Nanometre-Scale Visualization of Chemical Parameter Changes by T1-Weighted ODMR Imaging Using a Fluorescent Nanodiamond
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Carboxylated Nanodiamond
2.2. T1 Measuremnt
2.3. T1-Weighted Imaging
3. Results
3.1. Simulation of T1-Weighted Images
3.2. T1-Weighted Images from a Nanodiamond under Various pH Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chretien, D.; Bénit, P.; Ha, H.H.; Keipert, S.; El-Khoury, R.; Chang, Y.T.; Jastroch, M.; Jacobs, H.T.; Rustin, P.; Rak, M. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol. 2018, 16, e2003992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyonaka, S.; Kajimoto, T.; Sakaguchi, R.; Shinmi, D.; Omatsu-Kanbe, M.; Matsuura, H.; Imamura, H.; Yoshizaki, T.; Hamachi, I.; Morii, T.; et al. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods 2013, 10, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Tarbashevich, K.; Reichman-Fried, M.; Grimaldi, C.; Raz, E. Chemokine-dependent ph elevation at the cell front sustains polarity in directionally migrating zebrafish germ cells. Curr. Biol. 2015, 25, 1096–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2009, 11, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Elbaum-Garfinkle, S.; Kim, Y.; Szczepaniak, K.; Chen, C.C.-H.; Eckmann, C.R.; Myong, S.; Brangwynne, C.P. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl. Acad. Sci. USA 2015, 112, 7189–7194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeynaems, S.; Alberti, S.; Fawzi, N.L.; Mittag, T.; Polymenidou, M.; Rousseau, F.; Schymkowitz, J.; Shorter, J.; Wolozin, B.; Bosch, L.V.D.; et al. Protein phase separation: A new phase in cell biology. Trends Cell Biol. 2018, 28, 420–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Li, D.; Zhang, S.; Yang, Y.; Liu, J.J.; Wang, X.; Liu, C.; Milkie, D.E.; Moore, R.P.; Tulu, U.S.; et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 2018, 175, 1430–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tofts, P.S.; Brix, G.; Buckley, D.L.; Evelhoch, J.L.; Henderson, E.; Knopp, M.V.; Larsson, H.B.; Lee, T.Y.; Mayr, N.A.; Parker, G.J.; et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J. Magn. Reson. Imaging 1999, 10, 223–232. [Google Scholar] [CrossRef]
- Ukaji, M.; Ebara, M.; Tsuchiya, Y.; Kato, H.; Fukuda, H.; Sugiura, N.; Saisho, H. Diagnosis of gallstone composition in magnetic resonance imaging: In vitro analysis. Eur. J. Radiol. 2002, 41, 49–56. [Google Scholar] [CrossRef]
- Jung, S.C.; Yeom, J.A.; Kim, J.H.; Ryoo, I.; Kim, S.C.; Shin, H.; Lee, A.L.; Yun, T.J.; Park, C.K.; Sohn, C.H.; et al. Glioma: Application of histogram analysis of pharmacokinetic parameters from t1-weighted dynamic contrast-enhanced mr imaging to tumor grading. Am. J. Neuroradiol. 2014, 35, 1103–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Z.; Hu, S.; Huang, F.; Wang, X.; Guo, L.; Quan, X.; Wang, S.; Zhou, J. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. NeuroImage 2010, 51, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boretti, A.; Rosa, L.; Blackledge, J.; Castelletto, S. Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications. Beilstein J. Nanotechnol. 2019, 10, 2128–2151. [Google Scholar] [CrossRef] [PubMed]
- Bucher, D.B.; Craik, D.P.L.A.; Backlund, M.P.; Turner, M.J.; Ben Dor, O.; Glenn, D.R.; Walsworth, R.L. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy. Nat. Protoc. 2019, 14, 2707–2747. [Google Scholar] [CrossRef] [PubMed]
- Glenn, D.R.; Bucher, D.B.; Lee, J.; Lukin, M.D.; Park, H.; Walsworth, R.L. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 2018, 555, 351–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.J.; Kang, M.W.; Chang, H.C.; Chen, K.M.; Yu, Y.C. Bright Fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005, 127, 17604–17605. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 1997, 276, 2012–2014. [Google Scholar] [CrossRef] [Green Version]
- Hanson, R.; Mendoza, F.M.; Epstein, R.J.; Awschalom, D.D. Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 2006, 97, 087601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rendler, T.; Neburkova, J.; Zemek, O.; Kotek, J.; Zappe, A.; Chu, Z.; Cígler, P.; Wrachtrup, J. Optical imaging of localized chemical events using programmable diamond quantum nanosensors. Nat. Commun. 2017, 8, 14701. [Google Scholar] [CrossRef] [PubMed]
- Ermakova, A.; Pramanik, G.; Cai, J.M.; Algara-Siller, G.; Kaiser, U.; Weil, T.; Tzeng, Y.K.; Chang, H.C.; McGuinness, L.P.; Plenio, M.B.; et al. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 2013, 13, 3305–3309. [Google Scholar] [CrossRef] [PubMed]
- Fujisaku, T.; Tanabe, R.; Onoda, S.; Kubota, R.; Segawa, T.F.; So, F.T.-K.; Ohshima, T.; Hamachi, I.; Shirakawa, M.; Igarashi, R. pH Nanosensor using electronic spins in Diamond. ACS Nano 2019, 13, 11726–11732. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujisaku, T.; Igarashi, R.; Shirakawa, M. Nanometre-Scale Visualization of Chemical Parameter Changes by T1-Weighted ODMR Imaging Using a Fluorescent Nanodiamond. Chemosensors 2020, 8, 68. https://doi.org/10.3390/chemosensors8030068
Fujisaku T, Igarashi R, Shirakawa M. Nanometre-Scale Visualization of Chemical Parameter Changes by T1-Weighted ODMR Imaging Using a Fluorescent Nanodiamond. Chemosensors. 2020; 8(3):68. https://doi.org/10.3390/chemosensors8030068
Chicago/Turabian StyleFujisaku, Takahiro, Ryuji Igarashi, and Masahiro Shirakawa. 2020. "Nanometre-Scale Visualization of Chemical Parameter Changes by T1-Weighted ODMR Imaging Using a Fluorescent Nanodiamond" Chemosensors 8, no. 3: 68. https://doi.org/10.3390/chemosensors8030068
APA StyleFujisaku, T., Igarashi, R., & Shirakawa, M. (2020). Nanometre-Scale Visualization of Chemical Parameter Changes by T1-Weighted ODMR Imaging Using a Fluorescent Nanodiamond. Chemosensors, 8(3), 68. https://doi.org/10.3390/chemosensors8030068