Drift Compensation on Massive Online Electronic-Nose Responses
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. Improved Active Learning Framework for E-Nose Drift Compensation
Algorithm 1. Traditional AL-based drift calibration method. |
Input: Drift calibration set L, unlabeled historical sample set U. |
N: number of selected samples (budget). |
F(x): an instance selection strategy. |
Output: updated classifier h. |
1: Initialize: copy set L’ = L, current selected-sample set S = ∅. |
2: for n = 1, 2, …, N do |
3: Select the most valuable instance x* by F(x). |
4: Label x* as y by a single expert. |
5: Update L’: S ← S ∪ {x*,y}, L’ ← L ∪ S, U ← U/{x*}. |
6: Update current classifier h by L’. |
7: end for |
8: Return classifier h. |
3.2. Class-Label Appraisal
Algorithm 2. Mislabel probability estimation method based on a Gaussian mixture model. |
Input: drift calibration set L, unlabeled sample set U, selected sample set S. |
Output: updated drift calibration set L. |
1: Initialize L’ = L ∪ S, . |
2: for each instance x in S do |
3: Calculate and for each class instances in L’, generate GMM as Formulas (3) and (4). |
4: Calculate the mislabel probability as Formula (7). |
5: Calculate the expected entropy increment of x as Formulas (9) and (10). |
6: Calculate the indicator as Formula (11). |
7: end for |
8: Estimate the budget of relabeling as Formulas (12) and (13). |
9: Sort all selected instances in descending order of . |
10: Relabel instances with higher , denote the corrected S as S’. |
11: Update the calibration set L: L← L ∪ S’. |
12: Return updated drift calibration set L. |
4. Experiments and Results
4.1. Datasets
4.1.1. Dataset A
4.1.2. Dataset B
4.2. Experimental Setup
4.3. Recognition Comparison
4.4. Parameter Sensitivity
4.5. Computational Complexity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gardner, J.W.; Bartlett, P.N.; Ye, M. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 211–220. [Google Scholar] [CrossRef]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gbicki, J.; Namienik, J. Electronic noses: Powerful tools in meat quality assessment. Meat Sci. 2017, 131, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Mumyakmaz, B.; Karabacak, K. An e-nose-based indoor air quality monitoring system: Prediction of combustible and toxic gas concentrations. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 729–740. [Google Scholar] [CrossRef]
- Na, J.; Jeon, K.; Lee, W.B. Toxic gas release modeling for real-time analysis using variational autoencoder with convolutional neural networks. Chem. Eng. Sci. 2018, 181, 68–78. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. An Electronic Nose Based Method for the Discrimination of Weathered Petroleum-Derived Products. Sensors 2018, 18, 2180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osowski, S.; Siwek, K. Mining Data of Noisy Signal Patterns in Recognition of Gasoline Bio-Based Additives using Electronic Nose. Metrol. Meas. Syst. 2017, 24. [Google Scholar] [CrossRef]
- Pashami, S.; Lilienthal, A.; Trincavelli, M. Detecting changes of a distant gas source with an array of mox gas sensors. Sensors 2012, 12, 16404–16419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maho, P.; Herrier, C.; Livache, T.; Comon, P.; Barthelmé, S. Real-time gas recognition and gas unmixing in robot applications. Sens. Actuators B Chem. 2020, 330, 129111. [Google Scholar] [CrossRef]
- Bartosz, S.; Jacek, N.; Jacek, G. Determination of Odour Interactions of Three-Component Gas Mixtures Using an Electronic Nose. Sensors 2017, 17, 2380. [Google Scholar] [CrossRef] [Green Version]
- Hudon, G.; Guy, C.; Hermia, J. Measurement of odor intensity by an electronic nose. J. Air Waste Manag. Assoc. 2000, 50, 1750–1758. [Google Scholar] [CrossRef]
- Yan, L.; Liu, J.; Shen, J.; Wu, C.; Gao, K. The Regular Interaction Pattern among Odorants of the Same Type and Its Application in Odor Intensity Assessment. Sensors 2017, 17, 1624. [Google Scholar] [CrossRef] [Green Version]
- Artursson, T.; Eklöv, T.; Lundström, I.; Mårtensson, P.; Sjöström, M.; Holmberg, M. Drift correction for gas sensors using multivariate methods. J. Chemom. 2000, 14, 711–723. [Google Scholar] [CrossRef]
- Ziyatdinov, A.; Marco, S.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Drift compensation of gas sensor array data by common principal component analysis. Sens. Actuators B Chem. 2010, 146, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Perera, A.; Papamichail, N.; Barsan, N.; Weimar, U.; Marco, S. On-line novelty detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions. IEEE Sens. J. 2006, 6, 770–783. [Google Scholar] [CrossRef]
- Padilla, M.; Perera, A.; Montoliu, I.; Chaudry, A.; Persaud, K.; Marco, S. Drift compensation of gas sensor array data by orthogonal signal correction. Chemom. Intell. Lab. Syst. 2010, 100, 28–35. [Google Scholar] [CrossRef]
- Laref, R.; Ahmadou, D.; Losson, E.; Siadat, M. Orthogonal signal correction to improve stability regression model in gas sensor systems. J. Sens. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kermit, M.; Tomic, O. Independent component analysis applied on gas sensor array measurement data. IEEE Sens. J. 2003, 3, 218–228. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Wang, Z.; Xu, G.; Wang, L. Independent component analysis based baseline drift interference suppression of portable spectrometer for optical electronic nose of internet of things. IEEE Trans. Industr. Inform. 2019, 99, 2698–2706. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, D. Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans. Instrum. Meas. 2015, 64, 1790–1801. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Tian, F.; Zhang, C.; Sun, H.; Song, A.; Liu, T. Improving the robustness of prediction model by transfer learning for interference suppression of electronic nose. IEEE Sens. J. 2017, 18, 1111–1121. [Google Scholar] [CrossRef]
- Ma, Z.; Luo, G.; Ke, Q.; Nan, W.; Niu, W. Weighted domain transfer extreme learning machine and its online version for gas sensor drift compensation in E-nose systems. Wirel. Commun. Mob. Comput. 2018, 2018, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 2012, 166, 320–329. [Google Scholar] [CrossRef]
- Liu, H.; Tang, Z. Metal oxide gas sensor drift compensation using a dynamic classifier ensemble based on fitting. Sensors 2013, 13, 9160–9173. [Google Scholar] [CrossRef] [Green Version]
- Verma, M.; Asmita, S.; Shukla, K.K. A regularized ensemble of classifiers for sensor drift compensation. IEEE Sens. J. 2016, 16, 1310–1318. [Google Scholar] [CrossRef]
- Yan, K.; Kou, L.; Zhang, D. Learning domain-invariant subspace using domain features and independence maximization. IEEE Trans. Cybern. 2018, 8, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, D.; Chen, J.; Chen, Y.; Yang, T.; Cao, J. Gas-sensor drift counteraction with adaptive active learning for an electronic nose. Sensors 2018, 18, 4028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Liu, Y.; Guo, M.; Wang, C.; Liu, X. A probabilistic model of active learning with multiple noisy oracles. Neurocomputing 2013, 118, 253–262. [Google Scholar] [CrossRef]
- Fang, M.; Zhu, X.; Li, B.; Ding, W.; Wu, X. Self-taught active learning from crowds. In Proceedings of the IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; pp. 858–863. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.; Shengs, V.S. Active learning with imbalanced multiple noisy labeling. IEEE Trans. Cybern. 2015, 45, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Zhu, X. Active learning with uncertain labeling knowledge. Pattern Recogn. Lett. 2014, 43, 98–108. [Google Scholar] [CrossRef]
- Wilson, D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 1972, SMC-2, 408–421. [Google Scholar] [CrossRef] [Green Version]
- Bouguelia, M.; Belaïd, Y.; Belaïd, A. Identifying and mitigating labelling errors in active learning. In Proceedings of the International Conference on Pattern Recognition Applications and Methods, Lisbon, Portugal, 10–12 January 2015; pp. 35–51. [Google Scholar] [CrossRef]
- Bouguelia, M.; Nowaczyk, S.; Santosh, K.C. Agreeing to disagree: Active learning with noisy labels without crowdsourcing. Int. J. Mach. Learn. Cybern. 2017, 9, 1307–1319. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, S.; Yun, X. Bidirectional active learning: A two-way exploration into unlabeled and labeled data set. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 3034–3044. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.C.; Zhang, H.; Liu, W.K.; Liu, Q.B. Online active learning ensemble framework for drifted data streams. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 486–498. [Google Scholar] [CrossRef] [PubMed]
Method | Accuracy | Adaptation | Cost |
---|---|---|---|
Multiple experts [27,28,29] | High | High | High |
k-NN [31] | Mid | Mid | Mid |
Disagreement measure [32,33] | Mid | Low | Low |
Bidirectional AL [34] | Mid | Mid | Mid |
MPEGMM | High | High | Low |
Model | Type | Test Objects | Model | Type | Test Objects |
---|---|---|---|---|---|
TGS800 | Metal oxide | Smog | MQ-7B | Metal oxide | Carbon monoxide |
TGS813 | Methane, ethane, propane | MQ131 | Ozone | ||
TGS816 | Inflammable gas | MQ135 | Ammonia, sulfide, benzene | ||
TGS822 | Ethanol | MQ136 | Sulfuretted hydrogen | ||
TGS2600 | Hydrogen, methane | MP-3B | Ethanol | ||
TGS2602 | Methylbenzene, ammonia | MP-4 | Methane | ||
TGS2610 | Inflammable gas | MP-5 | Propane | ||
TGS2612 | Methane | MP-135 | Air pollutant | ||
TGS2620 | Ethanol | MP-901 | Cigarettes, ethanol | ||
TGS2201A | Gasoline exhaust | WSP2110 | Formaldehyde, benzene | ||
TGS2201B | Carbon monoxide | WSP5110 | Freon | ||
GSBT11 | Formaldehyde, benzene | SP3-AQ2-01 | Organic compounds | ||
MQ-2 | Ammonia, sulfide | ME2-CO | Electrochemical | Carbon monoxide | |
MQ-3B | Ethanol | ME2-CH2O | Formaldehyde | ||
MQ-4 | Methane | ME2-O2 | Oxygen | ||
MQ-6 | Liquefied petroleum gas | TGS4161 | Solid electrolyte | Carbon monoxide |
Parameter | Dataset A | Dataset B | ||||
---|---|---|---|---|---|---|
label-noise ratio (LNR) | 10% | 20% | 30% | 10% | 20% | 30% |
w | 100 | 5 | 5 | 5 | 1 | 0.1 |
LNR | Method | 1→2 | 2→3 | 3→4&5 | 4&5→6 | 6→7 | 7→8 | 8→9 | 9→10 |
---|---|---|---|---|---|---|---|---|---|
10% | NoProcess | 87.98 ± 9.40 | 92.14 ± 9.32 | 85.44 ± 6.70 | 93.49 ± 2.37 | 94.17 ± 3.33 | 86.57 ± 5.59 | 90.16 ± 4.66 | 89.48 ± 4.35 |
Vote | 93.01 ± 7.89 | 90.98 ± 8.28 | 85.82 ± 7.01 | 92.90 ± 3.02 | 97.48 ± 1.32 | 86.57 ± 5.59 | 90.25 ± 4.76 | 89.09 ± 4.57 | |
3-NN | 87.98 ± 9.40 | 91.47 ± 8.35 | 85.44 ± 6.70 | 93.61 ± 2.13 | 96.13 ± 2.57 | 87.04 ± 6.04 | 90.16 ± 4.62 | 88.63 ± 4.83 | |
Disagree | 89.45 ± 9.66 | 95.54 ± 1.76 | 85.47 ± 6.73 | 93.39 ± 3.00 | 93.83 ± 3.11 | 91.24 ± 1.75 | 90.75 ± 4.82 | 89.89 ± 5.25 | |
BDAL | 88.22 ± 9.80 | 92.72 ± 8.55 | 85.88 ± 6.77 | 93.03 ± 2.27 | 96.13 ± 2.39 | 86.57 ± 5.59 | 90.16 ± 4.66 | 89.48 ± 3.80 | |
MPEGMM | 94.25 ± 4.53 | 97.40 ± 1.77 | 90.19 ± 5.24 | 95.28 ± 1.95 | 97.90 ± 2.23 | 90.62 ± 3.05 | 90.34 ± 5.05 | 90.20 ± 4.43 | |
20% | NoProcess | 85.21 ± 10.85 | 82.46 ± 7.56 | 92.70 ± 6.96 | 76.54 ± 2.47 | 91.91 ± 6.43 | 84.54 ± 2.29 | 89.16 ± 12.45 | 56.21 ± 6.61 |
Vote | 90.82 ± 12.74 | 94.43 ± 5.36 | 91.89 ± 6.08 | 94.72 ± 3.98 | 95.24 ± 1.29 | 86.95 ± 4.75 | 91.84 ± 11.90 | 79.93 ± 6.87 | |
3-NN | 89.86 ± 14.27 | 94.55 ± 6.77 | 91.82 ± 6.67 | 96.51 ± 1.02 | 95.82 ± 2.59 | 85.69 ± 3.80 | 91.53 ± 12.00 | 80.38 ± 6.67 | |
Disagree | 91.44 ± 6.51 | 97.37 ± 3.75 | 95.22 ± 2.68 | 94.18 ± 1.83 | 95.32 ± 1.92 | 84.54 ± 4.53 | 91.16 ± 11.91 | 79.01 ± 7.42 | |
BDAL | 91.64 ± 7.50 | 85.66 ± 6.74 | 90.75 ± 6.82 | 94.87 ± 3.39 | 96.31 ± 1.49 | 85.84 ± 5.00 | 91.74 ± 11.90 | 79.84 ± 7.81 | |
MPEGMM | 91.38 ± 13.25 | 97.62 ± 2.45 | 93.58 ± 4.39 | 96.27 ± 1.28 | 97.89 ± 0.41 | 88.48 ± 3.93 | 91.56 ± 12.12 | 82.18 ± 4.65 | |
30% | NoProcess | 67.55 ± 13.99 | 77.11 ± 3.01 | 85.60 ± 6.36 | 91.85 ± 2.97 | 91.73 ± 5.53 | 75.66 ± 4.94 | 85.29 ± 12.87 | 80.84 ± 7.87 |
Vote | 87.27 ± 13.23 | 92.22 ± 7.67 | 93.08 ± 3.36 | 95.06 ± 2.04 | 92.33 ± 4.52 | 84.34 ± 7.03 | 91.40 ± 4.87 | 80.75 ± 7.96 | |
3-NN | 89.60 ± 11.27 | 95.07 ± 4.11 | 92.42 ± 3.91 | 95.84 ± 1.86 | 94.54 ± 4.96 | 84.34 ± 6.66 | 91.95 ± 7.68 | 83.48 ± 6.48 | |
Disagree | 85.82 ± 6.19 | 90.82 ± 8.16 | 84.94 ± 7.61 | 91.64 ± 3.51 | 93.22 ± 4.37 | 75.95 ± 4.73 | 85.29 ± 12.87 | 83.12 ± 7.11 | |
BDAL | 91.74 ± 4.35 | 91.27 ± 7.17 | 87.01 ± 7.30 | 92.69 ± 2.42 | 91.38 ± 5.28 | 80.58 ± 6.91 | 92.51 ± 4.87 | 80.88 ± 8.30 | |
MPEGMM | 91.89 ± 4.93 | 94.77 ± 4.12 | 89.78 ± 7.85 | 96.59 ± 2.31 | 94.32 ± 3.36 | 85.88 ± 3.60 | 93.03 ± 7.73 | 83.59 ± 8.68 |
LNR | 10% | 20% | 30% | |||
---|---|---|---|---|---|---|
Batch ID | 1→2 | 2→3 | 1→2 | 2→3 | 1→2 | 2→3 |
NoProcess | 70.19 ± 4.80 | 74.34 ± 10.23 | 69.55 ± 8.63 | 77.63 ± 13.03 | 63.57 ± 9.33 | 64.74 ± 4.84 |
Vote | 70.19 ± 4.80 | 79.61 ± 2.79 | 70.06 ± 7.90 | 77.63 ± 16.75 | 69.74 ± 7.30 | 71.71 ± 5.34 |
3-NN | 73.57 ± 3.23 | 74.34 ± 10.23 | 71.36 ± 6.50 | 78.29 ± 15.82 | 71.43 ± 7.98 | 70.66 ± 6.30 |
Disagree | 71.56 ± 3.65 | 74.34 ± 10.23 | 72.14 ± 6.42 | 77.63 ± 13.03 | 68.31 ± 9.03 | 64.74 ± 4.84 |
BDAL | 70.19 ± 4.80 | 74.34 ± 10.23 | 69.94 ± 8.62 | 76.97 ± 13.96 | 66.10 ± 10.16 | 67.50 ± 6.60 |
MPEGMM | 74.16 ± 4.78 | 82.24 ± 4.65 | 73.18 ± 8.21 | 86.84 ± 11.16 | 72.92 ± 5.79 | 75.79 ± 5.96 |
Method | 1→2 | 2→3 | 3→4&5 | 4&5→6 | 6→7 | 7→8 | 8→9 | 9→10 | Average |
---|---|---|---|---|---|---|---|---|---|
Vote | 0.313 | 0.862 | 0.661 | 0.159 | 0.510 | 3.783 | 0.161 | 0.251 | 0.838 |
3-NN | 1.205 | 1.111 | 1.161 | 1.178 | 2.644 | 1.726 | 0.927 | 0.952 | 1.363 |
Disagree | 0.381 | 0.934 | 0.912 | 0.249 | 2.182 | 3.872 | 0.179 | 0.467 | 1.147 |
BDAL | 1.377 | 3.069 | 2.647 | 1.088 | 8.305 | 10.814 | 0.510 | 1.725 | 3.692 |
MPEGMM | 0.296 | 0.319 | 0.307 | 0.286 | 0.396 | 0.197 | 0.153 | 0.437 | 0.299 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Liu, T.; Chen, J.; Yang, T.; Zhu, X.; Wang, H. Drift Compensation on Massive Online Electronic-Nose Responses. Chemosensors 2021, 9, 78. https://doi.org/10.3390/chemosensors9040078
Cao J, Liu T, Chen J, Yang T, Zhu X, Wang H. Drift Compensation on Massive Online Electronic-Nose Responses. Chemosensors. 2021; 9(4):78. https://doi.org/10.3390/chemosensors9040078
Chicago/Turabian StyleCao, Jianhua, Tao Liu, Jianjun Chen, Tao Yang, Xiuxiu Zhu, and Hongjin Wang. 2021. "Drift Compensation on Massive Online Electronic-Nose Responses" Chemosensors 9, no. 4: 78. https://doi.org/10.3390/chemosensors9040078
APA StyleCao, J., Liu, T., Chen, J., Yang, T., Zhu, X., & Wang, H. (2021). Drift Compensation on Massive Online Electronic-Nose Responses. Chemosensors, 9(4), 78. https://doi.org/10.3390/chemosensors9040078