An Innovative Real-Time Cell Viability Analysis: A Cutting-Edge Flexible Bioimpedance Sensor
Abstract
:1. Introduction
Cost 1 | Real-Time Monitoring | Experiment Duration | Sacrificing Cells After the Test | Agents | Advantages | Ref. | |
---|---|---|---|---|---|---|---|
Traditional chemical method (MTT/MTS) | 0.1–1 | N/A | 2–4 h | Necessary | MTT/MTS | Cheap and no equipment needed | [10] |
Flow cytometry | 1 2 | N/A | 30 m | Necessary | Fluorescent dye | Multiple experiments can be performed at the same time | [28] |
Flexible Bioimpedance Sensor | N/A3 | Yes | 1 m | Unnecessary | None | Narrated in the text |
2. Materials and Methods
2.1. The Design of Flexible Bioimpedance Sensor
2.2. Circle Electrode Measurement Selection
2.3. Phase Angle Measurement
2.4. Cells Cultures
2.5. Cell Population Preparation
2.6. Portable Phase Angle Measurement Device
2.7. Statistical Analysis
3. Results
3.1. Linearity Test of the Measured Samples
3.2. The Linear Characteristic of the Phase Angle Curve at Frequency 163 Hz
3.3. The Linear Characteristic of the Phase Angle Curve at Frequency 77.78 kHz
3.4. Self-Normalization Technique
3.5. Custom Phase Angle Measurement Device
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2018. [Google Scholar]
- World Health Organization. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.-W.; Ahmed, A.R.; Dereli-Korkut, Z.; Wang, S. Microfluidic cell chips for high-throughput drug screening. Bioanalysis 2016, 8, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Shinn, P.; Chen, L.; Ferrer, M.; Itkin, Z.; Klumpp-Thomas, C.; McKnight, C.; Michael, S.; Mierzwa, T.; Thomas, C.; Wilson, K. High-throughput screening for drug combinations. In Bioinformatics and Drug Discovery; Humana Press: New York, NY, USA, 2019; pp. 11–35. [Google Scholar]
- Prasad, V.; Mailankody, S. Research and development spending to bring a single cancer drug to market and revenues after approval. JAMA Intern. Med. 2017, 177, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Dewan, B.; Chaudhary, S.; Singh, D.; Yadav, M. Label-free detection of breast cancer cell lines using dopingless heterojunction TFET considering non-ideal hybridization issue. Mater. Sci. Eng. B 2024, 302, 117192. [Google Scholar] [CrossRef]
- Singh, T.A.; Sadhukhan, P.; Ghosh, N.; Thakur, N.; Sharma, A.; Tejwan, N.; Pabbathi, A.; Das, J.; Sil, P.C. Targeted delivery of rutin into breast cancer cells via using phenylboronic acid functionalized MgO nanoparticles. Mater. Sci. Eng. B 2023, 296, 116623. [Google Scholar] [CrossRef]
- Rubinstein, W.S.; Patriotis, C.; Dickherber, A.; Han, P.K.; Katki, H.A.; LeeVan, E.; Minasian, L.M. Cancer screening with multicancer detection tests: A translational science review. CA A Cancer J. Clin. 2024, 74, 368–382. [Google Scholar] [CrossRef]
- Wu, K.-J.; Ho, S.-H.; Dong, J.-Y.; Fu, L.; Wang, S.-P.; Liu, H.; Wu, C.; Leung, C.-H.; Wang, H.-M.D.; Ma, D.-L. Aliphatic group-tethered iridium complex as a theranostic agent against malignant melanoma metastasis. ACS Appl. Bio Mater. 2020, 3, 2017–2027. [Google Scholar] [CrossRef]
- Sanginario, A.; Miccoli, B.; Demarchi, D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors 2017, 7, 9. [Google Scholar] [CrossRef]
- Mdlovu, N.V.; Lin, K.-S.; Chen, Y.; Juang, R.-S.; Chang, T.-W.; Mdlovu, N.B. Formulation and characterization of multifunctional polymer modified-iron oxide magnetic nanocarrier for doxorubicin delivery. J. Taiwan. Inst. Chem. Eng. 2019, 104, 260–272. [Google Scholar] [CrossRef]
- Ching, C.T.S.; Sun, T.P.; Huang, S.H.; Shieh, H.L.; Chen, C.Y. A Mediated Glucose Biosensor Incorporated with Reverse Iontophoresis Function for Noninvasive Glucose Monitoring. Ann. Biomed. Eng. 2010, 38, 1548–1555. [Google Scholar] [CrossRef]
- Yuan, R.Y.K.; Hou, Y.; Sun, W.; Yu, J.; Liu, X.; Niu, Y.N.; Lu, J.J.; Chen, X.P. Natural products to prevent drug resistance in cancer chemotherapy: A review. Ann. N. Y. Acad. Sci. 2017, 1401, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, P.; Srinivasa, C.M.; Kumar, G.V.; Qurishi, Y.; Su, C.H.; Gopinath, S.C.B. A pH stimuli thiol modified mesoporous silica nanoparticles: Doxorubicin carrier for cancer therapy. J. Taiwan Inst. Chem. Eng. 2018, 87, 264–271. [Google Scholar] [CrossRef]
- Dong, X.L.; Bai, X.P.; Ni, J.; Zhang, H.; Duan, W.; Graham, P.; Li, Y. Exosomes and breast cancer drug resistance. Cell Death Dis. 2020, 11, 987. [Google Scholar] [CrossRef] [PubMed]
- Ghobashy, M.M.; Alkhursani, S.A.; Alqahtani, H.A.; El-damhougy, T.K.; Madani, M. Gold nanoparticles in microelectronics advancements and biomedical applications. Mater. Sci. Eng. B 2024, 301, 117191. [Google Scholar] [CrossRef]
- Paoletti, C.; Hayes, D.F. Circulating tumor cells. Nov. Biomark. Contin. Breast Cancer 2016, 882, 235–258. [Google Scholar]
- Peinado, H.; Aleckovic, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.M.; et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 2012, 18, 883. [Google Scholar] [CrossRef]
- Gowda, R.; Robertson, B.M.; Iyer, S.; Barry, J.; Dinavahi, S.S.; Robertson, G.P. The role of exosomes in metastasis and progression of melanoma. Cancer Treat. Rev. 2020, 85, 101975. [Google Scholar] [CrossRef]
- Du, Y.; Yu, D.-G.; Yi, T. Electrospun nanofibers as chemosensors for detecting environmental pollutants: A review. Chemosensors 2023, 11, 208. [Google Scholar] [CrossRef]
- Altzis, D.; Tsiasioti, A.; Zacharis, C.K.; Tzanavaras, P.D. Speciation of iron using desferal via simple pH change and a single calibration curve: High-throughput optical sensor based on 96-well plates and an overhead book scanner as detector. Chemosensors 2023, 11, 577. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, M.; Yang, L.; Gao, J.; Zhang, G.; Guo, R.; Guo, S. Combinatorial Material Strategy: Parallel Synthesis and High-Throughput Screening of WO3 Nanoplates Decorated with Noble Metals for VOCs Sensor. Chemosensors 2023, 11, 239. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Gonçalves, J.N.; Sousa, L.F.; Rodrigues, L.R.; Correia-de-Sá, P.; Coutinho, P.J.; Castanheira, E.M.; Oliveira, R.; Dias, A.M. 2, 4, 5-Triaminopyrimidines as blue fluorescent probes for cell viability monitoring: Synthesis, photophysical properties, and microscopy applications. Org. Biomol. Chem. 2024, 22, 2252–2263. [Google Scholar] [PubMed]
- Ching, C.T.S.; Wang, C.-K.; Tang, P.-C.; Ha, M.-K.; Li, C.; Chiu, H.-N.; Yao, F.Y.-D.; Nhan, N.C.; Hieu, N.V.; Phan, T.-L. Bioimpedance-Measurement-Based Non-Invasive Method for In Ovo Chicken Egg Sexing. Biosensors 2023, 13, 440. [Google Scholar] [CrossRef]
- Phan, T.L.; Van Hieu, N.; Li, T.S.; Tsao, K.; Ching CT, S. Noninvasive and real-time in vivo characterization of Inflammation skin. A feasibility of animal study. Skin Res. Technol. 2021, 27, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Ching, C.T.S.; Lee, P.-Y.; Van Hieu, N.; Chou, H.-H.; Yao, F.Y.-D.; Cheng, S.-Y.; Lin, Y.-K.; Phan, T.L. Real-time, Economical Identification of Microplastics Using Impedance-based Interdigital Array Microelectrodes and k-Nearest Neighbor Model. Biotechnol. Bioprocess. Eng. 2023, 28, 459–466. [Google Scholar] [CrossRef]
- Liu, S.; Pang, H.; Wang, C.; Wang, Z.; Wang, M.; Zhang, Y.; Zhang, W.; Sui, Z. Rapid and accurate quantification of viable Bifidobacterium cells in milk powder with a propidium monoazide-antibiotic fluorescence in situ hybridization-flow cytometry method. J. Dairy Sci. 2024, 107, 7678–7690. [Google Scholar] [CrossRef]
- Kieninger, J.; Tamari, Y.; Enderle, B.; Jobst, G.; Sandvik, J.A.; Pettersen, E.O.; Urban, G.A. Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask. Biosensors 2018, 8, 44. [Google Scholar] [CrossRef]
- Fernandez, R.E.; Lebiga, E.; Koklu, A.; Sabuncu, A.C.; Beskok, A. Flexible Bioimpedance Sensor for Label-Free Detection of Cell Viability and Biomass. IEEE Trans. Nanobiosci. 2015, 14, 700–706. [Google Scholar] [CrossRef]
- Ayala-Mendivil, N.; Calixto-Romo, M.D.; Amaya-Delgado, L.; Casas-Godoy, L.; Sandoval, G. High Throughput Screening: Developed Techniques for Cellulolytic and Xylanolytic Activities Assay. Comb. Chem. High. Throughput Scr. 2016, 19, 627–635. [Google Scholar] [CrossRef]
- Li, X.; Feng, H.; Li, Z.; Shi, Y.; Tian, J.; Zhao, C.; Yu, M.; Liu, Z.; Li, H.; Shi, B.; et al. High-Throughput Identification and Screening of Single Microbial Cells by Nanobowl Array. ACS Appl. Mater. Interfaces 2019, 11, 44933–44940. [Google Scholar] [CrossRef]
- Lee, C.-C.; Chen, Y.-T.; Chiu, C.-C.; Liao, W.-T.; Liu, Y.-C.; Wang, H.-M.D. Polygonum cuspidatum extracts as bioactive antioxidaion, anti-tyrosinase, immune stimulation and anticancer agents. J. Biosci. Bioeng. 2015, 119, 464–469. [Google Scholar]
- Ledwith, R.; Stobernack, T.; Bergert, A.; Bahl, A.; Pink, M.; Haase, A.; Dumit, V.I. Towards characterization of cell culture conditions for reliable proteomic analysis: In vitro studies on A549, differentiated THP-1, and NR8383 cell lines. Arch. Toxicol. 2024, 98, 4021–4031. [Google Scholar] [CrossRef] [PubMed]
- Ching, C.T.S.; Chen, Y.C.; Lu, L.H.; Hsieh, P.F.; Hsiao, C.S.; Sun, T.P.; Shieh, H.L.; Chang, K.M. Characterization of the Muscle Electrical Properties in Low Back Pain Patients by Electrical Impedance Myography. PLoS ONE 2013, 8, e61639. [Google Scholar] [CrossRef] [PubMed]
- Hosseininasab, S.S.; Naderifar, M.; Akbarizadeh, M.R.; Hashemi, N.; Ghaderi, M.; Pajavand, H.; Satarzadeh, N.; Dousari, A.S. Synthesized arsenic nanoparticles and their high potential in biomedical applications: A review. Biotechnol. Bioeng. 2024, 121, 2050–2056. [Google Scholar] [CrossRef] [PubMed]
- Giacomotto, J.; Ségalat, L. High-throughput screening and small animal models, where are we? Br. J. Pharmacol. 2010, 160, 204–216. [Google Scholar] [CrossRef]
- Giaever, I.; Keese, C.R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. USA 1984, 81, 3761–3764. [Google Scholar] [CrossRef]
- Caviglia, C.; Zór, K.; Canepa, S.; Carminati, M.; Larsen, L.B.; Raiteri, R.; Andresen, T.L.; Heiskanen, A.; Emnéus, J. Interdependence of initial cell density, drug concentration and exposure time revealed by real-time impedance spectroscopic cytotoxicity assay. Analyst 2015, 140, 3623–3629. [Google Scholar] [CrossRef]
- Cheng, B.; Chen, H.C.; Chou, I.W.; Tang, T.W.H.; Hsieh, P.C.H. Harnessing the early post-injury inflammatory responses for cardiac regeneration. J. Biomed. Sci. 2017, 24, 7. [Google Scholar] [CrossRef]
- Alemayehu, D.; Emir, B.; Gaffney, M. Interface Between Regulation and Statistics in Drug Development; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Galle, P.; Finn, R.S.; Mitchell, C.R.; Ndirangu, K.; Ramji, Z.; Redhead, G.S.; Pinato, D.J. Treatment-emergent antidrug antibodies related to PD-1, PD-L1, or CTLA-4 inhibitors across tumor types: A systematic review. J. Immunother. Cancer 2024, 12, e008266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, T.-L.; Chou, H.-Y.; Huang, H.-X.; Kuo, C.-H.; Ching, C.T.S.; Wang, H.-M.D. An Innovative Real-Time Cell Viability Analysis: A Cutting-Edge Flexible Bioimpedance Sensor. Chemosensors 2025, 13, 132. https://doi.org/10.3390/chemosensors13040132
Phan T-L, Chou H-Y, Huang H-X, Kuo C-H, Ching CTS, Wang H-MD. An Innovative Real-Time Cell Viability Analysis: A Cutting-Edge Flexible Bioimpedance Sensor. Chemosensors. 2025; 13(4):132. https://doi.org/10.3390/chemosensors13040132
Chicago/Turabian StylePhan, Thien-Luan, Hsin-Yu Chou, Hui-Xuan Huang, Chia-Hung Kuo, Congo Tak Shing Ching, and Hui-Min David Wang. 2025. "An Innovative Real-Time Cell Viability Analysis: A Cutting-Edge Flexible Bioimpedance Sensor" Chemosensors 13, no. 4: 132. https://doi.org/10.3390/chemosensors13040132
APA StylePhan, T.-L., Chou, H.-Y., Huang, H.-X., Kuo, C.-H., Ching, C. T. S., & Wang, H.-M. D. (2025). An Innovative Real-Time Cell Viability Analysis: A Cutting-Edge Flexible Bioimpedance Sensor. Chemosensors, 13(4), 132. https://doi.org/10.3390/chemosensors13040132