A Comprehensive Study of P-g-C3N4/MOF-199 Composite for Electrochemical Sensing of Metformin in Pharmaceutical Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of MOF-199
2.3. Synthesis of Graphitic Carbon Nitride (g-C3N4)
2.4. Synthesis of Phosphorus-Doped Graphitic Carbon Nitride (P-g-C3N4)
2.5. Fabrication of Modified Electrodes
2.6. Material Characterization
2.7. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of the Phosphorus-Doped Graphitic Carbon Nitride (P-g-C3N4) and MOF
3.2. Characterization of P-g-C3N4/MOF-199/CPE Modified Electrode
3.3. Electrochemical Behavior of Metformin at P-g-C3N4/MOF-199/CPE
3.4. Effect of the Scan Rate
3.5. Effect of pH
3.6. Analytical Performance
3.7. Interference Study
3.8. Analytical Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Massey, S.; Story, D.; Li, L. Metformin: An old drug with new applications. Int. J. Mol. Sci. 2018, 19, 2863. [Google Scholar] [CrossRef] [PubMed]
- Vancura, A.; Bu, P.; Bhagwat, M.; Zeng, J.; Vancurova, I. Metformin as an anticancer agent. Trends Pharmacol. Sci. 2018, 39, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Guppy, A.; Jamal-Hanjani, M.; Pickering, L. Anticancer effects of metformin and its potential use as a therapeutic agent for breast cancer. Future Oncol. 2011, 7, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Foretz, M.; Guigas, B.; Viollet, B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2019, 15, 569–589. [Google Scholar] [CrossRef]
- Karunarathna, I.; Kusumarathna, K.; Jayathilaka, P.; Rathnayake, B.; Bandara, S.; Wijesinghe, A.; Priyalath, N.; Gunarathna, I.; Disanayake, D.; Kurukulasooriya, P.; et al. Comprehensive Review of Metformin: Indications, Contraindications, and Potential Applications. Uva Clin. 2024, 1–7. [Google Scholar]
- Zhang, Y.; Zhou, F.; Guan, J.; Zhou, L.; Chen, B. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023, 13, 250. [Google Scholar] [CrossRef]
- Gedawy, A.; Al-Salami, H.; Dass, C.R. Development and validation of a new analytical HPLC method for simultaneous determination of the antidiabetic drugs, metformin and gliclazide. J. Food Drug Anal. 2019, 27, 315–322. [Google Scholar] [CrossRef]
- Lamie, N.T.; Mahrouse, M.A. Smart spectrophotometric methods based on normalized spectra for simultaneous determination of alogliptin and metformin in their combined tablets. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 743–747. [Google Scholar] [CrossRef]
- ALOthman, Z.A.; Alsheetan, K.M.; AL-Anazy, M.M.; Locatelli, M.; Ali, I. Metformin residue analysis in water by MWCNTs-based solid-phase micromembrane tip extraction and capillary electrophoresis methods. Int. J. Environ. Sci. Technol. 2021, 18, 3419–3426. [Google Scholar] [CrossRef]
- Dehdashtian, S.; Gholivand, M.B.; Shamsipur, M.; Karimi, Z. A nano sized functionalized mesoporous silica modified carbon paste electrode as a novel, simple, robust and selective anti-diabetic metformin sensor. Sens. Actuators B Chem. 2015, 221, 807–815. [Google Scholar] [CrossRef]
- Shu, J.-C.; Yang, X.-Y.; Zhang, X.-R.; Huang, X.-Y.; Cao, M.-S.; Li, L.; Yang, H.-J.; Cao, W.-Q. Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 2020, 162, 157–171. [Google Scholar] [CrossRef]
- Dehdashtian, S.; Hashemi, B.; Aeenmehr, A. The application of perlite/cobalt oxide/reduced graphene oxide (PC-rGO)/metal organic framework (MOF) composite as electrode modifier for direct sensing of anticancer drug idarubicin. IEEE Sens. J. 2019, 19, 11739–11745. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Yola, M.L.; Atar, N.; Orooji, Y.; Karimi, F.; Kumar, P.S.; Rouhi, J.; Baghayeri, M. A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@ MOF-74 nanocomposite. J. Colloid Interface Sci. 2021, 592, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.K.; Bae, J.; Kim, K.S. From MOF-199 Microrods to CuO Nanoparticles for Room-Temperature Desulfurization: Regeneration and Repurposing Spent Adsorbents as Sustainable Approaches. ACS Omega 2021, 6, 25631–25641. [Google Scholar] [CrossRef]
- Wang, Q.; Gou, H.; Zhu, L.; Huang, H.-T.; Biswas, A.; Chaloux, B.L.; Epshteyn, A.; Yesinowski, J.P.; Liu, Z.; Cody, G. Modifying Carbon Nitride through Extreme Phosphorus Substitution. ACS Mater. Lett. 2019, 1, 14–19. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Tian, W.; Meng, A.; Li, Z.; Li, S.; Wang, L.; Li, G. High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo-N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2022, 303, 120933. [Google Scholar] [CrossRef]
- Ma, T.Y.; Ran, J.; Dai, S.; Jaroniec, M.; Qiao, S.Z. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angew. Chem. 2015, 127, 4729–4733. [Google Scholar] [CrossRef]
- Su, J.; Geng, P.; Li, X.; Zhao, Q.; Quan, X.; Chen, G. Novel phosphorus doped carbon nitride modified TiO2 nanotube arrays with improved photoelectrochemical performance. Nanoscale 2015, 7, 16282–16289. [Google Scholar] [CrossRef]
- Britt, D.; Tranchemontagne, D.; Yaghi, O.M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 2008, 105, 11623–11627. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Abdi, J. Nanoporous metal-organic framework (MOF-199): Synthesis, characterization and photocatalytic degradation of Basic Blue 41. Microchem. J. 2019, 144, 436–442. [Google Scholar] [CrossRef]
- Chegeni, M.; Dehghan, N. Preparation of Phosphorus Doped Graphitic Carbon Nitride Using a Simple Method and Its Application for Removing Methylene Blue. Phys. Chem. Res. 2020, 8, 31–44. [Google Scholar]
- Tiwari, J.N.; Vij, V.; Kemp, K.C.; Kim, K.S. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS Nano 2016, 10, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Khder, A.S.; Morad, M.; Altass, H.M.; Ibrahim, A.A.; Ahmed, S.A. Unprecedented green chemistry approach: Tungstophosphoric acid encapsulated in MOF 199 as competent acid catalyst for some significant organic transformations. J. Porous Mater. 2021, 28, 129–142. [Google Scholar] [CrossRef]
- Hadi, M.; Poorgholi, H.; Mostaanzadeh, H. Determination of Metformin at Metal–Organic Framework (Cu-BTC) Nanocrystals/Multi-walled Carbon Nanotubes Modified Glassy Carbon Electrode. S. Afr. J. Chem. 2016, 69, 132–139. [Google Scholar] [CrossRef]
- Sattarahmady, N.; Heli, H.; Faramarzi, F. Nickel oxide nanotubes-carbon microparticles/Nafion nanocomposite for the electrooxidation and sensitive detection of metformin. Talanta 2010, 82, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Gholivand, M.B.; Mohammadi-Behzad, L. Differential pulse voltammetric determination of metformin using copper-loaded activated charcoal modified electrode. Anal. Biochem. 2013, 438, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Abu-el-Wafa, S.M.; El-Ries, M.A.; Ahmed, F.H. Formation of metformin complexes with some transition metal ions: Their biological activity. Inorg. Chim. Acta 1987, 136, 127–131. [Google Scholar] [CrossRef]
- Tian, X.J.; Song, J.F. Catalytic action of copper (II) ion on electrochemical oxidation of metformine and voltammetric determination of metformine in pharmace. J. Pharm. Biomed. Anal. 2007, 44, 1192–1196. [Google Scholar] [CrossRef] [PubMed]
- Mirzajani, R.; Karimi, S. Preparation of γ-Fe2O3/hydroxyapatite/Cu(II) magnetic nanocomposite and its application for electrochemical detection of metformin in urine and pharmaceutical samples. Sens. Actuators B Chem. 2018, 270, 405–416. [Google Scholar] [CrossRef]
- Wu, L.; Lu, X.; Wu, Y.; Huang, C.; Gu, C.; Tian, Y.; Ma, J. An electrochemical sensor based on synergistic enhancement effects between nitrogen-doped carbon nanotubes and copper ions for ultrasensitive determination of anti-diabetic metformin. Sci. Total Environ. 2023, 878, 163120. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, M.H.; Sharafi, P.; Nayebossadr, S.; Norouzi, Z. Utilizing a nanocomposite consisting of zinc ferrite, copper oxide, and gold nanoparticles in the fabrication of a metformin electrochemical sensor supported on a glassy carbon electrode. Microchim. Acta 2020, 187, 1–11. [Google Scholar] [CrossRef]
- Attia, A.K.; Salem, W.M.; Mohamed, M.A. Voltammetric assay of metformin hydrochloride using pyrogallol modified carbon paste electrode. Acta Chim. Slov. 2015, 62, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Jawad SE, Z.; Ibrahim, M.; Fatima, B.; Chohan, T.A.; Hussain, D.; Najam-ul-Haq, M. Fabrication and employment of cobalt doped yttrium iron garnets for the electrochemical analysis of antidiabetic, metformin in serum of type 2 diabetes mellitus patients. Discov. Nano 2023, 18, 21. [Google Scholar] [CrossRef]
- Haq, I.; Cruz, A.G.; Di Masi, S.; Cowen, T.; Allcock, N.S.; Malitesta, C.; Mujahid, A.; Hussain, T.; Piletska, E.; Piletsky, S.A. Smart nano-actuators for electrochemical sensing of Metformin in human plasma. Sens. Actuators B Chem. 2023, 376, 132928. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, H.; Yue, X.; Zhao, Z.; Zhao, S. A novel electrochemical sensor based on Cu(Ⅱ) metal organic framework for the determination of metformin. Microchem. J. 2023, 191, 108849. [Google Scholar] [CrossRef]
- Shih, Y.-J.; Su, Y.-Q.; Chen, W.-H.; Lin, S.-K.; He, Y.-C.; Huang, C.-P. Copper nanoparticles encapsulated in reduced graphene oxide electrode (CuxrGO1−x) for the electrochemical quantification of metformin in water. Chem. Eng. J. 2023, 471, 144676. [Google Scholar] [CrossRef]
- Zamani, S.; Ghanbari, K.; Bonyadi, S. Electrochemical determination of metformin via a carbon paste electrode modified with an Ag NPs/Cu2O/CuO-decorated bacterial nanocellulose composite. Anal. Methods 2023, 15, 4606–4614. [Google Scholar] [CrossRef]
Electrode | Method | Linear Range | Detection Limit | Reference Number |
---|---|---|---|---|
SBA-15-Cu(II)–CPE | DPV | 0.1–65 μM | 30 nM | [10] |
Cu-BTC (nano)/CNTs GCE | CV | 0.50–25.00 μM | 0.12 µM | [24] |
Copper-loaded, activated-charcoal-modified electrode | DPV | 0.05–60 μM | 0.009 μM | [26] |
MWCNT/PE | DPV | 0.2 to 1.0 × 10 μM | 0.067 μM | [28] |
γ-Fe2O3@HAp/Cu(II)-CPE | ASDPV | 0.1 to 80 μM | 14 nM | [29] |
NCNT-Chi/GCE | DPV | 0.3–10 µM | 9.6 nM | [30] |
ZnFe2O4-CuO/GCE | DPV | 1.0 nM to 1.0 μM | 0.3 nM | [31] |
Pyrogallol-Modified CPE | DPV | 0.8–6 μM | 0.0663 μM | [32] |
Co-doped YIG/GCE | DPV | 0–60 μM | 0.04 μM | [33] |
Screen-printed platinum electrodes (SPPEs) | DPV | 100–2000 pM | 9 pM | [34] |
Nitrogen-doped carbon nanotubes (NCNTs) | DPV | 0.3–10 µM | 9.6 nM | [30] |
Glassy carbon electrode modified with a CuBTC/Nafion mixture | DPV | 0.5–280 µM | 0.19 µM | [35] |
CuxrGO1−x/GCE | DPV | 2–70 µM | 0.09 µM | [36] |
Ag NPs/Cu2O/CuO/BNC/CPE | CV | 0.1–1000.0 μM | 42.3 nM | [37] |
P-g-C3N4/MOF-199/CPE | DPV | 0.5 to 1200 nM | 0.15 nM | This work |
Sample | Added (nM) | Found (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Tablet | - | 411 | 3.7 | |
200 | 579 | 96 | 3.1 | |
400 | 808 | 101 | 3.4 | |
600 | 977 | 97 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehdashtian, S.; Wang, S.; Murray, T.A. A Comprehensive Study of P-g-C3N4/MOF-199 Composite for Electrochemical Sensing of Metformin in Pharmaceutical Samples. Chemosensors 2025, 13, 82. https://doi.org/10.3390/chemosensors13030082
Dehdashtian S, Wang S, Murray TA. A Comprehensive Study of P-g-C3N4/MOF-199 Composite for Electrochemical Sensing of Metformin in Pharmaceutical Samples. Chemosensors. 2025; 13(3):82. https://doi.org/10.3390/chemosensors13030082
Chicago/Turabian StyleDehdashtian, Sara, Shengnian Wang, and Teresa A. Murray. 2025. "A Comprehensive Study of P-g-C3N4/MOF-199 Composite for Electrochemical Sensing of Metformin in Pharmaceutical Samples" Chemosensors 13, no. 3: 82. https://doi.org/10.3390/chemosensors13030082
APA StyleDehdashtian, S., Wang, S., & Murray, T. A. (2025). A Comprehensive Study of P-g-C3N4/MOF-199 Composite for Electrochemical Sensing of Metformin in Pharmaceutical Samples. Chemosensors, 13(3), 82. https://doi.org/10.3390/chemosensors13030082