Serum CCL2 Is a Prognostic Biomarker for Non-Metastatic Castration-Sensitive Prostate Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patients’ Characteristics
3.2. Univariate and Multivariate Analyses of OS
3.3. Univariate and Multivariate Analyses of CFS
3.4. Kaplan–Meier Curves of OS, PCSS, and CFS in nmCSPC
3.5. Kaplan–Meier Curves of OS in nmCSPC Examined by Prognostic Factors
3.6. Kaplan–Meier Curves of CFS in nmCSPC Examined by Prognostic Factors
3.7. Kaplan–Meier Curves of MFS and VMFS in nmCSPC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, H.; Izumi, K.; Shimada, T.; Kano, H.; Kadomoto, S.; Makino, T.; Naito, R.; Yaegashi, H.; Shigehara, K.; Kadono, Y.; et al. Androgen receptor signaling-targeted therapy and taxane chemotherapy induce visceral metastasis in castration-resistant prostate cancer. Prostate 2021, 81, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Schroder, F.H.; Hugosson, J.; Roobol, M.J.; Tammela, T.L.; Ciatto, S.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; et al. Prostate-cancer mortality at 11 years of follow-up. N. Engl. J. Med. 2012, 366, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Cooperberg, M.R.; Broering, J.M.; Carroll, P.R. Time trends and local variation in primary treatment of localized prostate cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Eggener, S.E.; Scardino, P.T.; Walsh, P.C.; Han, M.; Partin, A.W.; Trock, B.J.; Feng, Z.; Wood, D.P.; Eastham, J.A.; Yossepowitch, O.; et al. Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J. Urol. 2011, 185, 869–875. [Google Scholar] [CrossRef]
- Rider, J.R.; Sandin, F.; Andren, O.; Wiklund, P.; Hugosson, J.; Stattin, P. Long-term outcomes among noncuratively treated men according to prostate cancer risk category in a nationwide, population-based study. Eur. Urol. 2013, 63, 88–96. [Google Scholar] [CrossRef]
- Iwamoto, H.; Kano, H.; Shimada, T.; Naito, R.; Makino, T.; Kadamoto, S.; Yaegashi, H.; Shigehara, K.; Izumi, K.; Kadonoa, Y.; et al. Effectiveness of Vintage Hormone Therapy as Alternative Androgen Deprivation Therapy for Non-metastatic Castration-resistant Prostate Cancer. In Vivo 2021, 35, 1247–1252. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology, Prostate Cancer, 4th ed.; NCCN: Plymouth Meeting, PA, USA, 2022. [Google Scholar]
- Iwamoto, H.; Izumi, K.; Kadono, Y.; Mizokami, A. Prognosis of patients with prostate cancer and middle range prostate—Specific antigen levels of 20–100 ng/mL. Int. Braz. J. Urol. Off. J. Braz. Soc. Urol. 2019, 45, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Ikeda, H.; Maolake, A.; Machioka, K.; Nohara, T.; Narimoto, K.; Ueno, S.; Kadono, Y.; Kitagawa, Y.; Konaka, H.; et al. The relationship between prostate-specific antigen and TNM classification or Gleason score in prostate cancer patients with low prostate-specific antigen levels. Prostate 2015, 75, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Lin, W.J.; Miyamoto, H.; Huang, C.K.; Maolake, A.; Kitagawa, Y.; Kadono, Y.; Konaka, H.; Mizokami, A.; Namiki, M. Outcomes and predictive factors of prostate cancer patients with extremely high prostate-specific antigen level. J. Cancer Res. Clin. Oncol. 2014, 140, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, H.; Nakagawa, R.; Makino, T.; Kadomoto, S.; Yaegashi, H.; Nohara, T.; Shigehara, K.; Izumi, K.; Kadono, Y.; Mizokami, A. Treatment Outcomes in Neuroendocrine Prostate Cancer. Anticancer Res. 2022, 42, 2167–2176. [Google Scholar] [CrossRef]
- Loberg, R.D.; Day, L.L.; Harwood, J.; Ying, C.; St John, L.N.; Giles, R.; Neeley, C.K.; Pienta, K.J. CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 2006, 8, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Mizokami, A.; Lin, H.P.; Ho, H.M.; Iwamoto, H.; Maolake, A.; Natsagdorj, A.; Kitagawa, Y.; Kadono, Y.; Miyamoto, H.; et al. Serum chemokine (CC motif) ligand 2 level as a diagnostic, predictive, and prognostic biomarker for prostate cancer. Oncotarget 2016, 7, 8389–8398. [Google Scholar] [CrossRef]
- Iwamoto, H.; Izumi, K.; Nakagawa, R.; Toriumi, R.; Aoyama, S.; Shimada, T.; Kano, H.; Makino, T.; Kadomoto, S.; Yaegashi, H.; et al. Usefulness of serum CCL2 as prognostic biomarker in prostate cancer: A long-term follow-up study. Jpn. J. Clin. Oncol. 2022, hyac102. [Google Scholar] [CrossRef]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; John Wiley Sons Ltd.: Chichester, UK, 2017; pp. 191–192. [Google Scholar]
- Matsushima, K.; Larsen, C.G.; DuBois, G.C.; Oppenheim, J.J. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med. 1989, 169, 1485–1490. [Google Scholar] [CrossRef]
- Matsushima, K.; Morishita, K.; Yoshimura, T.; Lavu, S.; Kobayashi, Y.; Lew, W.; Appella, E.; Kung, H.F.; Leonard, E.J.; Oppenheim, J.J. Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J. Exp. Med. 1988, 167, 1883–1893. [Google Scholar] [CrossRef]
- Van Coillie, E.; Van Damme, J.; Opdenakker, G. The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev. 1999, 10, 61–86. [Google Scholar] [CrossRef]
- Iwamoto, H.; Izumi, K.; Mizokami, A. Is the C-C Motif Ligand 2–C-C Chemokine Receptor 2 Axis a Promising Target for Cancer Therapy and Diagnosis? Int. J. Mol. Sci. 2020, 21, 9328. [Google Scholar] [CrossRef] [PubMed]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Ransohoff, R.M. The chemokine system in neuroinflammation: An update. J. Infect. Dis. 2002, 186 (Suppl. S2), S152–S156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lu, Y.; Pienta, K.J. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J. Natl. Cancer Inst. 2010, 102, 522–528. [Google Scholar] [CrossRef]
- Izumi, K.; Fang, L.Y.; Mizokami, A.; Namiki, M.; Li, L.; Lin, W.J.; Chang, C. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol. Med. 2013, 5, 1383–1401. [Google Scholar] [CrossRef]
- Yasui, H.; Kajiyama, H.; Tamauchi, S.; Suzuki, S.; Peng, Y.; Yoshikawa, N.; Sugiyama, M.; Nakamura, K.; Kikkawa, F. CCL2 secreted from cancer-associated mesothelial cells promotes peritoneal metastasis of ovarian cancer cells through the P38-MAPK pathway. Clin. Exp. Metastasis 2020, 37, 145–158. [Google Scholar] [CrossRef]
- Panee, J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012, 60, 1–12. [Google Scholar] [CrossRef]
- Engin, A.B. Adipocyte-Macrophage Cross-Talk in Obesity. Adv. Exp. Med. Biol. 2017, 960, 327–343. [Google Scholar] [CrossRef]
- Kadomoto, S.; Izumi, K.; Mizokami, A. Roles of CCL2-CCR2 Axis in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 8530. [Google Scholar] [CrossRef]
- Izumi, K.; Mizokami, A. Suppressive Role of Androgen/Androgen Receptor Signaling via Chemokines on Prostate Cancer Cells. J. Clin. Med. 2019, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Tsaur, I.; Noack, A.; Makarevic, J.; Oppermann, E.; Waaga-Gasser, A.M.; Gasser, M.; Borgmann, H.; Huesch, T.; Gust, K.M.; Reiter, M.; et al. CCL2 Chemokine as a Potential Biomarker for Prostate Cancer: A Pilot Study. Cancer Res. Treat. 2015, 47, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Loberg, R.D.; Ying, C.; Craig, M.; Day, L.L.; Sargent, E.; Neeley, C.; Wojno, K.; Snyder, L.A.; Yan, L.; Pienta, K.J. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res. 2007, 67, 9417–9424. [Google Scholar] [CrossRef]
- Lin, T.H.; Liu, H.H.; Tsai, T.H.; Chen, C.C.; Hsieh, T.F.; Lee, S.S.; Lee, Y.J.; Chen, W.C.; Tang, C.H. CCL2 increases αvβ3 integrin expression and subsequently promotes prostate cancer migration. Biochim. Biophys. Acta 2013, 1830, 4917–4927. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.T.; Kwon, S.J.; Kim, J.; Kwon, Y.S.; Lee, N.; Hong, J.H.; Jamieson, C.; Kim, W.J.; Kim, I.Y. WNT5A induces castration-resistant prostate cancer via CCL2 and tumour-infiltrating macrophages. Br. J. Cancer 2018, 118, 670–678. [Google Scholar] [CrossRef]
- Natsagdorj, A.; Izumi, K.; Hiratsuka, K.; Machioka, K.; Iwamoto, H.; Naito, R.; Makino, T.; Kadomoto, S.; Shigehara, K.; Kadono, Y.; et al. CCL2 induces resistance to the antiproliferative effect of cabazitaxel in prostate cancer cells. Cancer Sci. 2019, 110, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.Z.; Rademacher, B.L.; Pittsenbarger, J.; Huang, C.Y.; Myrthue, A.; Higano, C.S.; Garzotto, M.; Nelson, P.S.; Beer, T.M. CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel-induced cytotoxicity. Prostate 2010, 70, 433–442. [Google Scholar] [CrossRef]
- Kirk, P.S.; Koreckij, T.; Nguyen, H.M.; Brown, L.G.; Snyder, L.A.; Vessella, R.L.; Corey, E. Inhibition of CCL2 signaling in combination with docetaxel treatment has profound inhibitory effects on prostate cancer growth in bone. Int. J. Mol. Sci. 2013, 14, 10483–10496. [Google Scholar] [CrossRef]
- Guo, S.S.; Liu, R.; Wen, Y.F.; Liu, L.T.; Yuan, L.; Li, Y.X.; Li, Y.; Hao, W.W.; Peng, J.Y.; Chen, D.N.; et al. Endogenous production of C-C motif chemokine ligand 2 by nasopharyngeal carcinoma cells drives radioresistance-associated metastasis. Cancer Lett. 2020, 468, 27–40. [Google Scholar] [CrossRef]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-related inflammation and treatment effectiveness. Lancet. Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Chu, L.; Fang, J.M.; Zhang, X.; Zhao, H.X.; Chen, Y.J.; Xu, Q. Prognostic role of C-reactive protein in prostate cancer: A systematic review and meta-analysis. Asian J. Androl. 2014, 16, 467–471. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, J.F.; Liu, J.S.; Chen, Q.X. Prognostic role of serum C-reactive protein in esophageal cancer: A systematic review and meta-analysis. Clin. Risk Manag. 2015, 11, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Nunes, Q.M.; Daniels, I.R.; Smart, N.J. Is C-reactive protein useful in prognostication for colorectal cancer? A systematic review. Colorectal Dis. 2014, 16, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Hirahara, N.; Matsubara, T.; Fujii, Y.; Kaji, S.; Kawabata, Y.; Hyakudomi, R.; Yamamoto, T.; Taniura, T.; Tajima, Y. Comparison of the prognostic value of immunoinflammation-based biomarkers in patients with gastric cancer. Oncotarget 2020, 11, 2625–2635. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Gou, Y.; Sun, C.; Ding, W.; Xu, K.; Gu, B.; Xia, G.; Ding, Q. The prognostic value of C-reactive protein in renal cell carcinoma: A systematic review and meta-analysis. Urol. Oncol. 2014, 32, 50.e1–50.e8. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.W.; Hu, X.; Wang, Y.; Yang, Z.Q.; Li, X. C-reactive Protein Is a Predictor of Prognosis of Prostate Cancer: A Systematic Review and Meta-Analysis. Ann. Clin. Lab. Sci. 2020, 50, 161–171. [Google Scholar]
- Du, J.; Lan, J.; Xiong, J.; Yang, H.; Xu, X.; Tang, C.; Huang, G.; Ying, Q.; Mu, J.; Hu, Q. Efficiency of C-reactive protein in prognosis evaluation of prostate cancer: A systematic review and meta-analysis. Transl. Cancer Res. 2021, 10, 4432–4439. [Google Scholar] [CrossRef]
Characteristics | Value |
---|---|
Patients, n | 230 |
Median age at diagnosis of PC, y (range) | 69 (50–89) |
Median PSA at diagnosis of PC, ng/mL (range) | 9.4 (1.5–227.8) |
Median CCL2 at diagnosis of PC, pg/mL (range) | 244.5 (95.3–749) |
Histology | |
GS ≤ 6 | 59 |
GS = 7 | 97 |
GS ≥ 8 | 74 |
T stage at diagnosis of PC | |
T1 | 60 |
T2 | 128 |
≥T3 | 42 |
N stage at diagnosis of PC | |
N0 | 218 |
N1 | 12 |
Primary localized treatment | |
ADT only | 63 |
Radiation ± ADT | 127 |
RP ± ADT | 35 |
AS | 5 |
Patients who progressed to CRPC, n | 12 |
Patients who progressed to mCRPC, n | 6 |
All-cause death, n | 34 |
PC-specific death, n | 6 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
n | HR (95% CI) | p | HR (95% CI) | p | ||
Age at diagnosis, y | <65 | 65 | 2.32 (0.96–5.61) | 0.06 | ||
≥65 | 165 | |||||
T stage | ≤T2 | 188 | 1.90 (0.88–4.06) | 0.1 | ||
≥T3 | 42 | |||||
N stage | 0 | 218 | 3.49 (1.34–9.11) | 0.01 | 2.36 (0.69–8.10) | 0.17 |
1 | 12 | |||||
PSA, ng/mL | <20 | 182 | 2.25 (1.10–4.63) | 0.03 | 2.00 (0.74–5.40) | 0.17 |
≥20 | 48 | |||||
Gleason score | ≤7 | 156 | 2.07 (1.06–4.07) | 0.03 | 0.96 (0.42–2.23) | 0.93 |
≥8 | 74 | |||||
CCL2, pg/mL | <280 | 159 | 2.07 (1.05–4.07) | 0.04 | 2.31 (1.11–4.81) | 0.03 |
≥280 | 71 | |||||
CRP, mg/dL | <0.5 | 202 | 5.30 (2.34–11.99) | <0.001 | 4.89 (2.12–11.28) | <0.001 |
≥0.5 | 21 | |||||
ALP, IU/L | <350 | 214 | 3.14 (0.94–10.44) | 0.06 | ||
≥350 | 12 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
n | HR (95% CI) | p | HR (95% CI) | p | ||
Age at diagnosis, y | <65 | 15 | 0.76 (0.21–2.83) | 0.69 | ||
≥65 | 70 | |||||
T stage | ≤T2 | 57 | 2.28 (0.73–7.07) | 0.15 | ||
≥T3 | 28 | |||||
N stage | 0 | 74 | 6.19 (1.96–19.60) | 0.002 | 2.37 (0.71–7.94) | 0.16 |
1 | 11 | |||||
PSA, ng/mL | <20 | 53 | 2.89 (0.92–9.11) | 0.07 | ||
≥20 | 32 | |||||
Gleason score | ≤7 | 51 | 13.43 (1.73–104.09) | 0.01 | 8.54 (1.03–70.91) | 0.047 |
≥8 | 34 | |||||
CCL2, pg/mL | <280 | 60 | 6.21 (1.86–20.73) | 0.003 | 4.50 (1.20–16.86) | 0.03 |
≥280 | 25 | |||||
CRP, mg/dL | <0.5 | 71 | 2.71 (0.57–13.04) | 0.21 | ||
≥0.5 | 9 | |||||
ALP, IU/L | <350 | 74 | 2.38 (0.50–11.31) | 0.28 | ||
≥350 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwamoto, H.; Izumi, K.; Nakagawa, R.; Toriumi, R.; Aoyama, S.; Kamijima, T.; Shimada, T.; Kano, H.; Makino, T.; Naito, R.; et al. Serum CCL2 Is a Prognostic Biomarker for Non-Metastatic Castration-Sensitive Prostate Cancer. Biomedicines 2022, 10, 2369. https://doi.org/10.3390/biomedicines10102369
Iwamoto H, Izumi K, Nakagawa R, Toriumi R, Aoyama S, Kamijima T, Shimada T, Kano H, Makino T, Naito R, et al. Serum CCL2 Is a Prognostic Biomarker for Non-Metastatic Castration-Sensitive Prostate Cancer. Biomedicines. 2022; 10(10):2369. https://doi.org/10.3390/biomedicines10102369
Chicago/Turabian StyleIwamoto, Hiroaki, Kouji Izumi, Ryunosuke Nakagawa, Ren Toriumi, Shuhei Aoyama, Taiki Kamijima, Takafumi Shimada, Hiroshi Kano, Tomoyuki Makino, Renato Naito, and et al. 2022. "Serum CCL2 Is a Prognostic Biomarker for Non-Metastatic Castration-Sensitive Prostate Cancer" Biomedicines 10, no. 10: 2369. https://doi.org/10.3390/biomedicines10102369
APA StyleIwamoto, H., Izumi, K., Nakagawa, R., Toriumi, R., Aoyama, S., Kamijima, T., Shimada, T., Kano, H., Makino, T., Naito, R., Kadomoto, S., Yaegashi, H., Kawaguchi, S., Nohara, T., Shigehara, K., Kadono, Y., & Mizokami, A. (2022). Serum CCL2 Is a Prognostic Biomarker for Non-Metastatic Castration-Sensitive Prostate Cancer. Biomedicines, 10(10), 2369. https://doi.org/10.3390/biomedicines10102369