Shungite Paste Electrodes: Basic Characterization and Initial Examples of Applicability in Electroanalysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Apparatus
2.3. Preparation of Shungite Paste Electrodes
2.4. Electrochemical Experiments
3. Results and Discussion
3.1. Microscopy of Shungite and Shungite Paste
3.2. Effect of the Carbon Paste Binder
3.3. Effect of Binder Content in Shungite Pastes on Their Physical Properties
3.4. Composition of the Working Medium
3.5. Electrochemical Characterization of Shungite Paste Electrode
3.5.1. Residual Current of Shungite Paste Electrode
3.5.2. Double-Layer Capacitance of Shungite Paste Electrode
3.5.3. Electrochemical Activity of Shungite Paste Electrode
3.6. Three Examples of Electroanalytical Applicability of Shungite Paste Electrodes
3.6.1. Voltammetric Analysis of Fungicide Fenhexamid
3.6.2. Voltammetric Analysis of Vitamin B2
3.6.3. Potentiometric Indication in Titrations of the Surfactants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, R.N. Carbon paste electrodes. Anal. Chem. 1958, 30, 1576. [Google Scholar] [CrossRef]
- Švancara, I.; Kalcher, K.; Walcarius, A.; Vytřas, K. Electroanalysis with Carbon Paste Electrodes, 1st ed.; CRC Press: New York, NY, USA, 2012. [Google Scholar]
- Švancara, I.; Walcarius, A.; Kalcher, K.; Vytřas, K. Carbon paste electrodes in the new millennium. Cent. Eur. J. Chem. 2009, 7, 598–656. [Google Scholar] [CrossRef]
- Švancara, I.; Hvízdalová, M.; Vytřas, K.; Kalcher, K.; Novotný, R. A microscopic study on carbon paste electrodes. Electroanalysis 1996, 8, 61–65. [Google Scholar] [CrossRef]
- Deng, P.-H.; Fei, J.-J.; Feng, Y.-L. Determination of trace vanadium(V) by adsorptive anodic stripping voltammetry on an acetylene black paste electrode in the presence of alizarin violet. J. Electroanal. Chem. 2010, 648, 85–91. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Guo, Q.-H.; Hou, H.-Q.; You, T.-Y. Enzyme-free ethanol sensor based on electrospun nickel nanoparticle-loaded carbon fiber paste electrode. Anal. Chim. Acta 2010, 663, 153–157. [Google Scholar] [CrossRef]
- Hočevar, S.B.; Ogorevc, B. Preparation and characterization of carbon paste micro-electrode based on carbon nanoparticles. Talanta 2007, 74, 405–411. [Google Scholar] [CrossRef]
- Miranda Hernandez, A.; Rincon, M.E.; Gonzalez, I. Characterization of carbon-fullerene-silicone oil composite paste electrodes. Carbon 2005, 43, 1961–1967. [Google Scholar] [CrossRef]
- Montes, R.; Baeza, M.; Muñoz, J. 0D polymer nanocomposite carbon-paste electrodes using carbon nanohorns: Percolating networks, electrochemical achievements and filler comparison. Compos. Sci. Technol. 2020, 197, 108260. [Google Scholar] [CrossRef]
- Rubianes, M.D.; Rivas, G.A. Carbon nanotubes paste electrode. Electrochem. Commun. 2003, 5, 689–694. [Google Scholar] [CrossRef]
- Gasnier, A.; Pedano, M.L.; Rubianes, M.D.; Rivas, G.A. Graphene paste electrode: Electrochemical behavior and analytical applications for the quantification of NADH. Sens. Actuators B Chem. 2013, 176, 921–926. [Google Scholar] [CrossRef]
- Nantaphol, S.; Channon, R.B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Boron doped diamond paste electrodes for microfluidic paper-based analytical devices. Anal. Chem. 2017, 89, 4100–4107. [Google Scholar] [CrossRef]
- Skowron, E.; Spilarewicz-Stanek, K.; Guziejewski, D.; Koszelska, K.; Metelka, R.; Smarzewska, S. Analytical performance of clay paste electrode and graphene paste electrode-comparative study. Molecules 2022, 27, 2037. [Google Scholar] [CrossRef]
- Torkashvand, M.; Gholivand, M.B.; Taherpour, A.; Boochani, A.; Akhtar, A. Introduction of a carbon paste electrode based on nickel carbide for investigation of interaction between warfarin and vitamin K1. J. Pharm. Biomed. Anal. 2017, 139, 156–164. [Google Scholar] [CrossRef]
- Festinger, N.; Morawska, K.; Ivanovski, V.; Ziąbka, M.; Jedlińska, K.; Ciesielski, W.; Smarzewska, S. Comparative electroanalytical studies of graphite flake and multilayer graphene paste electrodes. Sensors 2020, 20, 1684. [Google Scholar] [CrossRef]
- Wong, A.; Riojas, A.C.; Baena-Moncada, A.M.; Sotomayor, M.D.P.T. A new electrochemical platform based on carbon black paste electrode modified with α-cyclodextrin and hierarchical porous carbon used for the simultaneous determination of dipyrone and codeine. Microchem. J. 2021, 164, 106032. [Google Scholar] [CrossRef]
- Liu, L.; Masich, S.; Björk, E.M.; Solin, N.; Inganäs, O. Black charcoal for green and scalable wooden electrodes for supercapabatteries. Energy Technol. 2022, 10, 2101072. [Google Scholar] [CrossRef]
- Gupta, S.; Mahajan, S.; Gupta, A.; Tathavadkar, V. Method for calcined petroleum coke evaluation to improve the anode quality. In Light Metals 2023, 1st ed.; Broek, S., Ed.; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 1095–1100. [Google Scholar] [CrossRef]
- Altuntas, D.B.; Akgül, G.; Yanik, J.; Anik, Ü. A biochar-modified carbon paste electrode. Turk. J. Chem. 2017, 41, 455–465. [Google Scholar] [CrossRef]
- Gemeiner, P.; Sarakhman, O.; Hatala, M.; Ház, A.; Roupcová, P.; Mackuľak, T.; Barek, J.; Švorc, Ľ. A new generation of fully-printed electrochemical sensors based on biochar/ethylcellulose-modified carbon electrodes: Fabrication, characterization and practical applications. Electrochim. Acta 2024, 487, 144161. [Google Scholar] [CrossRef]
- Schütter, C.; Ramirez-Castro, C.; Oljaca, M.; Passerini, S.; Winter, M.; Balducci, A. Activated carbon, carbon blacks and graphene based nanoplatelets as active materials for electrochemical double layer capacitors: A comparative study. J. Electrochem. Soc. 2015, 162, A44–A51. [Google Scholar] [CrossRef]
- Balta, Z.; Simsek, E.B. Insights into the photocatalytic behavior of carbon-rich shungite-based WO3/TiO2 catalysts for enhanced dye and pharmaceutical degradation. New Carbon Mater. 2020, 35, 371–383. [Google Scholar] [CrossRef]
- Chou, N.H.; Pierce, N.; Lei, Y.; Perea-López, N.; Fujisawa, K.; Subramanian, S.; Robinson, J.A.; Chen, G.; Omichi, K.; Rozhkov, S.S.; et al. Carbon-rich shungite as a natural resource for efficient Li-ion battery electrodes. Carbon 2018, 130, 105–111. [Google Scholar] [CrossRef]
- Bondarenko, S.V.; Tarasevich, Y.I.; Polyakov, V.E.; Zhukova, A.I.; Ivanova, Z.G. Adsorption properties of the natural carbon–mineral sorbent shungite. Adsorpt. Sci. Technol. 2008, 26, 3–13. [Google Scholar] [CrossRef]
- Sýs, M.; Bártová, M.; Bartoš, M.; Švancara, I.; Mikysek, T. Shungite (mineralized carbon) as a promising electrode material for electroanalysis. Materials 2023, 16, 1217. [Google Scholar] [CrossRef]
- Sajo, M.E.J.; Kim, C.-S.; Kim, S.-K.; Shim, K.Y.; Kang, T.-Y.; Lee, K.-J. Antioxidant and anti-inflammatory effects of shungite against ultraviolet B irradiation-induced skin damage in hairless mice. Oxid. Med. Cell Longev. 2017, 2017, 7340143. [Google Scholar] [CrossRef] [PubMed]
- Serikbayev, B.; Kamysbayev, D. Electrocatalytic properties of composition systems based on koksu shungite. Bull. Kaz. Nat. Univ. 2013, 70, 91–96. [Google Scholar] [CrossRef]
- Wang, J.; Kirgöz, Ü.A.; Mo, J.-W.; Lu, J.; Kawde, A.N.; Muck, A. Glassy carbon paste electrodes. Electrochem. Commun. 2001, 3, 203–208. [Google Scholar] [CrossRef]
- Królicka, A.; Szczurkowska, A.; Mochalski, P.; Malaita, G. Preparation, characterization, and activation of natural glassy carbon paste electrodes as new sensors for determining the total antioxidant capacity of plant extracts. Membranes 2022, 12, 1193. [Google Scholar] [CrossRef] [PubMed]
- Švancara, I.; Vytřas, K.; Metelka, R. Casing for carbon paste for electrochemical measurements. Czech Patent CZ 301714 B6, Int. Cl. G01N 27/30, 2 December 2002. [Google Scholar]
- Figueiredo-Filho, L.C.S.; Brownson, D.A.C.; Gómez-Mingot, M.; Iniesta, J.; Fatibello-Filho, O.; Banks, C.E. Exploring the electrochemical performance of graphitic paste electrodes: Graphene vs. graphite. Analyst 2013, 138, 6354–6364. [Google Scholar] [CrossRef] [PubMed]
- Mikysek, T.; Švancara, I.; Kalcher, K.; Bartoš, M.; Vytřas, K.; Ludvík, J. New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes. Anal. Chem. 2009, 81, 6327–6333. [Google Scholar] [CrossRef]
- Sýs, M.; Farag, A.S.; Švancara, I. Extractive stripping voltammetry at carbon paste electrodes for determination of biologically active organic compounds. Monatsh. Chem. 2019, 150, 373–386. [Google Scholar] [CrossRef]
- Borodin, O.; Self, J.; Persson, K.A.; Wang, C.; Xu, K. Uncharted waters: Super-concentrated electrolytes. Joule 2020, 4, 69–100. [Google Scholar] [CrossRef]
- Morales, D.M.; Risch, M. Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance. J. Phys. Energy 2021, 3, 034013. [Google Scholar] [CrossRef]
- Natalia, M.; Sudhakar, Y.N.; Selvakumar, M. Activated carbon derived from natural sources and electrochemical capacitance of double layer capacitance. Indian J. Chem. Technol. 2013, 20, 392–399. [Google Scholar]
- Martinez-Alvarez, O.; Miranda-Hernández, M. Characterization of carbon pastes as matrices in composite electrodes for use in electrochemical capacitors. Carbon Sci. Tech. 2008, 1, 30–38. [Google Scholar]
- Basha, S.I.; Shah, S.S.; Ahmad, S.; Maslehuddin, M.; Al-Zahrani, M.M.; Aziz, M.A. Construction building materials as a potential for structural supercapacitor applications. Chem. Rec. 2022, 22, e202200134. [Google Scholar] [CrossRef] [PubMed]
- Politi, S.; Carcione, R.; Tamburri, E.; Matassa, R.; Lavecchia, T.; Angjellari, M.; Terranova, M.L. Graphene platelets from shungite rock modulate electropolymerization and charge storage mechanisms of soft-template synthetized polypyrrole-based nanocomposites. Sci. Rep. 2018, 8, 17045. [Google Scholar] [CrossRef] [PubMed]
- Fanjul-Bolado, P.; Hernández-Santos, D.; Lamas-Ardisana, P.J.; Martín-Pernía, A.; Costa-García, A. Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochim. Acta 2008, 53, 3635–3642. [Google Scholar] [CrossRef]
- Nicholson, R.S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Guidelli, R.; Compton, R.G.; Feliu, J.M.; Gileadi, E.; Lipkowski, J.; Schmickler, W.; Trasatti, S. Defining the transfer coefficient in electrochemistry: An assessment (IUPAC Technical Report). Pure Appl. Chem. 2014, 86, 245–258. [Google Scholar] [CrossRef]
- Meléndez, A.M.; Lima, E.; González, I. Influence of the cation Na/Ca/Ag ratio on the ion exchange rate in zeolite A-modified carbon paste electrodes. J. Phys. Chem. C 2008, 112, 17206–17213. [Google Scholar] [CrossRef]
- Brycht, M.; Łukawska, A.; Frühbauerová, M.; Pravcová, K.; Metelka, R.; Skrzypek, S.; Sýs, M. Rapid monitoring of fungicide fenhexamid residues in selected berries and wine grapes by square-wave voltammetry at carbon-based electrodes. Food Chem. 2021, 338, 127975. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.P.; Wring, S.A.; Morgan, I.C. Pre-concentration of vitamin K1(phylloquinone) at carbon paste electrodes and its determination in plasma by adsorptive stripping voltammetry. Analyst 1989, 114, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Mehmeti, E.; Stanković, D.M.; Chaiyo, S.; Švorc, Ľ.; Kalcher, K. Manganese dioxide-modified carbon paste electrode for voltammetric determination of riboflavin. Microchim. Acta 2016, 183, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Tarasevich, Y.I.; Bondarenko, S.V.; Polyakov, V.E.; Zhukova, A.I.; Ivanova, Z.G.; Luk’yanova, V.V.; Malysh, G.N. The study of the structural, sorption, and electrochemical properties of a natural composite shungite. Colloid J. 2008, 70, 349–355. [Google Scholar] [CrossRef]
Sensor | R/Ω cm | ECSA/cm2 | ΔEp/mV | Ipc/Ipa | k0/cm s−1 | αa | OCP/V | j0/A cm−2 |
---|---|---|---|---|---|---|---|---|
CPE | 4.6 | 0.066 | 88.0 | 1.051 | 0.0084 | 0.52 | −0.133 | 7.9 × 10−8 |
GCPE | 9.2 | 0.061 | 214.6 | 1.105 | 0.0011 | 0.52 | −0.141 | 1.6 × 10−7 |
ShPE | 80.0 | 0.079 | 112.2 | 0.937 | 0.0063 | 0.50 | −0.085 | 1.3 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bártová, M.; Bartoš, M.; Švancara, I.; Sýs, M. Shungite Paste Electrodes: Basic Characterization and Initial Examples of Applicability in Electroanalysis. Chemosensors 2024, 12, 118. https://doi.org/10.3390/chemosensors12070118
Bártová M, Bartoš M, Švancara I, Sýs M. Shungite Paste Electrodes: Basic Characterization and Initial Examples of Applicability in Electroanalysis. Chemosensors. 2024; 12(7):118. https://doi.org/10.3390/chemosensors12070118
Chicago/Turabian StyleBártová, Michaela, Martin Bartoš, Ivan Švancara, and Milan Sýs. 2024. "Shungite Paste Electrodes: Basic Characterization and Initial Examples of Applicability in Electroanalysis" Chemosensors 12, no. 7: 118. https://doi.org/10.3390/chemosensors12070118
APA StyleBártová, M., Bartoš, M., Švancara, I., & Sýs, M. (2024). Shungite Paste Electrodes: Basic Characterization and Initial Examples of Applicability in Electroanalysis. Chemosensors, 12(7), 118. https://doi.org/10.3390/chemosensors12070118