Association of SLC22A1, SLC22A2, SLC47A1, and SLC47A2 Polymorphisms with Metformin Efficacy in Type 2 Diabetic Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Laboratory Methods
2.3. Definition of Outcomes
- The first outcome was the decrease in FPG on the 30th day or the 60th day (absolute value of the FPG decrease).
- The second outcome hinged on the decrease in HbA1c on the 60th day (absolute value of the HbA1c decrease).
- The third outcome was the decrease in FINS or HOMA-IR, or the increase in HOMA-IS on the 60th day (absolute value of the FINS or HOMA-IR reduction, or HOMA-IR increase).
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chinese Diabetes Society. Chinese guidelines for the prevention and treatment of type 2 diabetes 2017. Chin. J. Diabetes Mellit. 2018, 10, 4–66. [Google Scholar]
- American Diabetes Association. Standards of medical care in diabetes 2018. Diabetes Care 2018, 41, S1–S159. [Google Scholar] [CrossRef] [Green Version]
- Garber, A.J.; Abrahamson, M.J.; Barzilay, J.I.; Blonde, L.; Bloomgarden, Z.T.; Bush, M.A.; Dagogo-Jack, S.; DeFronzo, R.A.; Einhorn, D.; Fonseca, V.A.; et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm-2018 executive summary. Endocr. Pract. 2018, 24, 91–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, L.; Han, P.; Wang, X.; Liu, J.; Zheng, S.; Jou, Y.M.; O’Neill, E.A.; Golm, G.T.; Engel, S.S.; Kaufman, K.D.; et al. A randomized clinical trial of the safety and efficacy of sitagliptin and metformin co-administered to Chinese patients with type 2 diabetes mellitus. J. Diabetes Investig. 2016, 7, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Garber, A.J.; Duncan, T.G.; Goodman, A.M.; Mills, D.J.; Rohlf, J.L. Efficacy of metformin in type Ⅱ diabetes: Results of a double-blind, placebo-controlled, dose-response trial. Am. J. Med. 1997, 103, 491–497. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Goodman, A.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N. Engl. J. Med. 1995, 333, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.; Li, X.; Xu, Y.; Zhang, X.; Guan, Z.; Zhang, S.; Li, Y. SLC22A1 rs622342 Polymorphism Predicts Insulin Resistance Improvement in Patients with Type 2 Diabetes Mellitus Treated with Metformin: A Cross-Sectional Study. Int. J. Endocrinol. 2020, 2020, 2975898. [Google Scholar] [CrossRef]
- Becker, M.L.; Visser, L.E.; Van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H.C. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: A preliminary study. Diabetes 2009, 58, 745–749. [Google Scholar] [CrossRef] [Green Version]
- Umamaheswaran, G.; Praveen, R.G.; Damodaran, S.E.; Das, A.K.; Adithan, C. Influence of SLC22A1 rs622342 genetic polymorphism on metformin response in South Indian type 2 diabetes mellitus patients. Clin. Exp. Med. 2015, 15, 511–517. [Google Scholar] [CrossRef]
- Christensen, M.M.H.; Højlund, K.; Hother-Nielsen, O.; Stage, T.B.; Damkier, P.; Beck-Nielsen, H.; Brøsen, K. Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers. Eur. J. Clin. Pharmacol. 2015, 71, 691–697. [Google Scholar] [CrossRef]
- Jablonski, K.A.; McAteer, J.B.; de Bakker, P.I.; Franks, P.W.; Pollin, T.I.; Hanson, R.L.; Saxena, R.; Fowler, S.; Shuldiner, A.R.; Knowler, W.C.; et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle interventions in the diabetes prevention program. Diabetes 2010, 59, 2672–2681. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Xu, W. Correlation analysis of C11orf65 and SLC47A1 gene polymorphisms with clinical efficacy of metformin. Med. Innov. China 2019, 16, 64–69. [Google Scholar]
- Xiao, D.; Guo, Y.; Li, X.; Yin, J.Y.; Zheng, W.; Qiu, X.W.; Xiao, L.; Liu, R.R.; Wang, S.Y.; Gong, W.J.; et al. The Impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 Polymorphisms on Metformin Therapeutic Efficacy in Chinese Type 2 Diabetes Patients. Int. J. Endocrinol. 2016, 2016, 4350712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.H.; Yee, S.W.; Ramirez, A.H.; Morrissey, K.M.; Jang, G.H.; Joski, P.J.; Mefford, J.A.; Hesselson, S.E.; Schlessinger, A.; Jenkins, G.; et al. A common 5′-UTR variant in MATE2-K is associated with poor response to metformin. Clin. Pharmacol. Ther. 2011, 90, 674–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harries, L.W.; Hattersley, A.T.; Doney, A.S.; Colhoun, H.; Morris, A.D.; Sutherland, C.; Hardie, D.G.; Peltonen, L.; McCarthy, M.I.; Holman, R.R. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet. 2011, 43, 117–120. [Google Scholar]
- Van Leeuwen, N.; Nijpels, G.; Becker, M.L.; Deshmukh, H.; Zhou, K.; Stricker, B.H.C.; Uitterlinden, A.G.; Hofman, A.; van’t Riet, E.; Palmer, C.N.A.; et al. A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: A replication and meta-analysis of five cohorts. Diabetologia 2012, 55, 1971–1977. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Tang, Y.; Cai, D.; Li, Y.; Guo, X.; Su, Q.; Guo, L.; Zhao, D.; Li, Q.; Li, H.; et al. A common variation of ATM gene is associated with the hypoglycemic effect of metformin. In Proceedings of the 16th National Academic Conference of Chinese Diabetes Society, Chengdu, China, 5–8 December 2012. [Google Scholar]
- Zhou, Y.; Ye, W.; Wang, Y.; Jiang, Z.; Meng, X.; Xiao, Q.; Zhao, Q.; Yan, J. Genetic variants of OCT1 influence glycemic response to metformin in Han Chinese patients with type-2 diabetes mellitus in Shanghai. Int. Clin. Exp. Pathol. 2015, 8, 9533–9542. [Google Scholar]
- Reséndiz-Abarca, C.A.; Flores-Alfaro, E.; Suárez-Sánchez, F.; Cruz, M.; Valladares-Salgado, A.; del Carmen Alarcón-Romero, L.; Vázquez-Moreno, M.A.; Wacher-Rodarte, N.A.; Gómez-Zamudio, J.H. Altered Glycemic Control Associated With Polymorphisms in the SLC22A1 (OCT1) Gene in a Mexican Population with Type 2 Diabetes Mellitus Treated With Metformin: A Cohort Study. J. Clin. Pharmacol. 2019, 59, 1384–1390. [Google Scholar] [CrossRef]
- Shokri, F.; Ghaedi, H.; Fard, S.G.; Movafagh, A.; Abediankenari, S.; Mahrooz, A.; Kashi, Z.; Omrani, M.D. Impact of ATM and SLC22A1 Polymorphisms on Therapeutic Response to Metformin in Iranian Diabetic Patients. Int. J. Mol. Cell Med. 2016, 5, 1–7. [Google Scholar]
- Ding, J.; He, W.; Gong, Y. Association between SLC47A1 gene polymorphism and therapeutic efficacy of metformin for type 2 diabetes mellitus. Cent. South Pharm. 2018, 9, 1336–1338+1342. [Google Scholar]
- Ito, H.; Ishida, H.; Takeuchi, Y.; Antoku, S.; Abe, M.; Mifune, M.; Togane, M. Long-term effect of metformin on blood glucose control in non-obese patients with type 2 diabetes mellitus. Nutr. Metab. 2010, 7, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, L.A.; Doney, A.S.F.; Hattersley, A.T.; Morris, A.D.; Pearson, E.R. The effect of obesity on glycaemic response to metformin or sulphonylureas in type 2 diabetes. Diabet. Med. 2006, 23, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.R.; Molyneaux, L.M.; Constantino, M.I.; Twigg, S.M.; Yue, D.K. Long-term efficacy of metformin therapy in nonobese individuals with type 2 diabetes. Diabetes Care 2006, 29, 2361–2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Y.; Guo, Y.; Xu, Q.; Wang, X.; Zhang, L.; Liu, Z.; Chen, D.; Chen, S.; Chen, S. Association of SLC22A1 rs622342 and ATM rs11212617 polymorphisms with metformin efficacy in patients with type 2 diabetes. Pharm. Genom. 2022, 32, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Tanihara, Y.; Masuda, S.; Sato, T.; Katsura, T.; Ogawa, O.; Inui, K.I. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem. Pharmacol. 2007, 74, 359–371. [Google Scholar] [CrossRef]
- Zolk, O. Disposition of metformin: Variability due to polymorphisms of organic cation transporters. Ann. Med. 2012, 44, 119–129. [Google Scholar] [CrossRef]
- Zepeda-Carrillo, E.A.; Ramos-Lopez, O.; Martínez-López, E.; Barrón-Cabrera, E.; Bernal-Pérez, J.A.; Velasco-González, L.E.; Rangel-Rios, E.; Bustamante Martínez, J.F.; Torres-Valadez, R. Effect of Metformin on Glycemic Control Regarding Carriers of the SLC22A1/OCT1 (rs628031) Polymorphism and Its Interactions with Dietary Micronutrients in Type 2 Diabetes. Diabetes Metab. Syndr. Obes. 2022, 15, 1771–1784. [Google Scholar] [CrossRef]
- Phani, N.M.; Vohra, M.; Kakar, A.; Adhikari, P.; Nagri, S.K.; D’Souza, S.C.; Umakanth, S.; Satyamoorthy, K.; Rai, P.S. Implication of critical pharmacokinetic gene variants on therapeutic response to metformin in Type 2 diabetes. Pharmacogenomics 2018, 19, 905–911. [Google Scholar] [CrossRef]
- Siddiqui, K.; Musambil, M.; Usmani, A.M. Established type 2 diabetessusceptibility genetic variants in Saudi ethnicity: A mini-systematic review. JBC Genet. 2018, 1, 57–65. [Google Scholar]
- Birnbaum, M.J.; Shaw, R.J. Genomics: Drugs, diabetes and cancer. Nature 2011, 470, 338–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.F.; Cooperative Meta-Analysis Group of the Working Group on Obesity in China. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults–study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
- Obesity: Preventing and Managing the Global Epidemic. In Report of a WHO Consultation; World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 2000; Volume 894, pp. 1–253.
- Lickteig, A.J.; Cheng, X.; Augustine, L.M.; Klaassen, C.D.; Cherrington, N.J. Tissue distribution, ontogeny and induction of the transporters multidrug and toxin extrusion (MATE) 1 and MATE2 m RNA expression levels in mice. Life Sci. 2008, 83, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Nies, A.T.; Damme, K.; Kruck, S.; Schaeffeler, E.; Schwab, M. Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch. Toxicol. 2016, 90, 1555–1584. [Google Scholar] [CrossRef] [PubMed]
- Marta, M.; Sánchez-Pozos, K.; Jaimes-Santoyo, J.; Monroy-Escutia, J.; Rivera-Santiago, C.; de Los Ángeles Granados-Silvestre, M.; Ortiz-López, M.G. Pharmacogenetic Evaluation of Metformin and Sulphonylurea Response in Mexican Mestizos with Type 2 Diabetes. Curr. Drug Metab. 2020, 21, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H.C. Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharm. Genom. 2010, 20, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.M.; Pedersen, R.S.; Stage, T.B.; Brasch-Andersen, C.; Nielsen, F.; Damkier, P.; Beck-Nielsen, H.; Brøsen, K. A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharm. Genom. 2013, 23, 526–534. [Google Scholar] [CrossRef]
Variables a | Normal Weight Group | Overweight Group | ||||||
---|---|---|---|---|---|---|---|---|
AA/GG | AG | F Value | p Value | AA/GG | AG | F Value | p Value | |
∆30FPG | −0.3 ± 0.2,(8) | −0.2 ± 0.2,(27) | 1.87 | 0.1805 | −0.2 ± 0.2,(9) | −0.3 ± 0.2,(35) | 1.08 | 0.3051 |
∆60FPG | −0.4 ± 0.2,(8) | −0.3 ± 0.3,(27) | 0.73 | 0.3990 | −0.4 ± 0.2,(9) | −0.4 ± 0.2,(35) | 0.42 | 0.5200 |
∆(60–30)FPG | −0.035 ± 0.126,(8) | −0.057 ± 0.159,(27) | 1.33 | 0.2559 | −0.145 ± 0.146,(9) | −0.122 + 0.175,(35) | 0.13 | 0.7155 |
∆60HbA1c | −0.113 ± 0.182,(8) | −0.149 ± 0.208,(29) | 0.20 | 0.6585 | −0.222 ± 0.143,(9) | −0.218 ± 0.159,(36) | 0.01 | 0.9418 |
∆60FINS | −0.555 ± 0.258,(6) | −0.010 ± 0.456,(27) | 7.87 | 0.0086 | −0.129 ± 0.500,(8) | −0.035 ± 0.534,(35) | 0.21 | 0.6518 |
∆60HOMA-IR | −0.923 ± 0.436,(6) | −0.250 ± 0.494,(27) | 9.44 | 0.0044 | −0.488 ± 0.487,(8) | −0.442 ± 0.516,(35) | 0.05 | 0.8202 |
∆60HOMA-IS | 0.141 ± 0.294,(6) | 0.460 ± 0.815,(27) | 0.87 | 0.3574 | 0.496 ± 0.631,(8) | 0.679 ± 0.720,(35) | 0.43 | 0.5139 |
Variables a | Genotype | Mean ± SD (n) | BETA | BETA | ||
---|---|---|---|---|---|---|
Crude | p Value | Adjusted | p Value | |||
∆60FINS | SLC22A1 rs628031 | |||||
GG | −0.178 ± 0.430 (44) | 0.000 | 0.000 | |||
GA/AA | 0.061 ± 0.561 (32) | 0.238 | 0.03364 | 0.228 | 0.03300 | |
SLC22A2 rs316019 | ||||||
AC | −0.170 ± 0.456 (35) | 0.000 | 0.000 | |||
CC | 0.002 ± 0.527 (41) | 0.172 | 0.12611 | 0.228 | 0.03371 | |
SLC47A1 rs2289669 | ||||||
AA/GG | −0.312 ± 0.456 (14) | 0.000 | 0.000 | |||
AG | −0.024 ± 0.498 (62) | 0.287 | 0.04491 | 0.248 | 0.05860 | |
SLC47A2 rs12943590 | ||||||
GG | 0.090 ± 0.475 (27) | 0.000 | 0.000 | |||
AG | −0.190 ± 0.461 (37) | −0.280 | 0.02129 | −0.273 | 0.01884 | |
AA | −0.105 ± 0.603 (12) | −0.195 | 0.24290 | −0.242 | 0.12332 | |
∆60HOMA-IR | SLC22A1 rs628031 | |||||
GG | −0.448 ± 0.461 (44) | 0.000 | 0.000 | |||
GA/AA | −0.373 ± 0.600 (32) | 0.075 | 0.53045 | 0.083 | 0.47461 | |
SLC22A2 rs316019 | ||||||
AC | −0.511 ± 0.475 (35) | 0.000 | 0.000 | |||
CC | −0.337 ± 0.551 (41) | 0.174 | 0.13896 | 0.202 | 0.07673 | |
SLC47A1 rs2289669 | ||||||
AA/GG | −0.675 ± 0.501 (14) | 0.000 | 0.000 | |||
AG | −0.359 ± 0.512 (62) | 0.316 | 0.03378 | 0.274 | 0.04756 | |
SLC47A2 rs12943590 | ||||||
GG | −0.208 ± 0.482 (27) | 0.000 | 0.000 | |||
AG | −0.543 ± 0.472 (37) | −0.335 | 0.00730 | −0.323 | 0.00748 | |
AA | −0.499 ± 0.636 (12) | −0.291 | 0.08887 | −0.364 | 0.02586 |
Model | Test Accuracy | The p Value of GMDR | CVC | p Value |
---|---|---|---|---|
dose30_g, SLC47A2 rs12943590 | 0.7167 | 9 (p = 0.0107) | 5 | 0.007 |
dose30_g, SLC22A1 rs628031, SLC22A2 rs316019, SLC47A1 rs2289669 | 0.5983 | 7 (p = 0.1719) | 8 | 0.206 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Cao, Y.; Chen, S.; Liu, Z.; Chen, S.; Guo, Y. Association of SLC22A1, SLC22A2, SLC47A1, and SLC47A2 Polymorphisms with Metformin Efficacy in Type 2 Diabetic Patients. Biomedicines 2022, 10, 2546. https://doi.org/10.3390/biomedicines10102546
Chen P, Cao Y, Chen S, Liu Z, Chen S, Guo Y. Association of SLC22A1, SLC22A2, SLC47A1, and SLC47A2 Polymorphisms with Metformin Efficacy in Type 2 Diabetic Patients. Biomedicines. 2022; 10(10):2546. https://doi.org/10.3390/biomedicines10102546
Chicago/Turabian StyleChen, Peixian, Yumin Cao, Shenren Chen, Zhike Liu, Shiyi Chen, and Yali Guo. 2022. "Association of SLC22A1, SLC22A2, SLC47A1, and SLC47A2 Polymorphisms with Metformin Efficacy in Type 2 Diabetic Patients" Biomedicines 10, no. 10: 2546. https://doi.org/10.3390/biomedicines10102546
APA StyleChen, P., Cao, Y., Chen, S., Liu, Z., Chen, S., & Guo, Y. (2022). Association of SLC22A1, SLC22A2, SLC47A1, and SLC47A2 Polymorphisms with Metformin Efficacy in Type 2 Diabetic Patients. Biomedicines, 10(10), 2546. https://doi.org/10.3390/biomedicines10102546