version]
- Smilde, T.J.; Trip, M.D.; Wollersheim, H.; Van Wissen, S.; Kastelein, J.J.P.; Stalenhoef, A.F.H. Rationale, Design and Baseline Characteristics of a Clinical Trial Comparing the Effects of Robust vs Conventional Cholesterol Lowering and Intima Media Thickness in Patients with Familial Hypercholesterolaemia. Clin. Drug Investig. 2000, 20, 67–79. [Google Scholar] [CrossRef]
- Toth, P.P.; Ballantyne, C.M.; Davidson, M.H.; Tomassini, J.E.; Ramey, D.R.; Neff, D.; Tershakovec, A.M.; Hu, X.H.; Tunceli, K. Changes in prescription patterns before and after reporting of the Ezetimibe and Simvastatin in Hypercholesterolemia Enhances Atherosclerosis Regression trial (ENHANCE) results and expected effects on low-density lipoprotein-cholesterol reduction. J. Clin. Lipidol. 2012, 6, 180–191. [Google Scholar] [CrossRef]
- Zodda, D.; Giammona, R.; Schifilliti, S. Treatment Strategy for Dyslipidemia in Cardiovascular Disease Prevention: Focus on Old and New Drugs. Pharmacy 2018, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Mlinaric, M.; Bratanic, N.; Dragos, V.; Skarlovnik, A.; Cevc, M.; Battelino, T.; Groselj, U. Case Report: Liver Transplantation in Homozygous Familial Hypercholesterolemia (HoFH)—Long-Term Follow-Up of a Patient and Literature Review. Front. Pediatr. 2020, 8, 567895. [Google Scholar] [CrossRef] [PubMed]
- Lambert, C.T.; Sandesara, P.; Isiadinso, I.; Góngora, M.C.; Eapen, D.; Bhatia, N.; Baer, J.T.; Sperling, L. Current Treatment of Familial Hypercholesterolaemia. Eur. Cardiol. Rev. 2014, 9, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Chan, D.C.; Watts, G.F. The Knowns and Unknowns of Contemporary Statin Therapy for Familial Hypercholesterolemia. Curr. Atheroscler. Rep. 2020, 22, 64. [Google Scholar] [CrossRef] [PubMed]
- Krähenbühl, S.; Pavik-Mezzour, I.; Von Eckardstein, A. Unmet Needs in LDL-C Lowering: When Statins Won’t Do! Drugs 2016, 76, 1175–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavey, R.-E.W.; Manlhiot, C.; Runeckles, K.; Collins, T.; Gidding, S.S.; Demczko, M.; Clauss, S.; Harahsheh, A.S.; Mietus-Syder, M.; Khoury, M.; et al. Effectiveness and Safety of Statin Therapy in Children: A Real-World Clinical Practice Experience. CJC Open 2020, 2, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Ray, K.K.; Wiklund, O.; Corsini, A.; Catapano, A.L.; Bruckert, E.; De Backer, G.; A Hegele, R.; Hovingh, G.K.; A Jacobson, T.; et al. Adverse effects of statin therapy: Perception vs. the evidence – focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur. Hear. J. 2018, 39, 2526–2539. [Google Scholar] [CrossRef] [Green Version]
- Cohen, H.; The Mighty Medic Satellite Research Group for Pediatric Dyslipidemia; Stefanutti, C. Current Approach to the Diagnosis and Treatment of Heterozygote and Homozygous FH Children and Adolescents. Curr. Atheroscler. Rep. 2021, 23, 30. [Google Scholar] [CrossRef] [PubMed]
- Harada-Shiba, M.; Kastelein, J.J.; Hovingh, G.K.; Ray, K.K.; Ohtake, A.; Arisaka, O.; Ohta, T.; Okada, T.; Suganami, H.; Wiegman, A. Efficacy and Safety of Pitavastatin in Children and Adolescents with Familial Hypercholesterolemia in Japan and Europe. J. Atheroscler. Thromb. 2018, 25, 422–429. [Google Scholar] [CrossRef] [Green Version]
- Gallego-Colon, E.; Daum, A.; Yosefy, C. Statins and PCSK9 inhibitors: A new lipid-lowering therapy. Eur. J. Pharmacol. 2020, 878, 173114. [Google Scholar] [CrossRef] [PubMed]
- Lagace, T.A. PCSK9 and LDLR degradation. Curr. Opin. Lipidol. 2014, 25, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Feng, X.; Zhou, Y. PCSK9 Variants in Familial Hypercholesterolemia: A Comprehensive Synopsis. Front. Genet. 2020, 11, 1020. [Google Scholar] [CrossRef] [PubMed]
- Matías-Pérez, D.; Pérez-Santiago, A.; Medina, M.S.; Osorno, J.A.; García-Montalvo, I. PCSK9 gene participates in the development of primary dyslipidemias. Balk. J. Med. Genet. 2021, 24, 5–14. [Google Scholar] [CrossRef]
- Shapiro, M.D.; Tavori, H.; Fazio, S. PCSK9. Circ. Res. 2018, 122, 1420–1438. [Google Scholar] [CrossRef] [PubMed]
- Gareri, C.; Polimeni, A.; Giordano, S.; Tammè, L.; Curcio, A.; Indolfi, C. Antisense Oligonucleotides and Small Interfering RNA for the Treatment of Dyslipidemias. J. Clin. Med. 2022, 11, 3884. [Google Scholar] [CrossRef]
- Merćep, I.; Friščić, N.; Strikić, D.; Reiner, Ž. Advantages and Disadvantages of Inclisiran: A Small Interfering Ribonucleic Acid Molecule Targeting PCSK9—A Narrative Review. Cardiovasc. Ther. 2022, 2022, 8129513. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Stoekenbroek, R.M.; Kallend, D.; Nishikido, T.; Leiter, L.A.; Landmesser, U.; Wright, R.S.; Wijngaard, P.L.J.; Kastelein, J.J.P. Effect of 1 or 2 Doses of Inclisiran on Low-Density Lipoprotein Cholesterol Levels. JAMA Cardiol. 2019, 4, 1067–1075. [Google Scholar] [CrossRef]
- Bin Saleh, F.S.; Alharbi, W.S.; Alanazi, G.B.; Aldughaither, A. Prevalence and Regulation of Dyslipidemia Among Adults With Type 2 Diabetes From Three Primary Health Care Centers in Riyadh. Cureus 2022, 14, e27573. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Kallend, D.; Ray, K.K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.; Curcio, D.; Jaros, M.J.; Leiter, L.A.; et al. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. New Engl. J. Med. 2020, 382, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.; et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. New Engl. J. Med. 2020, 382, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y.L. Bile Acid Metabolism and Signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, M. The Efficacy of Colesevelam HCl in the Treatment of Heterozygous Familial Hypercholesterolemia in Pediatric and Adult Patients. Clin. Ther. 2013, 35, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Arai, H.; Bujo, H.; Masuda, D.; Ohama, T.; Ishibashi, T.; Yanagi, K.; Doi, Y.; Nakagawa, S.; Yamashiro, K.; et al. Probucol Trial for Secondary Prevention of Atherosclerotic Events in Patients with Coronary Heart Disease (PROSPECTIVE). J. Atheroscler. Thromb. 2021, 28, 103–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, S.; Matsuzawa, Y. Where are we with probucol: A new life for an old drug? Atherosclerosis 2009, 207, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Vaezi, Z.; Amini, A. Familial Hypercholesterolemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556009/ (accessed on 24 July 2022).
- Szczepańska, E.; Białek-Dratwa, A.; Janota, B.; Kowalski, O. Dietary Therapy in Prevention of Cardiovascular Disease (CVD)—Tradition or Modernity? A Review of the Latest Approaches to Nutrition in CVD. Nutrients 2022, 14, 2649. [Google Scholar] [CrossRef]
Compound | Trial | Effect | References |
---|---|---|---|
simvastatin 40 mg | ASAP | increased CIMT; 40% reduced LDL-C levels | [36] |
atorvastatin 80 mg | ASAP | decreased CIMT; 50% reduced LDL-C levels | [36] |
simvastatin 80 mg | ENHANCE | 41% reduced LDL-C levels | [37] |
simvastatin 80 mg and ezetimibe 10 mg | ENHANCE | 58% reduced LDL-C levels; 26% decreased hsCRP | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poznyak, A.V.; Litvinova, L.; Poggio, P.; Orekhov, A.N.; Melnichenko, A.A. Familial Hypercholesterolaemia as a Predisposing Factor for Atherosclerosis. Biomedicines 2022, 10, 2639. https://doi.org/10.3390/biomedicines10102639
Poznyak AV, Litvinova L, Poggio P, Orekhov AN, Melnichenko AA. Familial Hypercholesterolaemia as a Predisposing Factor for Atherosclerosis. Biomedicines. 2022; 10(10):2639. https://doi.org/10.3390/biomedicines10102639
Chicago/Turabian StylePoznyak, Anastasia V., Larisa Litvinova, Paolo Poggio, Alexander N. Orekhov, and Alexandra A. Melnichenko. 2022. "Familial Hypercholesterolaemia as a Predisposing Factor for Atherosclerosis" Biomedicines 10, no. 10: 2639. https://doi.org/10.3390/biomedicines10102639
APA StylePoznyak, A. V., Litvinova, L., Poggio, P., Orekhov, A. N., & Melnichenko, A. A. (2022). Familial Hypercholesterolaemia as a Predisposing Factor for Atherosclerosis. Biomedicines, 10(10), 2639. https://doi.org/10.3390/biomedicines10102639