Online Measurement of Sodium Nitrite Based on Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation and Software
2.3. Experimental Methods
2.4. Pretreatment of Spectral Data
2.5. Model Alignment
3. Results and Discussion
3.1. NIR Spectrum Characteristics
3.2. Screening of Preprocessing Methods
3.3. Spectrum Band Selection
3.4. Identification of Latent Varying Numbers
3.5. Validation of Predictive Models
3.6. Predicted Results of the Modified Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moratilla Soria, B.Y.; Uris Mas, M.; Estadieu, M.; Villar Lejarreta, A.; Echevarria-López, D. Recycling versus Long-Term Storage of Nuclear Fuel: Economic Factors. Sci. Technol. Nucl. Install. 2013, 2013, 417048. [Google Scholar] [CrossRef]
- Kumari, I.; Kumar, B.V.R.; Khanna, A. A review on UREX processes for nuclear spent fuel reprocessing. Nucl. Eng. Des. 2020, 358, 110410. [Google Scholar] [CrossRef]
- Rodríguez-Penalonga, L.; Moratilla Soria, B.Y. A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies. Energies 2017, 10, 1235. [Google Scholar] [CrossRef]
- Ye, G.A.; Zhang, H. A Review on the Development of Spent Nuclear Fuel Reprocessing and Its Related Radiochemistry. Prog. Chem. 2011, 23, 1289–1294. [Google Scholar]
- Fox, O.D.; Jones, C.J.; Birkett, J.E.; Carrott, M.J.; Crooks, G.; Maher, C.J.; Roube, C.V.; Taylor, R.J. Advanced PUREX Flowsheets for Future Np and Pu Fuel Cycle Demands. In Separations for the Nuclear Fuel Cycle in the 21st Century; Lumetta, G.J., Nash, K.L., Clark, S.B., Friese, J.I., Eds.; ACS Symposium Series; ACS: London, UK, 2006; Volume 933, pp. 89–102. [Google Scholar]
- Paiva, A.P.; Malik, P. Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes. J. Radioanal. Nucl. Chem. 2004, 261, 485–496. [Google Scholar] [CrossRef]
- Wang, Q.-H.; Yu, L.-J.; Liu, Y.; Lin, L.; Lu, R.-g.; Zhu, J.-p.; He, L.; Lu, Z.-L. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, A.A.; Amini, M. A highly selective optical sensor for catalytic determination of ultra-trace amounts of nitrite in water and foods based on brilliant cresyl blue as a sensing reagent. Sens. Actuators B-Chem. 2010, 147, 61–66. [Google Scholar] [CrossRef]
- Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2007, 851, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, Z. Kinetic Spectrophotometric Determination of Nitrite with Tropaeolin 00-Bromate System. Anal. Lett. 2010, 43, 1344–1354. [Google Scholar] [CrossRef]
- Lin, Z.; Xue, W.; Chen, H.; Lin, J.M. Peroxynitrous-Acid-Induced Chemiluminescence of Fluorescent Carbon Dots for Nitrite Sensing. Anal. Chem. 2011, 83, 8245–8251. [Google Scholar] [CrossRef]
- Yaqoob, M.; Biot, B.F.; Nabi, A.; Worsfold, P.J. Determination of nitrate and nitrite in freshwaters using flow-injection with luminol chemiluminescence detection. Luminescence 2012, 27, 419–425. [Google Scholar] [CrossRef]
- Nagababu, E.; Rifkind, J.M. Measurement of plasma nitrite by chemiluminescence without interference of S-, N-nitroso and nitrated species. Free. Radic. Biol. Med. 2007, 42, 1146–1154. [Google Scholar] [CrossRef]
- Kozub, B.R.; Rees, N.V.; Compton, R.G. Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens. Actuators B-Chem. 2010, 143, 539–546. [Google Scholar] [CrossRef]
- Zhu, N.; Xu, Q.; Li, S.; Gao, H. Electrochemical determination of nitrite based on poly(amidoamine) dendrimer-modified carbon nanotubes for nitrite oxidation. Electrochem. Commun. 2009, 11, 2308–2311. [Google Scholar] [CrossRef]
- Kalimuthu, P.; John, S.A. Highly sensitive and selective amperometric determination of nitrite using electropolymerized film of functionalized thiadiazole modified glassy carbon electrode. Electrochem. Commun. 2009, 11, 1065–1068. [Google Scholar] [CrossRef]
- Kodamatani, H.; Yamazaki, S.; Saito, K.; Tomiyasu, T.; Komatsu, Y. Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J. Chromatogr. A 2009, 1216, 3163–3167. [Google Scholar] [CrossRef] [PubMed]
- Butt, S.B.; Riaz, M.; Iqbal, M.Z. Simultaneous determination of nitrite and nitrate by normal phase ion-pair liquid chromatography. Talanta 2001, 55, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Wang, C.; Van, T. Simultaneous determination of nitrite and nitrate in dew, rain, snow and lake water samples by ion-pair high-performance liquid chromatography. Talanta 2006, 70, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.L.; Xu, Y.P.; Lu, W.Z. Research and application progress of chemometrics methods in near infrared spectroscopic analysis. Chin. J. Anal. Chem. 2008, 36, 702–709. [Google Scholar]
- Borras, E.; Ferre, J.; Boque, R.; Mestres, M.; Acena, L.; Busto, O. Data fusion methodologies for food and beverage authentication and quality assessment—A review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gad, H.A.; El-Ahmady, S.H.; Abou-Shoer, M.I.; Al-Azizi, M.M. Application of Chemometrics in Authentication of Herbal Medicines: A Review. Phytochem. Anal. 2013, 24, 1–24. [Google Scholar] [CrossRef]
- Chung, H. Applications of near-infrared spectroscopy in refineries and important issues to address. Appl. Spectrosc. Rev. 2007, 42, 251–285. [Google Scholar] [CrossRef]
- Wenz, J.J. Examining water in model membranes by near infrared spectroscopy and multivariate analysis. Biochim. Biophys. Acta Biomembr. 2018, 1860, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Sadergaski, L.R.; Irvine, S.B.; Andrews, H.B. Partial Least Squares, Experimental Design, and Near-Infrared Spectrophotometry for the Remote Quantification of Nitric Acid Concentration and Temperature. Molecules 2023, 28, 3224. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Brown, C.W. Near-IR spectroscopic measurement of seawater salinity. Environ. Sci. Technol. 2002, 27, 1611–1615. [Google Scholar] [CrossRef]
- Sadergaski, L.R.; Toney, G.K.; Delmau, L.H.; Myhre, K.G. Chemometrics and Experimental Design for the Quantification of Nitrate Salts in Nitric Acid: Near-Infrared Spectroscopy Absorption Analysis. Appl. Spectrosc. 2021, 75, 1155–1167. [Google Scholar] [CrossRef]
- Espinoza, L.H.; Lucas, D.; Littlejohn, D. Characterization of Hazardous Aqueous Samples by Near-IR Spectroscopy. Appl. Spectrosc. 2016, 53, 97–102. [Google Scholar] [CrossRef]
- Murayama, K.; Ozaki, Y. Two-dimensional near-IR correlation spectroscopy study of molten globule-like state of ovalbumin in acidic pH region: Simultaneous changes in hydration and secondary structure. Biopolymers 2002, 67, 394–405. [Google Scholar] [CrossRef]
- Maeda, H.; Ozaki, Y.; Tanaka, M.; Hayashi, N.; Kojima, T. Near Infrared Spectroscopy and Chemometrics Studies of Temperature-Dependent Spectral Variations of Water: Relationship between Spectral Changes and Hydrogen Bonds. J. Near Infrared Spectrosc. 2017, 3, 191–201. [Google Scholar] [CrossRef]
Number | Preprocessing Method | Wave Number (cm−1) | R2 | RMSECV |
---|---|---|---|---|
1 | No spectral pretreatment | 5400–7500 | 0.9999 | 0.0145 |
2 | eliminating constant offset | 5400–7500 | 0.9999 | 0.0197 |
3 | subtracting a straight line | 5400–7500 | 0.9999 | 0.0163 |
4 | vector normalization | 5400–7500 | 1.0000 | 0.0116 |
5 | max–min normalization | 5400–7500 | 1.0000 | 0.0122 |
6 | multiple scattering correction (MSC) | 5400–7500 | 1.0000 | 0.0105 |
7 | First-order derivative | 5400–7500 | 0.9999 | 0.0224 |
8 | Second-order derivative | 5400–7500 | 0.9992 | 0.0454 |
9 | First-order derivative + subtracting a straight line | 5400–7500 | 0.9999 | 0.0217 |
10 | First-order derivative + vector normalization | 5400–7500 | 0.9999 | 0.0208 |
11 | First-order derivative + MSC | 5400–7500 | 0.9999 | 0.0217 |
Number | Wave Number (cm−1) | RMSECV |
---|---|---|
1 | 5450–9400 | 0.0110 |
2 | 4250–4600, 6100–7500 | 0.0121 |
3 | 4250–4600, 5400–9400 | 0.0130 |
4 | 4250–4600, 5450–7500 | 0.0106 |
5 | 4250–4600, 6100–9400 | 0.0171 |
6 | 5450–7426 | 0.0109 |
7 | 5450–7500 | 0.0104 |
8 | 6100–7500 | 0.0204 |
9 | 6100–9400 | 0.0193 |
10 | 4250–4600, 5450–6100, 7500–9400 | 0.0125 |
11 | 4250–4600, 7500–9400 | 0.0250 |
12 | 5450–6100 | 0.0119 |
13 | 5450–6100, 7500–9400 | 0.0113 |
14 | 7424–9400 | 0.0114 |
15 | 4600–9400 | 0.0215 |
16 | 7500–9400 | 0.0205 |
17 | 4250–9400 | 0.0208 |
18 | 4250–5450, 6100–7500 | 0.0389 |
19 | 4600–7500 | 0.0318 |
20 | 4600–5450, 6100–7500 | 0.0403 |
21 | 4250–4600, 5450–6100 | 0.0203 |
22 | 4250–7500 | 0.0280 |
23 | 4250–5450, 6100–9400 | 0.0445 |
24 | 4600–5450, 6100–9400 | 0.0449 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, Y.; Zhang, M.; Li, D.; Zuo, C. Online Measurement of Sodium Nitrite Based on Near-Infrared Spectroscopy. Chemosensors 2024, 12, 22. https://doi.org/10.3390/chemosensors12020022
Xu X, Zhang Y, Zhang M, Li D, Zuo C. Online Measurement of Sodium Nitrite Based on Near-Infrared Spectroscopy. Chemosensors. 2024; 12(2):22. https://doi.org/10.3390/chemosensors12020022
Chicago/Turabian StyleXu, Xianzhe, Yongshen Zhang, Mingmin Zhang, Dingming Li, and Chen Zuo. 2024. "Online Measurement of Sodium Nitrite Based on Near-Infrared Spectroscopy" Chemosensors 12, no. 2: 22. https://doi.org/10.3390/chemosensors12020022
APA StyleXu, X., Zhang, Y., Zhang, M., Li, D., & Zuo, C. (2024). Online Measurement of Sodium Nitrite Based on Near-Infrared Spectroscopy. Chemosensors, 12(2), 22. https://doi.org/10.3390/chemosensors12020022