Recent Advances in the Application of Metal–Organic Frameworks and Coordination Polymers in Electrochemical Biosensors
Abstract
:1. Introduction
2. Synthesis, Properties, and Application of MOFs and CPs
2.1. Solvothermal Synthesis
2.2. Sono-Chemical Synthesis
2.3. Microwave-Assisted Heating
2.4. Mechanochemical Synthesis
2.5. Electrochemical Synthesis
2.6. Slow Diffusion
3. Applications for the Electrochemical Biosensor
3.1. MOF-Based Biosensor
3.2. CPs-Based Biosensor
4. Enhancing Strategies for Electrochemical Biosensors Based on MOFs and CPs
4.1. Hierarchical Porous Synthesis
4.2. Post-Synthetic Modification
4.3. Template-Assisted Synthesis
4.4. Mixed-Linker Synthesis
4.5. Self-Assembly of Building Units
4.6. Core–Shell Structure
4.7. Defect Design
4.8. Composite Material-Based Electrochemical Sensor
4.8.1. Metal-Nanoparticle-Based Composites
4.8.2. Polymeric-Based Composites
4.8.3. Carbon Material-Based Composite
4.8.4. Nanoparticle Formation
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PEC | photoelectrochemical |
EC | electrochemical |
ECL | electrochemiluminescent |
FRET | fluorescence resonance-based energy transfer |
PSM | post-synthetic modification |
BET | Brunauer-Emmett-Teller |
CV | cyclic voltammetry |
SWV | square-wave voltammetry |
GCE | glass carbon electrode |
SPE | screen printed electrode |
MOFs | metal–organic frameworks |
CPs | coordination polymers |
GO | graphene oxide |
PANI | polyaniline |
GBM | glioblastoma |
BDC | benzene dicarboxylic acid |
UiO-66 | Universitetet i Oslo |
MIL-91(Ti) | Materials of Institute Lavoisier-91 Titanium |
MOF-177 | Materials of Institute Lavoisier-177 |
ZIF-8 | Zeolitic Imidazolate Framework-8 |
BTB | 4,4′,4″-benzene-1,3,5-triyl-tris(benzoate) |
NDC | 2,6-naphthalene dicarboxylate |
PQDs | perovskite quantum dots |
HHTP | 2,3,6,7,10,11-hexahydroxytriphenylene |
EDTA | ethylenediaminetetraacetic acid |
PAN | polyacrylonitrile |
H4tptc | p-terphenyl-2,2″,5″,5‴-tetracarboxylic acid |
phen | 1,10-phenanthroline |
Ru-PEI-L-lys | ru(dcbpy)32+-polyethyleneimine-L-lysine |
DCN | 2,6-dichloro-4-nitroaniline |
p-NP | p-nitrophenol |
PAni | polyaniline |
PPy | polypyrrole |
PEDOT | poly(3,4-ethylene dioxythiophene) |
PEDOT:PSS | (3,4-ethylene dioxythiophene)-poly(styrene sulfonate) |
MB | methylene blue |
PBS | phosphate-buffered saline |
ATP | adenosine triphosphate |
NPs | nanoparticles |
SWNH | single-walled nanotube |
MWCNTs | multiwalled carbon nanotubes |
SWCNTs | single-walled carbon nanotubes |
LOW | low detection limit |
MVL ATRP | metal-free visible-light-induced atom transfer radical polymerization |
MBA | 4-mercaptobenzoic acid |
CTCs | circulating tumor cells |
References
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.C.; Ma, L.X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem. 2016, 227, 488–496. [Google Scholar] [CrossRef]
- Paleček, E.; Tkáč, J.; Bartošík, M.; Bertók, T.; Ostatná, V.; Paleček, J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem. Rev. 2015, 115, 2045–2108. [Google Scholar] [CrossRef] [PubMed]
- Mohankumar, P.; Ajayan, J.; Mohanraj, T.; Yasodharan, R. Recent developments in biosensors for healthcare and biomedical applications: A review. Meas. J. Int. Meas. Confed. 2021, 167, 108293. [Google Scholar] [CrossRef]
- Valentini, F.; Carbone, M.; Palleschi, G. Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Anal. Bioanal. Chem. 2013, 405, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wright, G.; Yang, Y. Materials and techniques for electrochemical biosensor design and construction. Biosens. Bioelectron. 2000, 15, 273–282. [Google Scholar] [CrossRef]
- Abdulbari, H.A.; Basheer, E.A.M. Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication. ChemBioEng Rev. 2017, 4, 92–105. [Google Scholar] [CrossRef]
- Pohanka, M.; Skládal, P. Electrochemical biosensors—Principles and applications. J. Appl. Biomed. 2008, 6, 57–64. [Google Scholar] [CrossRef]
- Ahmad, R.; Wolfbeis, O.S.; Hahn, Y.B.; Alshareef, H.N.; Torsi, L.; Salama, K.N. Deposition of nanomaterials: A crucial step in biosensor fabrication. Mater. Today Commun. 2018, 17, 289–321. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Q. The role of nanomaterials in electroanalytical biosensors: A mini review. J. Electroanal. Chem. 2016, 781, 401–409. [Google Scholar] [CrossRef]
- Li, M.; An, S.; Wu, Y.; Yan, Z.; Chai, Y.; Yuan, R. Self-Supplied Electron Photoelectrochemical Biosensor with PTB7-Th as a Photoelectric Material and Biotin as an Efficient Quencher. ACS Appl. Mater. Interfaces 2022, 14, 53398–53404. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Das, M.; Chinnadayyala, S.R.; Singha, I.M.; Goswami, P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens. Bioelectron. 2016, 79, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Pal, N.; Saha, B.; Kundu, S.K.; Bhaumik, A.; Banerjee, S. A highly efficient non-enzymatic glucose biosensor based on a nanostructured NiTiO3/NiO material. New J. Chem. 2015, 39, 8035–8043. [Google Scholar] [CrossRef]
- Zhang, L.; Du, W.; Nautiyal, A.; Liu, Z.; Zhang, X. Recent progress on nanostructured conducting polymers and composites: Synthesis, application and future aspects. Sci. China Mater. 2018, 61, 303–352. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, M.; Fang, Z.; Ju, Q. Synthesis and biomedical application of nanocomposites integrating metal-organic frameworks with upconversion nanoparticles. Coord. Chem. Rev. 2022, 468, 214641. [Google Scholar] [CrossRef]
- Kidanemariam, A.; Park, J. Metal-organic framework based on Co and 4,4′-dimethylenebiphenyl diphosphonic acid as an efficient methylene blue adsorbent. J. Ind. Eng. Chem. 2021, 104, 61–72. [Google Scholar] [CrossRef]
- Kaliyappan, T.; Kannan, P. Co-ordination polymers. Prog. Polym. Sci. 2000, 25, 343–370. [Google Scholar] [CrossRef]
- Alexandrov, E.V.; Shevchenko, A.P.; Nekrasova, N.A.; Blatov, V.A. Topological methods for analysis and design of coordination polymers. Russ. Chem. Rev. 2022, 91, RCR5032. [Google Scholar] [CrossRef]
- Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Sun, J.; Zhao, D.; Yan, Y. Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Microporous Mesoporous Mater. 2003, 58, 105–114. [Google Scholar] [CrossRef]
- Horike, S.; Ma, N.; Fan, Z.; Kosasang, S.; Smedskjaer, M.M. Mechanics, Ionics, and Optics of Metal-Organic Framework and Coordination Polymer Glasses. Nano Lett. 2021, 21, 6382–6390. [Google Scholar] [CrossRef]
- Ulhakim, M.T.; Rezki, M.; Dewi, K.K.; Abrori, S.A.; Harimurti, S.; Septiani, N.L.W.; Kurnia, K.A.; Setyaningsih, W.; Darmawan, N.; Yuliarto, B. Review—Recent Trend on Two-Dimensional Metal-Organic Frameworks for Electrochemical Biosensor Application. J. Electrochem. Soc. 2020, 167, 136509. [Google Scholar] [CrossRef]
- Safarpour, M.; Arefi-Oskoui, S.; Khataee, A. A review on two-dimensional metal oxide and metal hydroxide nanosheets for modification of polymeric membranes. J. Ind. Eng. Chem. 2020, 82, 31–41. [Google Scholar] [CrossRef]
- Kempahanumakkagari, S.; Vellingiri, K.; Deep, A.; Kwon, E.E.; Bolan, N.; Kim, K.H. Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord. Chem. Rev. 2018, 357, 105–129. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Martins, P.R.; Rocha, D.P.; Matias, T.A.; Julião, M.S.S.; Munoz, R.A.A.; Angnes, L. Recent trends and perspectives in electrochemical sensors based on MOF-derived materials. J. Mater. Chem. C 2021, 9, 8718–8745. [Google Scholar] [CrossRef]
- Yao, M.S.; Li, W.H.; Xu, G. Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coord. Chem. Rev. 2021, 426, 213479. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Chen, J.; Li, X.; Sun, J.; Zhu, J.; Wang, X.; Fu, Y. Recent development and applications of electrical conductive MOFs. Nanoscale 2021, 13, 485–509. [Google Scholar] [CrossRef] [PubMed]
- Tajik, S.; Beitollahi, H.; Garkani Nejad, F.; Sheikhshoaie, I.; Nugraha, A.S.; Jang, H.W.; Yamauchi, Y.; Shokouhimehr, M. Performance of metal-organic frameworks in the electrochemical sensing of environmental pollutants. J. Mater. Chem. A 2021, 9, 8195–8220. [Google Scholar] [CrossRef]
- Kumar, P.; Deep, A.; Kim, K.H.; Brown, R.J.C. Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds. Prog. Polym. Sci. 2015, 45, 102–118. [Google Scholar] [CrossRef]
- Fu, Y.; Li, P.; Bu, L.; Wang, T.; Xie, Q.; Chen, J.; Yao, S. Exploiting metal-organic coordination polymers as highly efficient immobilization matrixes of enzymes for sensitive electrochemical biosensing. Anal. Chem. 2011, 83, 6511–6517. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L.; Abbasi-Azad, M.; Habibi, B.; Rouhani, F.; Moghanni-Bavil-Olyaei, H.; Liu, K.G.; Morsali, A. Electrochemical Applications of Ferrocene-Based Coordination Polymers. ChemPlusChem 2020, 85, 2397–2418. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Wang, X.Y.; Wang, Y.H.; Hu, X.Y.; Lian, J.R.; Guan, Y.L.; Chen, H.Y.; He, Y.J.; Wang, H.S. Room-temperature preparation of coordination polymers for biomedicine. Coord. Chem. Rev. 2020, 411, 213256. [Google Scholar] [CrossRef]
- Belay, Y.; Muller, A.; Mallick, K. Lanthanide Formate Coordination Polymers for Selective Detection of Dopamine in the Presence of Ascorbic Acid. Electrocatalysis 2023, 14, 148–158. [Google Scholar] [CrossRef]
- Naveen, M.H.; Gurudatt, N.G.; Shim, Y.B. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today 2017, 9, 419–433. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Dourandish, Z.; Khalilzadeh, M.A.; Jang, H.W.; Venditti, R.A.; Varma, R.S.; Shokouhimehr, M. Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants. Ind. Eng. Chem. Res. 2021, 60, 1112–1136. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Du, M.; Zhu, H.; Bao, S.; Yang, T.; Zou, M. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. J. Hazard. Mater. 2015, 286, 533–544. [Google Scholar] [CrossRef]
- Mohamad Nor, N.; Ridhuan, N.S.; Abdul Razak, K. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. Biosensors 2022, 12, 1136. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, P.; Yang, J.; Fan, Y.; Wang, L.; Jiang, W.; Cheng, X.; Deng, Y.; Luo, W. Mesoporous Materials–Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. Small 2021, 17, 1904022. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, L.; Wu, S.; Pan, Y.; Dong, Y.; Zhu, S.; Yang, J.; Yin, Y.; Li, G. An Electrochemical Biosensor Designed by Using Zr-Based Metal-Organic Frameworks for the Detection of Glioblastoma-Derived Exosomes with Practical Application. Anal. Chem. 2020, 92, 3819–3826. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Amira, M.F.; Seleim, S.M.; Mohamed, A.K. Amino-decorated magnetic metal-organic framework as a potential novel platform for selective removal of chromium (Vl), cadmium (II) and lead (II). J. Hazard. Mater. 2020, 381, 120979. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Taima-Mancera, I.; Pasán, J.; Pino, V. Metal-organic frameworks in green analytical chemistry. Separations 2019, 6, 33. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Y.; Han, G.; Liu, B.; Su, S.; Wang, Y.; Xue, Y. Enhanced removal of P(V), Mo(VI) and W(VI) generated oxyanions using Fe-MOF as adsorbent from hydrometallurgical waste liquid: Exploring the influence of ionic polymerization. J. Hazard. Mater. 2022, 427, 128168. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Gao, P.; Yin, W.; Yin, M.; Pu, H.; Sun, Q.; Liang, X.; Fa, H. bao Bimetal-organic frameworks MnCo-MOF-74 derived Co/MnO@HC for the construction of a novel enzyme-free glucose sensor. Microchem. J. 2022, 175, 107097. [Google Scholar] [CrossRef]
- Qu, H.; Huang, L.; Han, Z.; Wang, Y.; Zhang, Z.; Wang, Y.; Chang, Q.; Wei, N.; Kipper, M.J.; Tang, J. A review of graphene-oxide/metal-organic framework composites materials: Characteristics, preparation and applications. J. Porous Mater. 2021, 28, 1837–1865. [Google Scholar] [CrossRef]
- Lozano, L.A.; Iglesias, C.M.; Faroldi, B.M.C.; Ulla, M.A.; Zamaro, J.M. Efficient solvothermal synthesis of highly porous UiO-66 nanocrystals in dimethylformamide-free media. J. Mater. Sci. 2018, 53, 1862–1873. [Google Scholar] [CrossRef]
- Benoit, V.; Pillai, R.S.; Orsi, A.; Normand, P.; Jobic, H.; Nouar, F.; Billemont, P.; Bloch, E.; Bourrelly, S.; Devic, T.; et al. MIL-91(Ti), a small pore metal-organic framework which fulfils several criteria: An upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport. J. Mater. Chem. A 2016, 4, 1383–1389. [Google Scholar] [CrossRef]
- Liang, M.X.; Ruan, C.Z.; Sun, D.; Kong, X.J.; Ren, Y.P.; Long, L.S.; Huang, R.B.; Zheng, L.S. Solvothermal synthesis of four polyoxometalate-based coordination polymers including diverse Ag(I)·π interactions. Inorg. Chem. 2014, 53, 897–902. [Google Scholar] [CrossRef]
- Hangxun, X.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567. [Google Scholar] [CrossRef]
- Etaiw, S.E.H.; Abd El-Aziz, D.M.; Fayed, T.A.; Khattab, H.M. Ultrasound-driven design and catalytic activity of nanostructured Cobalt (II) 3D-supramolecular coordination polymer. J. Mol. Struct. 2023, 1274, 134447. [Google Scholar] [CrossRef]
- Jung, D.W.; Yang, D.A.; Kim, J.; Kim, J.; Ahn, W.S. Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalt. Trans. 2010, 39, 2883–2887. [Google Scholar] [CrossRef]
- Li, W.T.; Wu, C.X.; Zhang, Y.J.; Guo, H.; Zhao, Z.; Chen, M.L. Microwave-assisted solvothermal synthesis of cube-shaped MOF-COF composites for copper detection and capture. Microchem. J. 2023, 191, 108925. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Vu, T.T.; Nguyen, D.K.; Trickett, C.A.; Doan, T.L.H.; Diercks, C.S.; Nguyen, V.Q.; Cordova, K.E. A complex metal-organic framework catalyst for microwave-assisted radical polymerization. Commun. Chem. 2018, 1, 70. [Google Scholar] [CrossRef]
- Hashemi, L.; Morsali, A. Microwave assisted synthesis of a new lead(ii) porous three-dimensional coordination polymer: Study of nanostructured size effect on high iodide adsorption affinity. CrystEngComm 2012, 14, 779–781. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Rambabu, D.; Maji, T.K. Mechanochemical synthesis of a processable halide perovskite quantum dot-MOF composite by post-synthetic metalation. J. Mater. Chem. A 2019, 7, 21106–21111. [Google Scholar] [CrossRef]
- Akhbari, K.; Morsali, A. Mechanochemical synthesis and characterization of kinetically and thermodynamically stable polymorphs of a lead(II) coordination polymer. Inorganica Chim. Acta 2015, 429, 109–113. [Google Scholar] [CrossRef]
- Yang, H.M.; Liu, X.; Song, X.L.; Yang, T.L.; Liang, Z.H.; Fan, C.M. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2015, 25, 3987–3994. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, J.; Huang, K.; Hou, X.; Zheng, C. Facile electrochemical synthesis of nano iron porous coordination polymer using scrap iron for simultaneous and cost-effective removal of organic and inorganic arsenic. Chin. Chem. Lett. 2018, 29, 456–460. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, Y.; Liu, M.; Bai, Y.; Wang, X.; Shang, S.; Chen, J.; Liu, Y. Electrochemical Synthesis of Large Area Two-Dimensional Metal–Organic Framework Films on Copper Anodes. Angew. Chem. —Int. Ed. 2021, 60, 2887–2891. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Han, S.; Walker, D.A.; Fuller, P.E.; Grzybowski, B.A. Nanoparticle Core/Shell Architectures within MOF Crystals Synthesized by Reaction Diffusion. Angew. Chem. 2012, 124, 7553–7557. [Google Scholar] [CrossRef]
- Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J. Synthesis and hydrogen-storage behavior of metal-organic framework MOF-5. Int. J. Hydrogen Energy 2009, 34, 1377–1382. [Google Scholar] [CrossRef]
- Jung, O.S.; Park, S.H.; Kim, K.M.; Jang, H.G. Solvent-Dependent Structures of Co(NO3)2 with 1,2-Bis(4-pyridyl)ethylene. Interconversion of Molecular Ladders versus Mononuclear Complexes. Inorg. Chem. 1998, 37, 5781–5785. [Google Scholar] [CrossRef]
- Sheta, S.M.; El-Sheikh, S.M.; Osman, D.I.; Salem, A.M.; Ali, O.I.; Harraz, F.A.; Shousha, W.G.; Shoeib, M.A.; Shawky, S.M.; Dionysiou, D.D. A novel HCV electrochemical biosensor based on a polyaniline@Ni-MOF nanocomposite. Dalt. Trans. 2020, 49, 8918–8926. [Google Scholar] [CrossRef] [PubMed]
- Dourandish, Z.; Tajik, S.; Beitollahi, H.; Jahani, P.M.; Nejad, F.G.; Sheikhshoaie, I.; Di Bartolomeo, A. A Comprehensive Review of Metal–Organic Framework: Synthesis, Characterization, and Investigation of Their Application in Electrochemical Biosensors for Biomedical Analysis. Sensors 2022, 22, 2238. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Xiu, J.; Huang, Q.; Li, W.; Wu, W.; Wu, A.; Cao, L.; Deng, W.; Wang, G.; Xu, G. Van der Waals Heterostructured MOF-on-MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing. Angew. Chem. 2019, 131, 15057–15061. [Google Scholar] [CrossRef]
- Li, M.; Zhang, G.; Boakye, A.; Chai, H.; Qu, L.; Zhang, X. Recent Advances in Metal-Organic Framework-Based Electrochemical Biosensing Applications. Front. Bioeng. Biotechnol. 2021, 9, 797067. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.T.; Nguyen, T.T.T.; Ge, S.; Liew, R.K.; Nguyen, D.T.C.; Van Tran, T. Recent progress and challenges of MOF-based nanocomposites in bioimaging, biosensing and biocarriers for drug delivery. Nanoscale Adv. 2024, 6, 1800–1821. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.Y.; Liu, Y.C.; Jiang, Y.F.; Yu, C.Y.; Yue, M.L.; Li, Z.X. Benzoate Acid-Dependent Lattice Dimension of Co-MOFs and MOF-Derived CoS2@CNTs with Tunable Pore Diameters for Supercapacitors. Inorg. Chem. 2017, 56, 6184–6196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, J.; Zhang, S.; Shang, N.; Zhao, X.; Alshehri, S.M.; Ahamad, T.; Yamauchi, Y.; Xu, X.; Bando, Y. MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance. Nano Energy 2022, 97, 107146. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Wang, R.; Hong, M. Structural Evolution from Metal-Organic Framework to Hybrids of Nitrogen-Doped Porous Carbon and Carbon Nanotubes for Enhanced Oxygen Reduction Activity. Chem. Mater. 2015, 27, 7610–7618. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, B.; Sun, Y.; Zhang, X.; Yang, H.; Wang, J. Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage. RSC Adv. 2015, 5, 58100–58106. [Google Scholar] [CrossRef]
- Liang, W.; Wang, B.; Cheng, J.; Xiao, D.; Xie, Z.; Zhao, J. 3D, eco-friendly metal-organic frameworks@carbon nanotube aerogels composite materials for removal of pesticides in water. J. Hazard. Mater. 2021, 401, 123718. [Google Scholar] [CrossRef] [PubMed]
- Chronopoulos, D.D.; Saini, H.; Tantis, I.; Zbořil, R.; Jayaramulu, K.; Otyepka, M. Carbon Nanotube Based Metal–Organic Framework Hybrids from Fundamentals Toward Applications. Small 2022, 18, 2104628. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.A.; Doan, V.D.; Le, V.T.; Nguyen, T.Q.; Don, T.N.; Vien, V.; Luan, N.T.; Vo, G.N.L. Metal-Organic Frameworks-Derived Material for Electrochemical Biosensors: Recent Applications and Prospects. Ind. Eng. Chem. Res. 2023, 62, 4738–4753. [Google Scholar] [CrossRef]
- Liao, X.; Fu, H.; Yan, T.; Lei, J. Electroactive metal–organic framework composites: Design and biosensing application. Biosens. Bioelectron. 2019, 146, 111743. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Wang, Q.; Zhang, L.; Yang, P.; Xie, Y.; Fei, J. Ultrasensitive non-enzymatic pesticide electrochemical sensor based on HKUST-1-derived copper oxide @ mesoporous carbon composite. Sens. Actuators B Chem. 2020, 305, 127478. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y.; Feng, S.; Yan, M.; Huang, J.; Yang, X. A dual-amplification mode and Cu-based metal-organic frameworks mediated electrochemical biosensor for sensitive detection of microRNA. Biosens. Bioelectron. 2022, 202, 113992. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.; Bhatia, D. Biofunctionalized metal-organic frameworks and host-guest interactions for advanced biomedical applications. J. Mater. Chem. B 2022, 10, 7194–7205. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Y.; Li, F. Nucleic acid-functionalized metal-organic framework for ultrasensitive immobilization-free photoelectrochemical biosensing. Biosens. Bioelectron. 2021, 173, 112832. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.P.; Liu, N.; Wu, K.Y.; Zhai, L.Y.; Xie, B.P.; Sun, B.; Duan, W.J.; Zhang, W.H.; Chen, J.X. Successive and Specific Detection of Hg2+ and I− by a DNA@MOF Biosensor: Experimental and Simulation Studies. Inorg. Chem. 2018, 57, 8382–8389. [Google Scholar] [CrossRef]
- Trino, L.D.; Albano, L.G.S.; Granato, D.C.; Santana, A.G.; De Camargo, D.H.S.; Correa, C.C.; Bof Bufon, C.C.; Paes Leme, A.F. ZIF-8 Metal-Organic Framework Electrochemical Biosensor for the Detection of Protein-Protein Interaction. Chem. Mater. 2021, 33, 1293–1306. [Google Scholar] [CrossRef]
- Shen, H.; Liu, B.; Liu, D.; Zhu, X.; Wei, X.; Yu, L.; Shen, Q.; Qu, P.; Xu, M. Lanthanide coordination polymer-based biosensor for citrate detection in urine. Anal. Methods 2019, 11, 1405–1409. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, J.; Ahmad, F.; Xiao, Y.; Guan, J.; Shu, T.; Zhang, X. Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine. Biosensors 2024, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Y.; Yang, H.; Yin, W.; Zeng, L.; Fang, S.; Liu, S.Y.; Dai, Z.; Zou, X.; Pan, Y. Two-dimensional coordination polymer-based nanosensor for sensitive and reliable nucleic acids detection in living cells. Chin. Chem. Lett. 2022, 33, 968–972. [Google Scholar] [CrossRef]
- Xue, Y.Q.; Bi, Y.; Chen, J. Halide-directed Assembly of Mercury(II) Coordination Polymers for Electrochemical Biosensing Toward Penicillin. Z. Anorg. Allg. Chem. 2020, 646, 296–300. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Guo, L.; Qiu, B.; Lin, Z. Photoelectrochemical Biosensor for MicroRNA-21 Based on High Photocurrent of TiO2/Two-Dimensional Coordination Polymer CuClx(MBA)yPhotoelectrode. Anal. Chem. 2021, 93, 11010–11018. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Sale, M.; Ding, B.; Lewis, W.; Silvester, D.S.; Ling, C.D.; D’Alessandro, D.M. Hydrogen-bonding 2D coordination polymer for enzyme-free electrochemical glucose sensing. CrystEngComm 2022, 24, 4599–4610. [Google Scholar] [CrossRef]
- Shcherbakov, A.B.; Reukov, V.V.; Yakimansky, A.V.; Krasnopeeva, E.L.; Ivanova, O.S.; Popov, A.L.; Ivanov, V.K. Ceo2 nanoparticle-containing polymers for biomedical applications: A review. Polymers 2021, 13, 924. [Google Scholar] [CrossRef] [PubMed]
- Shahhoseini, L.; Mohammadi, R.; Ghanbari, B.; Shahrokhian, S. Ni(II) 1D-coordination polymer/C60-modified glassy carbon electrode as a highly sensitive non-enzymatic glucose electrochemical sensor. Appl. Surf. Sci. 2019, 478, 361–372. [Google Scholar] [CrossRef]
- Estrada-Osorio, D.V.; Escalona-Villalpando, R.A.; Gutiérrez, A.; Arriaga, L.G.; Ledesma-García, J. Poly-L-lysine-modified with ferrocene to obtain a redox polymer for mediated glucose biosensor application. Bioelectrochemistry 2022, 146, 108147. [Google Scholar] [CrossRef]
- Zahed, M.A.; Barman, S.C.; Das, P.S.; Sharifuzzaman, M.; Yoon, H.S.; Yoon, S.H.; Park, J.Y. Highly flexible and conductive poly (3,4-ethylene dioxythiophene)-poly (styrene sulfonate) anchored 3-dimensional porous graphene network-based electrochemical biosensor for glucose and pH detection in human perspiration. Biosens. Bioelectron. 2020, 160, 112220. [Google Scholar] [CrossRef]
- Bai, R.; Sun, Y.; Zhao, M.; Han, Z.; Zhang, J.; Sun, Y.; Dong, W.; Li, S. Preparation of IgG imprinted polymers by metal-free visible-light-induced ATRP and its application in biosensor. Talanta 2021, 226, 122160. [Google Scholar] [CrossRef]
- Han, R.; Li, Y.; Chen, M.; Li, W.; Ding, C.; Luo, X. Antifouling Electrochemical Biosensor Based on the Designed Functional Peptide and the Electrodeposited Conducting Polymer for CTC Analysis in Human Blood. Anal. Chem. 2022, 94, 2204–2211. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.; Aukstakojyte, R.; Gaidukevic, J.; Lisyte, V.; Kausaite-Minkstimiene, A.; Barkauskas, J.; Ramanaviciene, A. Reduced graphene oxide and polyaniline nanofibers nanocomposite for the development of an amperometric glucose biosensor. Sensors 2021, 21, 948. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Xu, C.; Liu, C.; Ye, Y.; Sun, Z.; Wang, B.; Luo, Z. Conductive polymer hydrogels crosslinked by electrostatic interaction with PEDOT:PSS dopant for bioelectronics application. Chem. Eng. J. 2022, 429, 132430. [Google Scholar] [CrossRef]
- Fedorenko, V.; Damberga, D.; Grundsteins, K.; Ramanavicius, A.; Ramanavicius, S.; Coy, E.; Iatsunskyi, I.; Viter, R. Application of polydopamine functionalized zinc oxide for glucose biosensor design. Polymers 2021, 13, 2918. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qi, Y.; Shen, Y.; Yuan, Y.; Zhang, L.; Zhang, C.; Sun, Y. A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sens. Actuators B Chem. 2020, 310, 127756. [Google Scholar] [CrossRef]
- Cai, G.; Yan, P.; Zhang, L.; Zhou, H.C.; Jiang, H.L. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem. Rev. 2021, 121, 12278–12326. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Qiao, Z.A.; Fulvio, P.F.; Binder, A.J.; Tian, C.; Chen, J.; Nelson, K.M.; Zhu, X.; Dai, S. Template-free synthesis of hierarchical porous metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 9572–9575. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xu, J.; Lu, A.; Shi, Y.; Lin, Z. Coordination polymer template synthesis of hierarchical MnCo2O4.5 and MnNi6O8 nanoparticles for electrochemical capacitors electrode. Solid State Sci. 2016, 58, 70–79. [Google Scholar] [CrossRef]
- Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-Synthetic Modification of Metal–Organic Frameworks Toward Applications. Adv. Funct. Mater. 2021, 31, 2006291. [Google Scholar] [CrossRef]
- Wu, N.; Guo, H.; Peng, L.; Chen, Y.; Sun, L.; Liu, Y.; Wei, X.; Yang, W. Three-step post-synthetic modification metal-organic framework as a ratiometric fluorescent probe for the detection of creatinine. Microporous Mesoporous Mater. 2022, 338, 111989. [Google Scholar] [CrossRef]
- Ma, Y.X.; Liu, C.; Ma, J.F.; Zhao, Y. A Mixed Cd/Cu-Based Metal-Organic Framework Achieved by Postsynthetic Metal Exchange for Electrocatalytic Oxidation of Uric Acid. ACS Mater. Lett. 2022, 4, 2522–2527. [Google Scholar] [CrossRef]
- Resines-Urien, E.; Piñeiro-López, L.; Fernandez-Bartolome, E.; Gamonal, A.; Garcia-Hernandez, M.; Sánchez Costa, J. Covalent post-synthetic modification of switchable iron-based coordination polymers by volatile organic compounds: A versatile strategy for selective sensor development. Dalt. Trans. 2020, 49, 7315–7318. [Google Scholar] [CrossRef] [PubMed]
- Pavlenko, V.; Khosravi, H.S.; Żółtowska, S.; Haruna, A.B.; Zahid, M.; Mansurov, Z.; Supiyeva, Z.; Galal, A.; Ozoemena, K.I.; Abbas, Q.; et al. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Mater. Sci. Eng. R Rep. 2022, 149, 100682. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Hou, M.; Li, X.; Wu, X.; Ge, J. Immobilization on Metal-Organic Framework Engenders High Sensitivity for Enzymatic Electrochemical Detection. ACS Appl. Mater. Interfaces 2017, 9, 13831–13836. [Google Scholar] [CrossRef] [PubMed]
- Sapountzi, E.; Chateaux, J.F.; Lagarde, F. Combining Electrospinning and Vapor-Phase Polymerization for the Production of Polyacrylonitrile/Polypyrrole Core-Shell Nanofibers and Glucose Biosensor Application. Front. Chem. 2020, 8, 678. [Google Scholar] [CrossRef] [PubMed]
- Kleist, W.; Maciejewski, M.; Baiker, A. MOF-5 based mixed-linker metal-organic frameworks: Synthesis, thermal stability and catalytic application. Thermochim. Acta 2010, 499, 71–78. [Google Scholar] [CrossRef]
- Qin, J.S.; Yuan, S.; Wang, Q.; Alsalme, A.; Zhou, H.C. Mixed-linker strategy for the construction of multifunctional metal-organic frameworks. J. Mater. Chem. A 2017, 5, 4280–4291. [Google Scholar] [CrossRef]
- Tan, B.; Luo, Y.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. One-Pot Synthesis of Two-Linker Mixed Al-Based Metal-Organic Frameworks for Modulated Water Vapor Adsorption. Cryst. Growth Des. 2020, 20, 6565–6572. [Google Scholar] [CrossRef]
- Fan, L.; Liu, Z.; Zhang, Y.; Wang, F.; Zhao, D.; Yang, J.; Zhang, X. Luminescence sensing, electrochemical, and magenetic properties of 2D coordination polymers based on the mixed ligands: P-terphenyl-2,2″,5″,5‴-tetracarboxylate acid and 1,10-phenanthroline. New J. Chem. 2019, 43, 13349–13356. [Google Scholar] [CrossRef]
- Afzalinia, A.; Mirzaee, M. Ultrasensitive Fluorescent miRNA Biosensor Based on a “sandwich” Oligonucleotide Hybridization and Fluorescence Resonance Energy Transfer Process Using an Ln(III)-MOF and Ag Nanoparticles for Early Cancer Diagnosis: Application of Central Composite Design. ACS Appl. Mater. Interfaces 2020, 12, 16076–16087. [Google Scholar] [CrossRef]
- Chang, J.; Wang, X.; Wang, J.; Li, H.; Li, F. Nucleic Acid-Functionalized Metal-Organic Framework-Based Homogeneous Electrochemical Biosensor for Simultaneous Detection of Multiple Tumor Biomarkers. Anal. Chem. 2019, 91, 3604–3610. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yuan, S.; Zou, L.; Drake, H.; Zhang, Y.; Qin, J.; Alsalme, A.; Zhou, H. One-Step Synthesis of Hybrid Core–Shell Metal–Organic Frameworks. Angew. Chem. 2018, 130, 3991–3996. [Google Scholar] [CrossRef]
- Yu, C.; Cui, J.; Wang, Y.; Zheng, H.; Zhang, J.; Shu, X.; Liu, J.; Zhang, Y.; Wu, Y. Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu(OH)2 derived CuO/Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity. Appl. Surf. Sci. 2018, 439, 11–17. [Google Scholar] [CrossRef]
- Sun, Z.; Fan, Y.Z.; Zhang, Y.D.; Li, B.L.; Dong, X.Z.; Xiao, Q.; Li, N.B.; Luo, H.Q. An intelligent “chemical tongue” for high-order monitoring ATP-related physiological phosphates and ATP hydrolysis through diverse transduction principles. Biosens. Bioelectron. 2023, 241, 115691. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Zhang, G.; Shi, Y.; Pang, H. Synthesis and catalytic application of defective MOF materials. Cell Rep. Phys. Sci. 2023, 4, 101301. [Google Scholar] [CrossRef]
- Fang, Z.; Bueken, B.; De Vos, D.E.; Fischer, R.A. Defect-Engineered Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2015, 54, 7234–7254. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wu, Y.; Braun, A.; Huang, C.; Li, X.Y.; Menon, C.; Chu, P.K. Defect Engineering to Tailor Metal Vacancies in 2D Conductive Metal-Organic Frameworks: An Example in Electrochemical Sensing. ACS Nano 2022, 16, 20820–20830. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-organic framework composites and their electrochemical applications. J. Mater. Chem. A 2019, 7, 7301–7327. [Google Scholar] [CrossRef]
- Rasheed, T.; Rizwan, K. Metal-organic frameworks based hybrid nanocomposites as state-of–the-art analytical tools for electrochemical sensing applications. Biosens. Bioelectron. 2022, 199, 113867. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Pei, W.Y.; Ma, J.C.; Yang, J.; Ma, J.F. Simultaneous electrochemical detection of gallic acid and uric acid with p-tert-butylcalix[4]arene-based coordination polymer/mesoporous carbon composite. Microchim. Acta 2022, 189, 93. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ding, X.; Hua, K.; Sun, A.; Hu, X.; Nie, Z.; Zhang, Y.; Wang, J.; Li, R.; et al. Progress and opportunities for metal-organic framework composites in electrochemical sensors. RSC Adv. 2023, 13, 10800–10817. [Google Scholar] [CrossRef] [PubMed]
- Zha, R.; Wu, R.; Zong, Y.; Wang, Z.; Wu, T.; Zhong, Y.; Liang, H.; Chen, L.; Li, C.; Wang, Y. A high performance dual-mode biosensor based on Nd-MOF nanosheets functionalized with ionic liquid and gold nanoparticles for sensing of ctDNA. Talanta 2023, 258, 124377. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Chen, C.; Zeng, J.; Zhou, M.; Wang, L.; Ning, G.; Duan, Q.; Han, R.; Liu, H.; Zhao, H.; et al. Dual-Signal Electrochemical Biosensor for Neutrophil Gelatinase-Associated Lipocalin Based on MXene-Polyaniline and Cu-MOF/Single-Walled Carbon Nanohorn Nanostructures. ACS Appl. Nano Mater. 2022, 5, 16774–16783. [Google Scholar] [CrossRef]
- Lu, W.; Qin, X.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Facile synthesis of novel Ni(ii)-based metal-organic coordination polymer nanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing. Analyst 2013, 138, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Qian, R.; Ling, P.; Cui, L.; Ju, H. Design and sensing applications of metal-organic framework composites. TrAC—Trends Anal. Chem. 2014, 58, 71–78. [Google Scholar] [CrossRef]
- Huang, Q.; Luo, F.; Lin, C.; Wang, J.; Qiu, B.; Lin, Z. Electrochemiluminescence biosensor for thrombin detection based on metal organic framework with electrochemiluminescence indicator embedded in the framework. Biosens. Bioelectron. 2021, 189, 113374. [Google Scholar] [CrossRef] [PubMed]
- Hira, S.A.; Nallal, M.; Rajendran, K.; Song, S.; Park, S.; Lee, J.M.; Joo, S.H.; Park, K.H. Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor. Anal. Chim. Acta 2020, 1118, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Turner, A.P.F.; Mak, W.C. Tunable 3D nanofibrous and bio-functionalised PEDOT network explored as a conducting polymer-based biosensor. Biosens. Bioelectron. 2020, 159, 112181. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Yang, J.; Tu, X.; Yu, Y.; Liu, S.; Li, M.; Gao, Y.; Wang, X.; Lu, L. Facile synthesis of ZIF-8@poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and its application as efficient electrochemical sensor for the determination dichlorophenol. Synth. Met. 2021, 277, 116769. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Bahojb Noruzi, E.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Ghafori Gorab, M.; Masoud Hashemi, S.; Javanshir, S.; Ahangari Cohan, R.; et al. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 2022, 442, 136183. [Google Scholar] [CrossRef]
- Rong, S.; Zou, L.; Meng, L.; Yang, X.; Dai, J.; Wu, M.; Qiu, R.; Tian, Y.; Feng, X.; Ren, X.; et al. Dual function metal-organic frameworks based ratiometric electrochemical sensor for detection of doxorubicin. Anal. Chim. Acta 2022, 1196, 339545. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Cheng, H.; Huang, P.; Yang, L.; Yu, P.; Mao, L. Hybridization of bioelectrochemically functional infinite coordination polymer nanoparticles with carbon nanotubes for highly sensitive and selective in vivo electrochemical monitoring. Anal. Chem. 2013, 85, 4007–4013. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, N.; Atarod, M.; Tavakolizadeh, M.; Asgari, S.; Rezaei, M.; Akhavan, O.; Pourjavadi, A.; Jouyandeh, M.; Lima, E.C.; Hamed Mashhadzadeh, A.; et al. Green metal-organic frameworks (MOFs) for biomedical applications. Microporous Mesoporous Mater. 2022, 335, 111670. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J.; Li, P.; Gao, X.; Zhang, W.; Wang, H.; Tang, B. Treatment of hyperphosphatemia based on specific interactions between phosphorus and Zr(iv) active centers of nano-MOFs. Chem. Sci. 2018, 9, 7483–7487. [Google Scholar] [CrossRef] [PubMed]
- Abu-Dief, A.M.; Alrashedee, F.M.M.; Emran, K.M.; Al-Abdulkarim, H.A. Development of some magnetic metal–organic framework nano composites for pharmaceutical applications. Inorg. Chem. Commun. 2022, 138, 109251. [Google Scholar] [CrossRef]
- Hu, C.; Pan, P.; Huang, H.; Liu, H. Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol. Biosensors 2022, 12, 813. [Google Scholar] [CrossRef]
- Guo, Y.; Han, Y.; Shuang, S.; Dong, C. Rational synthesis of graphene-metal coordination polymer composite nanosheet as enhanced materials for electrochemical biosensing. J. Mater. Chem. 2012, 22, 13166–13173. [Google Scholar] [CrossRef]
- Wang, B.; Luo, Y.; Gao, L.; Liu, B.; Duan, G. High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. Biosens. Bioelectron. 2021, 171, 112736. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhao, L.; Luo, C.; Ren, X.; Yang, L.; Wei, Q. Peptide-Based Biosensor with a Luminescent Copper-Based Metal-Organic Framework as an Electrochemiluminescence Emitter for Trypsin Assay. Anal. Chem. 2021, 93, 9704–9710. [Google Scholar] [CrossRef] [PubMed]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Dispersed conducting polymer nanocomposites with glucose oxidase and gold nanoparticles for the design of enzymatic glucose biosensors. Polymers 2021, 13, 2173. [Google Scholar] [CrossRef]
- Meng, W.; Wen, Y.; Dai, L.; He, Z.; Wang, L. A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite. Sens. Actuators B Chem. 2018, 260, 852–860. [Google Scholar] [CrossRef]
- Li, W.; Lv, S.; Wang, Y.; Zhang, L.; Cui, X. Nanoporous gold induced vertically standing 2D NiCo bimetal-organic framework nanosheets for non-enzymatic glucose biosensing. Sens. Actuators B Chem. 2019, 281, 652–658. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Ye, B. An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J. Alloys Compd. 2018, 767, 651–656. [Google Scholar] [CrossRef]
- Arul, P.; Gowthaman, N.S.K.; John, S.A.; Tominaga, M. Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid. Electrochim. Acta 2020, 354, 136673. [Google Scholar] [CrossRef]
- Xie, Y.; Song, Y.; Zhang, Y.; Xu, L.; Miao, L.; Peng, C.; Wang, L. Cu metal-organic framework-derived Cu Nanospheres@Porous carbon/macroporous carbon for electrochemical sensing glucose. J. Alloys Compd. 2018, 757, 105–111. [Google Scholar] [CrossRef]
- He, J.; Yang, H.; Zhang, Y.; Yu, J.; Miao, L.; Song, Y.; Wang, L. Smart Nanocomposites of Cu-Hemin Metal-Organic Frameworks for Electrochemical Glucose Biosensing. Sci. Rep. 2016, 6, 36637. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, Y.; Wang, N.; Xu, Q.Q.; Xu, L.; Lin, M. Copper-based Metal-organic Framework for Non-enzymatic Electrochemical Detection of Glucose. Electroanalysis 2018, 30, 474–478. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wang, J.; Tang, J. Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose. Microchim. Acta 2019, 186, 83. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Qi, X.; Wang, X.; Wang, X.; Wang, Q.; Qi, P.; Wang, Z.; Xu, X.; Fu, Y.; Yao, S. Regulating immobilization performance of metal-organic coordination polymers through pre-coordination for biosensing. Anal. Chim. Acta 2018, 1005, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Abrori, S.A.; Septiani, N.L.W.; Hakim, F.N.; Maulana, A.; Suyatman; Nugraha; Anshori, I.; Yuliarto, B. Non-Enzymatic Electrochemical Detection for Uric Acid Based on a Glassy Carbon Electrode Modified with MOF-71. IEEE Sens. J. 2021, 21, 170–177. [Google Scholar] [CrossRef]
- Chen, Q.; Chu, D.; Yan, L.; Lai, H.; Chu, X.Q.; Ge, D.; Chen, X. Enhanced non-enzymatic glucose sensing based on porous ZIF-67 hollow nanoprisms. New J. Chem. 2021, 45, 10031–10039. [Google Scholar] [CrossRef]
- Balamurugan, J.; Thanh, T.D.; Karthikeyan, G.; Kim, N.H.; Lee, J.H. A novel hierarchical 3D N-Co-CNT@NG nanocomposite electrode for non-enzymatic glucose and hydrogen peroxide sensing applications. Biosens. Bioelectron. 2017, 89, 970–977. [Google Scholar] [CrossRef] [PubMed]
Criteria | MOFs | Traditional Nanomaterials (e.g., CNTs, Nanoparticles) |
---|---|---|
Surface Area | High surface area, enhancing sensitivity and detection limit | Generally high but often lower than MOFs |
Functionalization | Easy functionalization with various organic and inorganic groups | Functionalization is possible but can be complex and less versatile |
Porosity | Highly porous, allowing for efficient molecule capture and transport | Variable porosity, often less tunable than MOFs |
Stability | Can be less stable under certain conditions (e.g., moisture, pH) | Typically more stable and robust under various conditions |
Toxicity | Generally low toxicity, though dependent on metal and organic linkers used | Potential for higher toxicity, depending on the material (e.g., CNTs can be cytotoxic) |
Service Life | Potentially shorter due to sensitivity to environmental conditions | Generally longer service life due to robustness |
Methods/Sensor | Target Analyte | Detection Limit (μM) | Sensitivity (μAcm−2 mM−1) | Recyclability | Ref. |
---|---|---|---|---|---|
GOD-GA-Ni/Cu-MOFs-FET | Glucose | 0.51 | 26.05 | - | [138] |
PP/LIG | Glucose | 3 | 247.3 | 5 | [89] |
Ru-PEI-L-lys-ZIF-8 | Thrombin | 2 × 10−14 | - | 5 | [126] |
JUC-1000 | TNP | 3.46 × 10−17 | - | 7 | [139] |
CuO/Cu2O@CuO/Cu2O | Glucose | 0.48 | 10,090 | 6 | [113] |
CP1/GCE | Glucose | 80 × 10−7 | 517.36 | 3 | [85] |
Poly-L-lysine | Glucose oxidase | 23 | 6.55 | - | [88] |
GR/PANI-AuNPs(6 nm)-GOx/GOx | Glucose oxidase | 70 | 65.4 | 11 | [140] |
Ag@ZIF-67 | Glucose | 0.66 | 0.379 | - | [141] |
NiCo-MOF | Glucose | 0.29 | 6844.0 | 10 | [142] |
Ni-MOF/CNTs | Glucose | 0.82 | 1385.0 | - | [143] |
Cu-MOF-SWCNTs | Glucose | 0.0017 | 573 | - | [144] |
HKUST3-1/KSC800 | Glucose | 4.8 | 28.67 | - | [145] |
GOD/Cu-hemin MOFs | Glucose | 2.73 | 22.77 | - | [146] |
Cu-MOF | Glucose | 0.01 | 89 | - | [147] |
PdNP/PGaN | Glucose | 1.0 | 353 and 116 | 5 | [148] |
MOCPsCu/Au | Glucose oxidase | 0.194 | 59 | - | [149] |
MOF-71 | Uric acid | 15.61 | 0.4811 | - | [150] |
ZIF-67 HNPs | Glucose | 0.96 | 445.7 | - | [151] |
3D N-Co-CNT@NG | Glucose | 0.1 | 9.05 | 10 | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kidanemariam, A.; Cho, S. Recent Advances in the Application of Metal–Organic Frameworks and Coordination Polymers in Electrochemical Biosensors. Chemosensors 2024, 12, 135. https://doi.org/10.3390/chemosensors12070135
Kidanemariam A, Cho S. Recent Advances in the Application of Metal–Organic Frameworks and Coordination Polymers in Electrochemical Biosensors. Chemosensors. 2024; 12(7):135. https://doi.org/10.3390/chemosensors12070135
Chicago/Turabian StyleKidanemariam, Alemayehu, and Sungbo Cho. 2024. "Recent Advances in the Application of Metal–Organic Frameworks and Coordination Polymers in Electrochemical Biosensors" Chemosensors 12, no. 7: 135. https://doi.org/10.3390/chemosensors12070135
APA StyleKidanemariam, A., & Cho, S. (2024). Recent Advances in the Application of Metal–Organic Frameworks and Coordination Polymers in Electrochemical Biosensors. Chemosensors, 12(7), 135. https://doi.org/10.3390/chemosensors12070135