Quantum Chemical Studies and Electrochemical Investigations of Polymerized Brilliant Blue-Modified Carbon Paste Electrode for In Vitro Sensing of Pharmaceutical Samples
Abstract
:1. Introduction
2. Experimentation
2.1. Reagents, Chemicals and Instrumentation
2.2. Preparation of Carbon Paste Electrode
2.3. Tablet Sample Praparation
2.4. Computational Methods
3. Results
3.1. Fabrication of BRB/CPE and Its Electrochemical Characterization
3.2. DFT Studies
3.3. Electrocatalytic Oxidation of PA and Effect of Scan Rate
3.4. The Varying Concentration Effect
3.5. Electrochemical Behavior of FA at BRB/CPE
3.6. Simultaneous Electroanalysis of PA and FA
3.7. Analytical Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, R.; Gupta, V.K.; Jadon, N.; Radhapyari, K. Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal. Biochem. 2010, 407, 79–88. [Google Scholar] [CrossRef]
- Xie, K.; Jia, Q.; Zhang, X.; Fu, L.; Zhao, G. Electronic and Magnetic Properties of Stone–Wales Defected Graphene Decorated with the Half-Metallocene of M (M = Fe, Co, Ni): A First Principle Study. Nanomaterials 2018, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.K.; Sethi, B.; Sharma, R.; Agarwal, S.; Bharti, A. Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J. Mol. Liq. 2013, 177, 114–118. [Google Scholar] [CrossRef]
- Aravindan, N.; Sangaranarayanan, M.V. Differential pulse voltammetry as an alternate technique for over oxidation of polymers: Application of electrochemically synthesized over oxidized poly (Alizarin Red S) modified disposable pencil graphite electrodes for simultaneous detection of hydroquinone and catechol. J. Electroanal. Chem. 2017, 789, 148–159. [Google Scholar] [CrossRef]
- Velmurugan, M.; Karikalan, N.; Chen, S.-M.; Cheng, Y.-H.; Karuppiah, C. Electrochemical preparation of activated graphene oxide for the simultaneous determination of hydroquinone and catechol. J. Colloid Interface Sci. 2017, 500, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Lakić, M.; Vukadinovic, A.; Kalcher, K.; Nikolić, A.S.; Stanković, D.M. Effect of cobalt doping level of ferrites in enhancing sensitivity of analytical performances of carbon paste electrode for simultaneous determination of catechol and hydroquinone. Talanta 2016, 161, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, P.; Swamy, B.K. Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid using poly(glutamic acid) modified carbon paste electrode. J. Electroanal. Chem. 2015, 752, 17–24. [Google Scholar] [CrossRef]
- Tashkhourian, J.; Daneshi, M.; Nami-Ana, F.; Behbahani, M.; Bagheri, A. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode. J. Hazard. Mater. 2016, 318, 117–124. [Google Scholar] [CrossRef]
- Piovesan, J.V.; Santana, E.R.; Spinelli, A. A carbon paste electrode improved with poly(ethylene glycol) for tannic acid surveillance in beer samples. Food Chem. 2020, 326, 127055. [Google Scholar] [CrossRef]
- Chikere, C.; Hobben, E.; Faisal, N.H.; Kong-Thoo-Lin, P.; Fernandez, C. Electroanalytical determination of gallic acid in Red and White wine samples using Cobalt Oxide Nanoparticles-modified carbon-paste electrodes. Microchem. J. 2020, 160, 105668. [Google Scholar] [CrossRef]
- Vajdle, O.; Šekuljica, S.; Guzsvány, V.; Nagy, L.; Kónya, Z.; Ivić, M.A.; Mijin, D.; Petrović, S.; Anojčić, J. Use of carbon paste electrode and modified by gold nanoparticles for selected macrolide antibiotics determination as standard and in pharmaceutical preparations. J. Electroanal. Chem. 2020, 873, 114324. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, N.; Wang, C.; Gao, W.; Chen, M.; Liu, N.; Duan, J.; Hou, B. Electrochemical detection of hydroquinone and catechol with covalent organic framework modified carbon paste electrode. J. Electroanal. Chem. 2020, 877, 114530. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Mahnashi, M.H.; El-Wekil, M.M. Indirect differential pulse voltammetric analysis of cyanide at porous copper based metal organic framework modified carbon paste electrode: Application to different water samples. Talanta 2021, 221, 121562. [Google Scholar] [CrossRef]
- Santos, A.M.; Wong, A.; Almeida, A.A.; Fatibello-Filho, O. Simultaneous determination of paracetamol and ciprofloxacin in biological fluid samples using a glassy carbon electrode modified with graphene oxide and nickel oxide nanoparticles. Talanta 2017, 174, 610–618. [Google Scholar] [CrossRef]
- Thomas, T.; Mascarenhas, R.J.; D’Souza, O.J.; Martis, P.; Dalhalle, J.; Swamy, B.K. Multi-walled carbon nanotube modified carbon paste electrode as a sensor for the amperometric detection of l-tryptophan in biological samples. J. Colloid Interface Sci. 2013, 402, 223–229. [Google Scholar] [CrossRef]
- Ganesh, P.; Swamy, B.K. Voltammetric resolution of catechol and hydroquinone at eosin Y film modified carbon paste electrode. J. Mol. Liq. 2016, 220, 208–215. [Google Scholar] [CrossRef]
- Šekuljica, S.; Guzsvány, V.; Anojčić, J.; Hegedűs, T.; Mikov, M.; Kalcher, K. Imidazolium-based ionic liquids as modifiers of carbon paste electrodes for trace-level voltammetric determination of dopamine in pharmaceutical preparations. J. Mol. Liq. 2020, 306, 112900. [Google Scholar] [CrossRef]
- Zhu, M.; Li, R.; Lai, M.; Ye, H.; Long, N.; Ye, J.; Wang, J. Copper nanoparticles incorporating a cationic surfactant-graphene modified carbon paste electrode for the simultaneous determination of gatifloxacin and pefloxacin. J. Electroanal. Chem. 2020, 857, 113730. [Google Scholar] [CrossRef]
- Mangaiyarkarasi, R.; Premlatha, S.; Khan, R.; Pratibha, R.; Umadevi, S. Electrochemical performance of a new imidazolium ionic liquid crystal and carbon paste composite electrode for the sensitive detection of paracetamol. J. Mol. Liq. 2020, 319, 114255. [Google Scholar] [CrossRef]
- Forrest, J.A.H.; Clements, J.A.; Prescott, L.F. Clinical Pharmacokinetics of Paracetamol. Clin. Pharmacokinet. 1982, 7, 93–107. [Google Scholar] [CrossRef]
- Olaleye, M.T.; Rocha, B.T.J. Acetaminophen-induced liver damage in mice: Effects of some medicinal plants on the oxidative defense system. Exp. Toxicol. Pathol. 2008, 59, 319–327. [Google Scholar] [CrossRef]
- Beasley, R.; Clayton, T.; Crane, J.; von Mutius, E.; Lai, C.K.W.; Montefort, S.; Stewart, A. Association between paracetamol use in infancy and childhood, and risk of asthma, rhinoconjunctivitis, and eczema in children aged 6–7 years: Analysis from Phase Three of the ISAAC programme. Lancet 2008, 372, 1039–1048. [Google Scholar] [CrossRef]
- Afshar, S.; Zamani, H.A.; Karimi-Maleh, H. NiO/SWCNTs coupled with an ionic liquid composite for amplified carbon paste electrode; A feasible approach for improving sensing ability of adrenalone and folic acid in dosage form. J. Pharm. Biomed. Anal. 2020, 188, 113393. [Google Scholar] [CrossRef] [PubMed]
- Narayana, P.V.; Reddy, T.M.; Gopal, P.; Reddy, M.M.; Naidu, G.R. Electrocatalytic boost up of epinephrine and its simultaneous resolution in the presence of serotonin and folic acid at poly(serine)/multi-walled carbon nanotubes composite modified electrode: A voltammetric study. Mater. Sci. Eng. C 2015, 56, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Beitollahi, H.; Ivari, S.G.; Torkzadeh-Mahani, M. Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier. Mater. Sci. Eng. C 2016, 69, 128–133. [Google Scholar] [CrossRef]
- Bayram, E.; Akyilmaz, E. Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sens. Actuators B Chem. 2016, 233, 409–418. [Google Scholar] [CrossRef]
- Adhikari, B.-R.; Govindhan, M.; Chen, A. Sensitive Detection of Acetaminophen with Graphene-Based Electrochemical Sensor. Electrochim. Acta 2015, 162, 198–204. [Google Scholar] [CrossRef]
- Devi, K.S.S.; Anusha, N.; Raja, S.; Kumar, A.S. A New Strategy for Direct Electrochemical Sensing of a Organophosphorus Pesticide, Triazophos, Using a Coomassie Brilliant-Blue Dye Surface-Confined Carbon-Black-Nanoparticle-Modified Electrode. ACS Appl. Nano Mater. 2018, 1, 4110–4119. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Thangamuthu, R. Electrochemical Preparation of Brilliant-Blue-Modified Poly(diallyldimethylammonium Chloride) and Nafion-Coated Glassy Carbon Electrodes and Their Electrocatalytic Behavior towards Oxygen and L-Cysteine. Electroanalysis 2008, 20, 1565–1573. [Google Scholar] [CrossRef]
- Ganesh, P.; Swamy, B.K. Simultaneous electroanalysis of hydroquinone and catechol at poly(brilliant blue) modified carbon paste electrode: A voltammetric study. J. Electroanal. Chem. 2015, 756, 193–200. [Google Scholar] [CrossRef]
- Chandrashekar, B.N.; Lv, W.; Jayaprakash, G.K.; Harrath, K.; Liu, L.W.; Swamy, B.E.K. Cyclic Voltammetric and Quantum Chemical Studies of a Poly(methionine) Modified Carbon Paste Electrode for Simultaneous Detection of Dopamine and Uric Acid. Chemosensors 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, P.-S.; Shimoga, G.; Kim, S.-Y.; Lee, S.-H.; Kaya, S.; Salim, R. Quantum chemical studies and electrochemical investigations of pyrogallol red modified carbon paste electrode fabrication for sensor application. Microchem. J. 2021, 167, 106260. [Google Scholar] [CrossRef]
- Jayaprakash, G.K.; Swamy, B.E.K.; Chandrashekar, B.N.; Flores-Moreno, R. Theoretical and cyclic voltammetric studies on electrocatalysis of benzethonium chloride at carbon paste electrode for detection of dopamine in presence of ascorbic acid. J. Mol. Liq. 2017, 240, 395–401. [Google Scholar] [CrossRef]
- Ganesh, P.S.; Swamy, B.E.K.; Feyami, O.E.; Ebenso, E.E. Interference free detection of dihydroxybenzene isomers at pyrogallol film coated electrode: A voltammetric method. J. Electroanal. Chem. 2018, 813, 193–199. [Google Scholar] [CrossRef]
- Arrousse, N.; Salim, R.; Kaddouri, Y.; Zarrouk, A.; Zahri, D.; El Hajjaji, F.; Touzani, R.; Taleb, M.; Jodeh, S. The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: Experimental, surface analysis and in silico approach studies. Arab. J. Chem. 2020, 13, 5949–5965. [Google Scholar] [CrossRef]
- Islam, N.; Kaya, S. (Eds.) Conceptual Density Functional Theory and Its Application in the Chemical Domain; CRC Press: Boca Raton, FL, USA, 2018; 422p. [Google Scholar]
- Pearson, R.G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740. [Google Scholar] [CrossRef]
- Gázquez, J.L.; Cedillo, A.; Vela, A. Electrodonating and Electroaccepting Powers. J. Phys. Chem. A 2007, 111, 1966–1970. [Google Scholar] [CrossRef] [PubMed]
- EL Hajjaji, F.; Salim, R.; Taleb, M.; Benhiba, F.; Rezki, N.; Chauhan, D.S.; Quraishi, M. Pyridinium-based ionic liquids as novel eco-friendly corrosion inhibitors for mild steel in molar hydrochloric acid: Experimental & computational approach. Surf. Interfaces 2021, 22, 100881. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry; VCH Publishers: New York, NY, USA, 1994. [Google Scholar]
- Sharp, M.; Petersson, M.; Edstrom, K. Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface. J. Electroanal. Chem. 1979, 95, 123–130. [Google Scholar] [CrossRef]
- Obot, I.; Obi-Egbedi, N. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation. Corros. Sci. 2010, 52, 198–204. [Google Scholar] [CrossRef]
- Kaya, S.; Guo, L.; Kaya, C.; Tüzün, B.; Obot, I.; Touir, R.; Islam, N. Quantum chemical and molecular dynamic simulation studies for the prediction of inhibition efficiencies of some piperidine derivatives on the corrosion of iron. J. Taiwan Inst. Chem. Eng. 2016, 65, 522–529. [Google Scholar] [CrossRef]
- Kaya, S.; Kaya, C. A new equation for calculation of chemical hardness of groups and molecules. Mol. Phys. 2015, 113, 1311–1319. [Google Scholar] [CrossRef]
- Kaya, S.; Kaya, C.; Islam, N. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds. Phys. B Condens. Matter 2016, 485, 60–66. [Google Scholar] [CrossRef]
- Jayaprakash, G.K.; Swamy, B.K.; Sánchez, J.P.M.; Li, X.; Sharma, S.; Lee, S.-L. Electrochemical and quantum chemical studies of cetylpyridinium bromide modified carbon electrode interface for sensor applications. J. Mol. Liq. 2020, 315, 113719. [Google Scholar] [CrossRef]
- Nahlé, A.; Salim, R.; El Hajjaji, F.; Aouad, M.R.; Messali, M.; Ech-Chihbi, E.; Hammouti, B.; Taleb, M. Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: Experimental & theoretical approach. RSC Adv. 2021, 11, 4147–4162. [Google Scholar] [CrossRef]
- Xie, K.; An, N.; Zhang, Y.; Liu, G.; Zhang, F.; Zhang, Y.; Jiao, F. Two-dimensional porphyrin sheet as an electric and optical sensor material for pH detection: A DFT study. Comput. Mater. Sci. 2020, 174, 109485. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Li, Y.-L.; Shen, X.-R.; Xie, K.-F.; Li, T.-Y.; Zhao, J.-N.; Jia, Q.-J.; Gong, F.; Fang, S.-M. Rhombic ZnO nanosheets modified with Pd nanoparticles for enhanced ethanol sensing performances: An experimental and DFT investigation. J. Phys. Chem. Solids 2020, 136, 109144. [Google Scholar] [CrossRef]
- Analytical Methods Committee. Recommendations for the definition, estimation and use of the detection limit. Analyst 1987, 112, 199–204. [Google Scholar] [CrossRef]
- Engin, C.; Yilmaz, S.; Saglikoglu, G.; Yagmur, S.; Sadikoglu, M. Electroanalytical Investigation of Paracetamol on Glassy Carbon Electrode by Voltammetry. Int. J. Electrochem. Sci. 2015, 10, 1916–1925. [Google Scholar]
- Phong, N.H.; Toan, T.T.T.; Tinh, M.X.; Tuyen, T.N.; Mau, T.X.; Khieu, D.Q. Simultaneous Voltammetric Determination of Ascorbic Acid, Paracetamol, and Caffeine Using Electrochemically Reduced Graphene-Oxide-Modified Electrode. J. Nanomater. 2018, 2018, 5348016. [Google Scholar] [CrossRef]
- Saraswathyamma, B.; Grzybowska, I.; Orlewska, C.; Radecki, J.; Dehaen, W.; Kumar, K.G.; Radecka, H. Electroactive Dipyrromethene-Cu(II) Monolayers Deposited onto Gold Electrodes for Voltammetric Determination of Paracetamol. Electroanalysis 2008, 20, 2317–2323. [Google Scholar] [CrossRef]
- Narayana, P.V.; Reddy, T.M.; Gopal, P.; Naidu, G.R. Electrochemical sensing of paracetamol and its simultaneous resolution in the presence of dopamine and folic acid at a multi-walled carbon nanotubes/poly(glycine) composite modified electrode. Anal. Methods 2014, 6, 9459–9468. [Google Scholar] [CrossRef]
- Su, W.-Y.; Cheng, S.-H. Electrochemical Oxidation and Sensitive Determination of Acetaminophen in Pharmaceuticals at Poly(3,4-ethylenedioxythiophene)-Modified Screen-Printed Electrodes. Electroanalysis 2010, 22, 707–714. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Bukhari, N.; Wabaidur, S.M.; Haider, S. Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sens. Actuators B Chem. 2010, 146, 314–320. [Google Scholar] [CrossRef]
- Patil, M.M.; Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Chakklabbi, T.R. Electroanalysis of paracetamol at nanoclay modified graphite electrode. Mater. Today Proc. 2019, 18, 986–993. [Google Scholar] [CrossRef]
- Goyal, R.N.; Singh, S.P. Voltammetric determination of paracetamol at C60-modified glassy carbon electrode. Electrochim. Acta 2006, 51, 3008–3012. [Google Scholar] [CrossRef]
- Özcan, L.; Şahin, Y. Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sens. Actuators B Chem. 2007, 127, 362–369. [Google Scholar] [CrossRef]
- Manjunatha, K.; Swamy, B.K.; Madhuchandra, H.; Vishnumurthy, K. Synthesis, characterization and electrochemical studies of titanium oxide nanoparticle modified carbon paste electrode for the determination of paracetamol in presence of adrenaline. Chem. Data Collect. 2021, 31, 100604. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Srivastava, A.K. Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Anal. Chim. Acta 2011, 706, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Özcan, A.; Sahin, Y. A novel approach for the determination of paracetamol based on the reduction of N-acetyl-p-benzoquinoneimine formed on the electrochemically treated pencil graphite electrode. Anal. Chim. Acta 2011, 685, 9–14. [Google Scholar] [CrossRef]
- Calam, T.T. Selective and Sensitive Determination of Paracetamol and Levodopa with Using Electropolymerized 3,5-Diamino-1,2,4-triazole Film on Glassy Carbon Electrode. Electroanalysis 2021, 33, 1049–1062. [Google Scholar] [CrossRef]
- Bond, A.M. Modern Polarographic Methods in Analytical Chemistry; Marcle Dekkes Inc.: New York, NY, USA, 1980. [Google Scholar]
- Laviron, E. Adsorption. Autoinhibition and Autocatalysis in Polarography and in Linear Potential Sweep Voltammetry. J. Electroanal. Chem. 1974, 52, 355–393. [Google Scholar] [CrossRef]
- Nematollahi, D.; Shayani-Jam, H.; Alimoradi, M.; Niroomand, S. Electrochemical oxidation of acetaminophen in aqueous solutions: Kinetic evaluation of hydrolysis, hydroxylation and dimerization processes. Electrochim. Acta 2009, 54, 7407–7415. [Google Scholar] [CrossRef]
- Hanabaratti, R.M.; Tuwar, S.M.; Nandibewoor, S.T.; Gowda, J.I. Fabrication and characterization of zinc oxide nanoparticles modified glassy carbon electrode for sensitive determination of paracetamol. Chem. Data Collect. 2020, 30, 100540. [Google Scholar] [CrossRef]
Descriptors | EHOMO (eV) | ELUMO (eV) | ΔEgap (eV) | σ (eV−1) | η (eV) | χ (eV) | ω+ | ω− |
---|---|---|---|---|---|---|---|---|
brilliant blue | −1.9998 | −0.4430 | 1.5567 | 1.2846 | 0.7783 | 1.2214 | 0.4448 | 1.6662 |
Atoms | P (N) | P (N − 1) | P (N + 1) | fk+ | fk− |
---|---|---|---|---|---|
C1 | 6.0304 | 5.8997 | 6.1204 | 0.0900 | 0.1306 |
C5 | 6.2066 | 6.1458 | 6.2428 | 0.0361 | 0.0608 |
C6 | 5.7961 | 5.7063 | 5.8427 | 0.0466 | 0.0898 |
C8 | 6.2236 | 6.1612 | 6.2541 | 0.0304 | 0.0624 |
C10 | 5.8485 | 5.8101 | 5.8882 | 0.0396 | 0.0383 |
C11 | 6.1891 | 6.1567 | 6.2230 | 0.0338 | 0.0324 |
C13 | 6.2162 | 6.1914 | 6.2254 | 0.0092 | 0.0248 |
N20 | 7.4006 | 7.3407 | 7.4307 | 0.0300 | 0.0599 |
O31 | 9.0521 | 9.0142 | 9.0593 | 0.0072 | 0.0378 |
O32 | 9.0542 | 9.0145 | 9.0608 | 0.0066 | 0.0396 |
O33 | 9.0412 | 8.9955 | 9.0534 | 0.0122 | 0.0457 |
C40 | 6.3464 | 6.3447 | 6.3920 | 0.0456 | 0.0016 |
C41 | 6.2062 | 6.2046 | 6.2781 | 0.0719 | 0.0015 |
C42 | 6.2144 | 6.2068 | 6.2515 | 0.0371 | 0.0075 |
N48 | 7.5971 | 7.5771 | 7.5952 | −0.0019 | 0.0200 |
C51 | 5.7175 | 5.6957 | 5.7366 | 0.0190 | 0.0218 |
C54 | 6.2649 | 6.2541 | 6.2701 | 0.0052 | 0.0107 |
Classical Method | Working Electrode | Concentration Range (μM) | Detection Limit (μM) | References |
---|---|---|---|---|
DPV | GCE | 4.0–100.0 | 0.369 | [51] |
DP-ASV | ErGO/GCE | 0.2–4.4 | 0.25 | [52] |
OSWV | Cu(II)-DPM/DDT/Au | 200–1500 | 120.0 | [53] |
DPV | MWCNTs/poly(Gly) GCE | 0.5–10.0 | 0.5 | [54] |
DPV | SPE/PEDOT | 4.0–400.0 | 1.39 | [55] |
DPV | f-MWCNTs/GCE | 3.0–300.0 | 0.6 | [56] |
DPV | NC-GPE | 0.2–1.3 | 3.71 | [57] |
DPV | C60/GCE | 50.0–1500.0 | 50.0 | [58] |
DPV | Polypyrrole/PGE | 5.0–500.0 | 0.79 | [59] |
CV | TiO2/CPE | 10–70.0 | 5.2 | [60] |
AdSSWV | D50wx2/GNP/GCPE | 0.0334–42.2 | 0.0047 | [61] |
ATSDPV | ETPG | 0.05–2.5 | 0.0025 | [62] |
DPV | 35DT-GC | 0.30–475.0 | 0.1 | [63] |
CV | BRB/CPE | 5.0–30.0 | 0.21 | This work |
Tablets | Trials | Added (μM) | Found (μM) | Recovery (%) |
---|---|---|---|---|
PA | 1 | 5.0 | 5.08 | 101.60 |
2 | 10.0 | 10.03 | 100.30 | |
3 | 15.0 | 14.98 | 99.86 | |
4 | 20.0 | 20.08 | 100.40 | |
FA | 1 | 5.0 | 4.94 | 98.80 |
2 | 10.0 | 9.88 | 98.80 | |
3 | 15.0 | 15.04 | 100.26 | |
4 | 20.0 | 19.89 | 99.45 |
Interferents | Concentration (mM) | Signal Change (%) | |
---|---|---|---|
PA | FA | ||
Ascorbic acid | 0.2 | 1.24 | 0.91 |
Citric acid | 0.2 | 1.34 | 0.88 |
Oxalic acid | 0.2 | 1.51 | 0.79 |
Glucose | 0.2 | 2.30 | 2.10 |
Sucrose | 0.2 | 2.14 | 2.30 |
Lactose | 0.2 | 1.40 | 2.02 |
Glycine | 0.2 | 2.25 | 1.42 |
Sodium chloride | 0.2 | 1.22 | 1.08 |
Ammonium chloride | 0.2 | 1.26 | 0.98 |
Calcium sulphate | 0.2 | 1.56 | 1.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganesh, P.-S.; Kim, S.-Y.; Kaya, S.; Salim, R.; Shimoga, G.; Lee, S.-H. Quantum Chemical Studies and Electrochemical Investigations of Polymerized Brilliant Blue-Modified Carbon Paste Electrode for In Vitro Sensing of Pharmaceutical Samples. Chemosensors 2021, 9, 135. https://doi.org/10.3390/chemosensors9060135
Ganesh P-S, Kim S-Y, Kaya S, Salim R, Shimoga G, Lee S-H. Quantum Chemical Studies and Electrochemical Investigations of Polymerized Brilliant Blue-Modified Carbon Paste Electrode for In Vitro Sensing of Pharmaceutical Samples. Chemosensors. 2021; 9(6):135. https://doi.org/10.3390/chemosensors9060135
Chicago/Turabian StyleGanesh, Pattan-Siddappa, Sang-Youn Kim, Savas Kaya, Rajae Salim, Ganesh Shimoga, and Seok-Han Lee. 2021. "Quantum Chemical Studies and Electrochemical Investigations of Polymerized Brilliant Blue-Modified Carbon Paste Electrode for In Vitro Sensing of Pharmaceutical Samples" Chemosensors 9, no. 6: 135. https://doi.org/10.3390/chemosensors9060135
APA StyleGanesh, P. -S., Kim, S. -Y., Kaya, S., Salim, R., Shimoga, G., & Lee, S. -H. (2021). Quantum Chemical Studies and Electrochemical Investigations of Polymerized Brilliant Blue-Modified Carbon Paste Electrode for In Vitro Sensing of Pharmaceutical Samples. Chemosensors, 9(6), 135. https://doi.org/10.3390/chemosensors9060135