MOF-Based Materials for Glucose Detection
Abstract
:1. Introduction
2. Synthesis Strategy of MOF-Based Materials
2.1. Pristine MOF
2.1.1. Hydrothermal/Solvothermal Synthesis
Sample | Solvent | Method | Morphology | Ref |
---|---|---|---|---|
Ni/Co-FAMOF | H2O | Dissolve crystallization | Stylophora coral-like | [34] |
Co-MOF | ChCl | Dissolve crystallization | Nanoparticles | [43] |
Co-BTC | DMF, Ethanol | Dissolve crystallization | Cuboid | [44] |
NiCu-MOF | DMF | Dissolve crystallization | Nanosheets | [45] |
NiCo-BTC/CC | Ethanol | In situ crystallization | Nanosheets | [39] |
Co/Cu-MOF/NF | H2O | In situ crystallization | Microflowers | [40] |
Ni/Co(HHTP)MOF/CC | H2O | In situ crystallization | Thick rods | [46] |
CuCo-MOF/CFP | DMF | In situ crystallization | Book-like | [47] |
2.1.2. Room-Temperature Synthesis
2.1.3. Microwave/Ultrasound-Assisted Synthesis and Mechanochemical Synthesis
2.1.4. Electrochemical Deposition Synthesis
2.2. Nanoparticles-Modified MOF
2.2.1. NPs Coated on MOFs
MOFs as Substrates
MOFs as Catalyst
2.2.2. Nanoparticles Encapsulated in MOFs
Sample | NPs | Function | Method | Ref |
---|---|---|---|---|
P-MOF | AuNPs/N-GODs | Substrate | Physical adsorption | [66] |
UiO-66-NH2 | PPG@Ru | Substrate | EDC/NHS | [72] |
Fe-MOF | PtNPs | Improve performance | Coordinate bonds | [18] |
N-Co-MOF@PDA | AgNPs | Improve performance | Surface growth | [70] |
Ni-MOF | αCD-rGO | Improve performance | Surface electrodeposition | [71] |
Eu-MOF | BODIPY | Improve performance | In situ encapsulation | [67] |
NH2-MIL-88B | CeO2 | Improve performance | In situ encapsulation | [25] |
ZIF-67 | Ag@TiO2 | Improve performance | In situ encapsulation | [74] |
CoNi(Fe)-MOF | PPy | Improve performance | In situ polymerization | [73] |
ZIF-67 | AgNPs | Improve performance | In situ generation | [17] |
Cu-TCPP(Fe). | AuNPs | Improve performance | In situ generation | [75] |
Co-MOF | CuNPs | Improve performance | In situ generation | [76] |
2.3. Enzymes-Modified MOFs
2.3.1. Enzymes Coated on MOFs
2.3.2. Enzymes Encapsulated in MOFs
Sample | Enzymes | Function | Method | Ref |
---|---|---|---|---|
Fe3Ni-MOF | GOx | Protection, Nanozyme | Physical adsorption | [79] |
HPPCN-222 | GOx | Protection, Nanozyme | Physical adsorption | [83] |
ZIF-8 | GOx, BHb | Protection | MIP | [86] |
UiO-66-NH2 | GOx | Protection | Glutaraldehyde fixation | [72] |
NiCu-MOF | GOx | Protection, Nanozyme | Glutaraldehyde fixation | [87] |
Co-MOF | GOx | Protection, Nanozyme | Hydrogen bond | [84] |
HP-MIL-88B-BA | GOx | Protection, Nanozyme | Specific identification | [88] |
Fe-MOF | GOx | Protection, Nanozyme | EDC/NHS | [89] |
Co-TCPP(Fe) | GOx | Protection, Nanozyme | EDC/NHS | [90] |
dZIF-8 | GOx, HRP | Protection | In situ encapsulation | [91] |
ZIF-L | PAA-GOx | Protection | In situ encapsulation | [80] |
Fe/Co-MOF | GOx | Protection, Nanozyme | In situ encapsulation | [81] |
ZIF-67 | GOx, HRP | Protection, Nanozyme | In situ encapsulation | [19] |
2.4. MOF-Derived Materials
2.4.1. Thermal Treatment
2.4.2. Solvent Treatment
Derivative | MOFs | Method | Ref |
---|---|---|---|
CuO/NiO-C | Cu/Ni-MOF | Carbonization (430 °C, N2) | [100] |
Co/MnO@HC | MnCo-MOF-74 | Carbonization (900 °C, N2) | [105] |
NiO/Co3O4/C | NiCo-MOF | Carbonization (500 °C, Ar2) | [106] |
Ni/NCNs | Ni-MOF | Pyrolysis (500 °C, N2) | [107] |
Fe3O4 | Fe-BDC | Pyrolysis (500 °C, N2) | [108] |
NiO | MOF-74 (Ni) | Pyrolysis (400 °C, N2) | [109] |
ZnCo2O4 | ZnCo-MOF | Pyrolysis (400 °C, air) | [110] |
Ni3S2@NCNT | Ni-MOF | Carbonization (700 °C, H2/Ar2), Sulfurization (Solvothermal) | [111] |
E-CuO | Cu-MOF | Etch, Pyrolysis (550 °C, air) | [112] |
HHN | ZIF-8 | Etch (gallic acid) | [104] |
Co-CuS | Cu-Co MOF | Sulfurization (Solvothermal) | [113] |
Ni-HHTP | Ni-MOF | Etch (Solvothermal) | [114] |
3. Detection Mechanisms for MOF-Based Glucose Sensors
3.1. Electrochemical Methods
3.1.1. Chronoamperometry
3.1.2. Linear Sweep Voltammetry and Cyclic Voltammetry
3.1.3. Differential Pulse Voltammetry
3.1.4. Amperometry
Electrode Material | Electrochemical Method | Electrolyte | Linear Range (μM) | LOD (μM) | Sensitivity (μA mM−1 cm−2) | Ref |
---|---|---|---|---|---|---|
Ni-MOF | CA | 0.1 M NaOH | 10–2000 | 1.16 | 3.03 | [143] |
Ni3(HITP)2 MOF | CV | 0.1 M KOH | 0–10,000 | − | − | [144] |
Ni-MOFN | AMP | 0.1 M KOH | 25–3150 | 0.6 | 402.3 | [60] |
r-NiPO | AMP | 0.1 M NaOH | 1–3 | 1 | 3169 | [103] |
NiO/Co3O4/C | AMP | 0.1 M NaOH | 0.2–10,000 | 0.045 | 2820 | [106] |
Ni/Co-FAMOF | AMP | 1 M KOH | 6–1004 | 2 | 366 | [34] |
Ni/Co(HHTP)MOF/CC | AMP | 0.1 M NaOH | 0.3–2312 | 0.1 | 3250 | [46] |
CC@MOF-74(NiO)@NiCo LDH | AMP | 1 M KOH | 10–1100, 1500–9000 | 0.278 | 1699 | [109] |
NiCu-MOF-6 | AMP | 0.1 M NaOH | 20–4930 | 15 | 1832 | [45] |
Ni@Cu-MOF | CV | 0.1 M NaOH | 5–2500 | 1.67 | 1703.33 | [120] |
NiCoBP-Br | AMP | 0.1 M NaOH | 0.5–6065.5 | 0.0665 | 1755.51 | [47] |
Ni-Co MOF/Ag/rGO/PU | AMP | 0.1 M NaOH | 10–660 | 3.28 | 425.9 | [140] |
YASNiCo@C | AMP | 0.1 M NaOH | 5–5000 | 0.75 | 1964 | [99] |
bimetallic Cu@Ni organic framework | CA | 0.1 M NaOH | 0–5000 | 0.4 | 496 | [123] |
UiO-67@Ni-MOF | AMP | 0.1 M NaOH | 5–3900 | 0.98 | − | [121] |
Cu-MOF | DPV | 0.01 M NaOH | 0.06–5000 | 0.01 | 89 | [145] |
CuBDC12E | DPV | 0.02 M PBS (pH 7.4) | 0–2000 | 0.077 | 37,090 | [37] |
Cu-MOF/CF | AMP | 0.1 M NaOH | 1–950 | 0.076 | 30,030 | [146] |
CuO nanorod | CA | 0.1 M NaOH | up to 1250 | 1 | 1523.5 | [147] |
swnt-MOF(Cu)@gwe | CA | 0.1 M NaOH | 1–3000 | 0.16 | − | [119] |
CuO/C | AMP | 0.1 M NaOH | 5–25,325 | 1 | 244.71 | [98] |
Cu2(NDC)2/PDHP | AMP | electrolyte-simulated sweat | 5–1775 | 2 | 1690 | [148] |
CuO polyhedrons/CC | AMP | 0.1 M NaOH | 0.5–800 | 0.46 | 13,575 | [15] |
Cu@Co-MOF | AMP | 0.01 M NaOH | 5–400 | 1.6 | 282.89 | [76] |
bimetallic NCNT MOF CoCu nanostructure | CA | 0.1 M NaOH | 50–2500 | 0.15 | 1027 | [124] |
E-NiCo-BTC MOF | AMP | 0.1 M NaOH | 1–1780 | 0.187 | 1789 | [149] |
NPC-Co3O4 | DPV | 0.1 M KOH | 5 × 10−6–2.05 × 10−4 | 2 × 10−6 | 0.14 μA pM−1 cm−2 | [22] |
Co-MOF | CA | 0.01 M NaOH | 5–900 | 1.6 | 169 | [150] |
Co@NCD | AMP | 0.1 M NaOH | 0.2–12,000 | 0.11 | 125,23 | [136] |
Au@NiCo LDH | AMP | 1.0 M NaOH | 5–12,000 | 0.028 | 864.7 | [137] |
Co/MnO@HC | AMP | 0.1 M NaOH | 50–900, 1900–6900 | 1.31 | 233.8 | [105] |
3.2. Optical Methods
3.2.1. Colorimetry
3.2.2. Fluorescence and Chemiluminescence
3.2.3. Surface-Enhanced Raman Scattering
4. Novel MOF-Based Glucose Detection Devices
4.1. Flexible Wearable Devices for Glucose Detection
4.2. Microfluidic Chips for Glucose Detection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pliszka, M.; Szab lewski, L. Glucose transporters as a target for anticancer therapy. Cancers 2021, 13, 4184. [Google Scholar] [CrossRef]
- Wang, K.; Wu, C.; Wang, F.; Jing, N.; Jiang, G. Co/Co3O4 Nanoparticles Coupled with Hollow Nanoporous Carbon Polyhedrons for the Enhanced Electrochemical Sensing of Acetaminophen. ACS Sustain. Chem. Eng. 2019, 7, 18582–18592. [Google Scholar] [CrossRef]
- American Diabetes Association. 10. Cardiovascular disease and risk management: Standards of medical care in diabetes—2021. Diabetes Care 2020, 44, S125–S150. [Google Scholar]
- Resmini, E.; Minuto, F.; Colao, A.; Ferone, D. Secondary diabetes associated with principal endocrinopathies: The impact of new treatment modalities. Acta Diabetol. 2009, 46, 85–95. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 6. Glycemic targets: Standards of medical care in diabetes-2021. Diabetes Care 2021, 44, S73–S84. [Google Scholar] [CrossRef] [PubMed]
- Do, H.H.; Cho, J.H.; Han, S.M.; Ahn, S.H.; Kim, S.Y. Metal-organic-framework- and mxene-based taste sensors and glucose detection. Sensors 2021, 21, 7423. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Nor, N.; Ridhuan, N.S.; Abdul Razak, K. Progress of enzymatic and non-enzymatic electrochemical glucose biosensor based on nanomaterial-modified electrode. Biosensors 2022, 12, 1136. [Google Scholar] [CrossRef]
- van Enter, B.J.; von Hauff, E. Challenges and perspectives in continuous glucose monitoring. Chem. Commun. 2018, 54, 5032–5045. [Google Scholar] [CrossRef]
- Galant, A.L.; Kaufman, R.C.; Wilson, J.D. Glucose: Detection and analysis. Food Chem. 2015, 188, 149–160. [Google Scholar] [CrossRef]
- Gao, Q.; Bai, Q.; Zheng, C.; Sun, N.; Liu, J.; Chen, W.; Hu, F.; Lu, T. Application of metal-organic framework in diagnosis and treatment of diabetes. Biomolecules 2022, 12, 1240. [Google Scholar] [CrossRef]
- Adeel, M.; Asif, K.; Rahman, M.M.; Daniele, S.; Canzonieri, V.; Rizzolio, F. Glucose detection devices and methods based on metal–organic frameworks and related materials. Adv. Funct. Mater. 2021, 31, 2106023. [Google Scholar] [CrossRef]
- Tian, L.; Huang, Z.; Lu, X.; Wang, T.; Cheng, W.; Yang, H.; Huang, T.; Li, T.; Li, Z. Plasmon-mediated oxidase-like activity on Ag@ZnS heterostructured hollow nanowires for rapid visual detection of nitrite. Inorg. Chem. 2023, 62, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Zhang, X.; Ding, M.; Zhang, A.; Wang, C. A smartphone-assisted colorimetric and photothermal probe for glutathione detection based on enhanced oxidase-mimic CoFeCe three-atom nanozyme in food. Food Chem. 2023, 423, 136296. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, L.; Li, Z.; Zhou, C.; Lv, Y.; Su, X. A sensing platform for on-site detection of glutathione S-transferase using oxidized Pi@Ce-doped Zr-based metal-organic frameworks(MOFs). Talanta 2023, 259, 124537. [Google Scholar] [CrossRef]
- Cheng, S.; Gao, X.; DelaCruz, S.; Chen, C.; Tang, Z.; Shi, T.; Carraro, C.; Maboudian, R. In situ formation of metal-organic framework derived CuO polyhedrons on carbon cloth for highly sensitive non-enzymatic glucose sensing. J. Mater. Chem. B 2019, 7, 4990–4996. [Google Scholar] [CrossRef]
- Li, X.; Dong, H.; Fan, Q.; Chen, K.; Sun, D.; Hu, T.; Ni, Z. One-pot, rapid microwave-assisted synthesis of bimetallic metal-organic framework for efficient enzyme-free glucose detection. Microchem. J. 2022, 179, 107468. [Google Scholar] [CrossRef]
- Meng, W.; Wen, Y.; Dai, L.; He, Z.; Wang, L. A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite. Sens. Actuators B Chem. 2018, 260, 852–860. [Google Scholar]
- Li, J.; Zhao, J.; Li, S.; Chen, Y.; Lv, W.; Zhang, J.; Zhang, L.; Zhang, Z.; Lu, X. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021, 14, 4689–4695. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, J.; Zhang, Y.; Chen, M.; Xu, Y.; Zou, X.; Liu, S.-Y.; Dai, Z. A smartphone-assisted “all-in-one” paper chip for one-pot noninvasive detection of salivary glucose level. Chem. Eng. J. 2023, 468, 143608. [Google Scholar] [CrossRef]
- Ma, X.; Tang, K.-L.; Yang, M.; Shi, W.; Zhao, W. Metal-organic framework-derived yolk-shell hollow Ni/NiO@C microspheres for bifunctional non-enzymatic glucose and hydrogen peroxide biosensors. J. Mater. Sci. 2021, 56, 442–456. [Google Scholar] [CrossRef]
- Sun, Q.; Ding, J.; Chen, D.; Han, C.; Jiang, M.; Li, T.-T.; Hu, Y.; Qian, J.; Huang, S. Silica-Templated Metal Organic Framework-Derived Hierarchically Porous Cobalt Oxide in Nitrogen-Doped Carbon Nanomaterials for Electrochemical Glucose Sensing. ChemElectroChem 2021, 8, 812–818. [Google Scholar] [CrossRef]
- Haldorai, Y.; Choe, S.R.; Huh, Y.S.; Han, Y.-K. Metal-organic framework derived nanoporous carbon/Co3O4 composite electrode as a sensing platform for the determination of glucose and high-performance supercapacitor. Carbon 2018, 127, 366–373. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, S.-Y.; Liu, J.; Zhang, L.; Chen, D.; Chen, J.; Ma, Y.; Zhang, J.-P.; Dai, Z.; Zou, X. In Situ Enzyme Immobilization with Oxygen-Sensitive Luminescent Metal-Organic Frameworks to Realize “All-in-One” Multifunctions. Chem. Eur. J. 2019, 25, 5463–5471. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, M.; Xiong, C.; Zhu, X.; Chen, C.; Zhou, F.; Dong, Y.; Wang, Y.; Xu, J.; Li, Y.; et al. Dual confinement of high-loading enzymes within metal-organic frameworks for glucose sensor with enhanced cascade biocatalysis. Biosens. Bioelectron. 2022, 196, 113695. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, J.; Al Lawati, H.A.J.; Bagheri, N. On paper synthesis of multifunctional CeO2 nanoparticles@Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose. Biosens. Bioelectron. 2022, 207, 114184. [Google Scholar] [CrossRef]
- Mao, X.; Lu, Y.; Zhang, X.; Huang, Y. beta-Cyclodextrin functionalization of metal-organic framework MOF-235 with excellent chemiluminescence activity for sensitive glucose biosensing. Talanta 2018, 188, 161–167. [Google Scholar] [CrossRef]
- Chen, C.; Xiong, D.; Gu, M.; Lu, C.; Yi, F.-Y.; Ma, X. MOF-Derived Bimetallic CoFe-PBA Composites as Highly Selective and Sensitive Electrochemical Sensors for Hydrogen Peroxide and Nonenzymatic Glucose in Human Serum. ACS Appl. Mater. Interfaces 2020, 12, 35365–35374. [Google Scholar] [CrossRef]
- Wen, Y.; Meng, W.; Li, C.; Dai, L.; He, Z.; Wang, L.; Li, M.; Zhu, J. Enhanced glucose sensing based on a novel composite Co(II)-MOF/Acb modified electrode. Dalton Trans. 2018, 47, 3872–3879. [Google Scholar] [CrossRef] [PubMed]
- Ling, W.; Liew, G.; Li, Y.; Hao, Y.; Pan, H.; Wang, H.; Ning, B.; Xu, H.; Huang, X. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks. Adv. Mater. 2018, 30, e1800917. [Google Scholar] [CrossRef]
- Bagheri, N.; Dastborhan, M.; Khataee, A.; Hassanzadeh, J.; Kobya, M. Synthesis of g-C3N4@CuMOFs nanocomposite with superior peroxidase mimetic activity for the fluorometric measurement of glucose. Spectrochim. Acta Part A 2019, 213, 28–36. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Ye, B. An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J. Alloys Compd. 2018, 767, 651–656. [Google Scholar] [CrossRef]
- Li, W.; Lv, S.; Wang, Y.; Zhang, L.; Cui, X. Nanoporous gold induced vertically standing 2D NiCo bimetal-organic framework nanosheets for non-enzymatic glucose biosensing. Sens. Actuators B Chem. 2019, 281, 652–658. [Google Scholar] [CrossRef]
- Rezki, M.; Septiani, N.L.W.; Iqbal, M.; Adhika, D.R.; Wenten, I.G.; Yuliarto, B. Review—Recent advance in multi-metallic metal organic frameworks (MM-MOFs) and their derivatives for electrochemical biosensor application. J. Electrochem. Soc. 2022, 169, 017504. [Google Scholar] [CrossRef]
- Song, S.; Ma, X.; Li, W.; Zhang, B.; Shao, B.; Chang, X.; Liu, X. Novel stylophora coral-like furan-based Ni/Co bimetallic metal organic framework for high-performance capacitive storage and non-enzymatic glucose electrochemical sensing. J. Alloys Compd. 2023, 931, 167413. [Google Scholar] [CrossRef]
- Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various mof topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969. [Google Scholar] [CrossRef]
- Demazeau, G. Solvothermal processes: Definition, key factors governing the involved chemical reactions and new trends. Z. Für Naturforschung B 2010, 65, 999–1006. [Google Scholar] [CrossRef]
- Ghosh, A.; Fathima, T.K.S.; Ramaprabhu, S. Effect of Coordinated Solvent Molecules in Cu-MOF on Enzyme Free Sensing of Glucose and Lactate in Physiological pH. J. Electrochem. Soc. 2022, 169, 057524. [Google Scholar] [CrossRef]
- Demazeau, G.; Largeteau, A. Hydrothermal/solvothermal crystal growth: An old but adaptable process. Z. Anorg. Allg. Chem. 2015, 641, 159–163. [Google Scholar] [CrossRef]
- Zha, X.; Yang, W.; Shi, L.; Li, Y.; Zeng, Q.; Xu, J.; Yang, Y. Morphology control strategy of bimetallic mof nanosheets for upgrading the sensitivity of noninvasive glucose detection. ACS Appl. Mater. Interfaces 2022, 14, 37843–37852. [Google Scholar] [CrossRef]
- Du, Q.; Liao, Y.; Shi, N.; Sun, S.; Liao, X.; Yin, G.; Huang, Z.; Pu, X.; Wang, J. Facile synthesis of bimetallic metal-organic frameworks on nickel foam for a high performance non-enzymatic glucose sensor. J. Electroanal. Chem. 2022, 904, 115887. [Google Scholar] [CrossRef]
- Yuan, A.; Lu, Y.; Zhang, X.; Chen, Q.; Huang, Y. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing. J. Mater. Chem. B 2020, 8, 9295–9303. [Google Scholar] [CrossRef]
- Arul, P.; Gowthaman, N.S.K.; John, S.A.; Tominaga, M. Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid. Electrochim. Acta 2020, 354, 136673. [Google Scholar] [CrossRef]
- Ma, Z.-Z.; Ma, Y.; Liu, B.; Xu, L.; Jiao, H. A high-performance Co-MOF non-enzymatic electrochemical sensor for glucose detection. New J. Chem. 2021, 45, 21350–21358. [Google Scholar] [CrossRef]
- Abrori, S.A.; Trisno, M.L.A.; Aritonang, R.A.; Anshori, I.; Nugraha; Suyatman; Yuliarto, B. Synthesis and characterization of metal-organic framework (MOF) CoBTC as a non-enzymatic electrochemical biosensor for glucose. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1045, 012006. [Google Scholar] [CrossRef]
- Pan, W.; Zheng, Z.; Wu, X.; Gao, J.; Liu, Y.; Yuan, Q.; Gan, W. Facile synthesis of 2D/3D hierarchical NiCu bimetallic MOF for non-enzymatic glucose sensor. Microchem. J. 2021, 170, 106652. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Q.; Hui, Z.; Zhao, S.; Zhao, Y.; Wang, L. Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: A stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage. Food Chem. 2021, 349, 129202. [Google Scholar]
- Liu, Q.; Chen, J.; Yu, F.; Wu, J.; Liu, Z.; Peng, B. Multifunctional book-like CuCo-MOF for highly sensitive glucose detection and electrocatalytic oxygen evolution. New J. Chem. 2021, 45, 16714–16721. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Aramesh, N. Towards the room-temperature synthesis of covalent organic frameworks: A mini-review. J. Mater. Sci. 2021, 56, 1116–1132. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, W.; Li, Y.; Ma, Y.; Wang, J.; Hu, N.; Suo, Y.; Wang, J. Conductive leaflike cobalt metal-organic framework nanoarray on carbon cloth as a flexible and versatile anode toward both electrocatalytic glucose and water oxidation. Inorg. Chem. 2018, 57, 8422–8428. [Google Scholar] [CrossRef]
- Li, P.; Bai, Y.; Zhang, G.; Guo, X.; Meng, X.; Pang, H. Surface-halogen-introduced 2D NiCo bimetallic MOFs via a modulation method for elevated electrochemical glucose sensing. Inorg. Chem. Front. 2022, 9, 5853–5861. [Google Scholar] [CrossRef]
- Song, D.; Wang, L.; Qu, Y.; Wang, B.; Li, Y.; Miao, X.; Yang, Y.; Duan, C. A High-Performance Three-Dimensional Hierarchical Structure MOF-Derived NiCo LDH Nanosheets for Non-Enzymatic Glucose Detection. J. Electrochem. Soc. 2019, 166, B1681–B1688. [Google Scholar] [CrossRef]
- Lin, C.; Du, Y.; Wang, S.; Wang, L.; Song, Y. Glucose oxidase@Cu-hemin metal-organic framework for colorimetric analysis of glucose. Mater. Sci. Eng. C 2021, 118, 111511. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Y.-L.; Lin, X.; Ma, S.-H.; Cao, J.-T.; Liu, Y.-M. Cu-MOFs/GOx Bifunctional Probe-Based Synergistic Signal Amplification Strategy: Toward Highly Sensitive Closed Bipolar Electrochemiluminescence Immunoassay. ACS Appl. Mater. Interfaces 2023, 15, 22959–22966. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Lin, Y.; Teng, J.; Wong, W.-L.; Qiu, B. In situ deposition of MOF-74(Cu) nanosheet arrays onto carbon cloth to fabricate a sensitive and selective electrocatalytic biosensor and its application for the determination of glucose in human serum. Microchim. Acta 2020, 187, 670. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Kong, Y.; Lin, X.; Liu, C.; Liu, J.; He, Y.; Yang, L.; Huang, G.; Mei, Y. Oxide nanomembrane induced assembly of a functional smart fiber composite with nanoporosity for an ultra-sensitive flexible glucose sensor. J. Mater. Chem. A 2020, 8, 26119–26129. [Google Scholar] [CrossRef]
- Phan, P.T.; Hong, J.; Tran, N.; Le, T.H. The properties of microwave-assisted synthesis of metal-organic frameworks and their applications. Nanomaterials 2023, 13, 352. [Google Scholar] [CrossRef] [PubMed]
- Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal organic frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochem. 2019, 52, 106–119. [Google Scholar] [CrossRef]
- Zeraati, M.; Alizadeh, V.; Kazemzadeh, P.; Safinejad, M.; Kazemian, H.; Sargazi, G. A new nickel metal organic framework (Ni-MOF) porous nanostructure as a potential novel electrochemical sensor for detecting glucose. J. Porous Mater. 2022, 29, 257–267. [Google Scholar] [CrossRef]
- Friščić, T. New opportunities for materials synthesis using mechanochemistry. J. Mater. Chem. 2010, 20, 7599–7605. [Google Scholar] [CrossRef]
- Koyappayil, A.; Yeon, S.-H.; Chavan, S.G.; Jin, L.; Go, A.; Lee, M.-H. Efficient and rapid synthesis of ultrathin nickel-metal organic framework nanosheets for the sensitive determination of glucose. Microchem. J. 2022, 179, 107462. [Google Scholar] [CrossRef]
- Al-Kutubi, H.; Gascon, J.; Sudhölter, E.J.R.; Rassaei, L. Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem 2015, 2, 462–474. [Google Scholar] [CrossRef]
- de Carvalho, M.H.; de Araújo, H.D.A.; da Silva, R.P.; dos Santos Correia, M.T.; de Freitas, K.C.S.; de Souza, S.R.; Barroso Coelho, L.C.B. Biosensor Characterization from Cratylia mollis Seed Lectin (Cramoll)-MOF and Specific Carbohydrate Interactions in an Electrochemical Model. Chem. Biodivers. 2022, 19, e202200515. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Ezzati, M.; Hosseini, H. Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. Talanta 2020, 210, 120696. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Ying, Y. Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. TrAC Trends Anal. Chem. 2021, 143, 116395. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, Y.; Lin, H.; Liu, C.-J. Nanoparticle/metal–organic framework composites for catalytic applications: Current status and perspective. Molecules 2017, 22, 2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wei, X.; Gu, Q.; Zhang, J.; Ding, Y.; Xue, L.; Chen, M.; Wang, J.; Wu, S.; Yang, X.; et al. Cascade amplification based on PEI-functionalized metal–organic framework supported gold nanoparticles/nitrogen–doped graphene quantum dots for amperometric biosensing applications. Electrochim. Acta 2022, 405, 139803. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.-J.; Zhang, Q.; Zhang, J.-Y.; Zhang, N.; Fang, Y.-Z.; Yan, J.; Ke, Q. The multifunctional BODIPY@Eu-MOF nanosheets as bioimaging platform: A ratiometric fluorescencent sensor for highly efficient detection of F−, H2O2 and glucose. Sens. Actuators B Chem. 2022, 354, 131140. [Google Scholar]
- Liu, Y.; Shi, W.-J.; Lu, Y.-K.; Liu, G.; Hou, L.; Wang, Y.-Y. Nonenzymatic Glucose Sensing and Magnetic Property Based on the Composite Formed by Encapsulating Ag Nanoparticles in Cluster-Based Co-MOF. Inorg. Chem. 2019, 58, 16743–16751. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Zhao, Y.; Liu, C.-J. Recent progresses in the size and structure control of MOF supported noble metal catalysts. Catal. Today 2016, 263, 61–68. [Google Scholar] [CrossRef]
- Zhai, X.; Cao, Y.; Sun, W.; Cao, S.; Wang, Y.; He, L.; Yao, N.; Zhao, D. Core-shell composite N-doped-Co-MOF@polydopamine decorated with Ag nanoparticles for nonenzymatic glucose sensors. J. Electroanal. Chem. 2022, 918, 116491. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, Y.; Liu, M.; Wang, H.; Ren, J.; Tian, Y.; Liu, X.; Zhou, Y.; Wang, J.; Zhu, W.; et al. In-situ two-step electrodeposition of alpha-CD-rGO/Ni-MOF composite film for superior glucose sensing. J. Alloys Compd. 2022, 923, 166418. [Google Scholar] [CrossRef]
- Jin, X.; Li, G.; Xu, T.; Su, L.; Yan, D.; Zhang, X. Ruthenium-based Conjugated Polymer and Metal-organic Framework Nanocomposites for Glucose Sensing. Electroanalysis 2021, 33, 1902–1910. [Google Scholar] [CrossRef]
- Chen, S.; Liu, D.; Song, N.; Wang, C.; Lu, X. Promoting non-enzymatic electrochemical sensing performance toward glucose by the integration of conducting polypyrrole with metal-organic framework. Compos. Commun. 2022, 30, 101074. [Google Scholar] [CrossRef]
- Arif, D.; Hussain, Z.; Sohail, M.; Liaqat, M.A.; Khan, M.A.; Noor, T. A non-enzymatic electrochemical sensor for glucose detection based on Ag@TiO2@metal-organic framework (ZIF-67) nanocomposite. Front. Chem. 2020, 8, 573510. [Google Scholar] [CrossRef]
- Hu, S.; Jiang, Y.; Wu, Y.; Guo, X.; Ying, Y.; Wen, Y.; Yang, H. Enzyme-Free Tandem Reaction Strategy for Surface-Enhanced Raman Scattering Detection of Glucose by Using the Composite of Au Nanoparticles and Porphyrin-Based Metal-Organic Framework. ACS Appl. Mater. Interfaces 2020, 12, 55324–55330. [Google Scholar] [CrossRef]
- Ma, Z.-Z.; Wang, Y.-S.; Liu, B.; Jiao, H.; Xu, L. A Non-Enzymatic Electrochemical Sensor of Cu@Co-MOF Composite for Glucose Detection with High Sensitivity and Selectivity. Chemosensors 2022, 10, 416. [Google Scholar] [CrossRef]
- Duraisamy, S.R.; Liu, W.-L.; Huang, H.-Y.; Lin, C.-H. Immobilization of protein on nanoporous metal-organic framework materials. Comments Inorg. Chem. 2015, 35, 331–349. [Google Scholar]
- Kempahanumakkagari, S.; Kumar, V.; Samaddar, P.; Kumar, P.; Ramakrishnappa, T.; Kim, K.H. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol. Adv. 2018, 36, 467–481. [Google Scholar] [CrossRef]
- Mu, Z.; Wu, S.; Guo, J.; Zhao, M.; Wang, Y. Dual Mechanism Enhanced Peroxidase-like Activity of Iron-Nickel Bimetal-Organic Framework Nanozyme and Its Application for Biosensing. ACS Sustain. Chem. Eng. 2022, 10, 2984–2993. [Google Scholar] [CrossRef]
- Zhou, Z.; Chao, H.; He, W.; Su, P.; Song, J.; Yang, Y. Boosting the activity of enzymes in metal-organic frameworks by a one-stone-two-bird enzymatic surface functionalization strategy. Appl. Surf. Sci. 2022, 586, 152815. [Google Scholar] [CrossRef]
- Shen, H.; Shi, H.; Yang, Y.; Song, J.; Ding, C.; Yu, S. Highly efficient synergistic biocatalysis driven by stably loaded enzymes within hierarchically porous iron/cobalt metal-organic framework via biomimetic mineralization. J. Mater. Chem. B 2022, 10, 1553–1560. [Google Scholar] [CrossRef]
- Du, Y.; Jia, X.; Zhong, L.; Jiao, Y.; Zhang, Z.; Wang, Z.; Feng, Y.; Bilal, M.; Cui, J.; Jia, S. Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites. Coord. Chem. Rev. 2022, 454, 214327. [Google Scholar] [CrossRef]
- Li, S.-F.; Chen, Y.; Wang, Y.-S.; Mo, H.-L.; Zang, S.-Q. Integration of enzyme immobilization and biomimetic catalysis in hierarchically porous metal-organic frameworks for multi-enzymatic cascade reactions. Sci. China Chem. 2022, 65, 1122–1128. [Google Scholar] [CrossRef]
- Goud, B.S.; Shin, G.; Vattikuti, S.V.P.; Mameda, N.; Kim, H.; Koyyada, G.; Kim, J.H. Enzyme-integrated biomimetic cobalt metal-organic framework nanozyme for one-step cascade glucose biosensing via tandem catalysis. Biochem. Eng. J. 2022, 188, 108669. [Google Scholar] [CrossRef]
- Nadar, S.S.; Vaidya, L.; Rathod, V.K. Enzyme embedded metal organic framework (enzyme–MOF): De novo approaches for immobilization. Int. J. Biol. Macromol. 2020, 149, 861–876. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, A.; Cheng, Y.; Zhang, Y.; Fu, D.; Liu, M.; Li, A.; Liu, J. A molecularly imprinted nanoreactor with spatially confined effect fabricated with nano-caged cascaded enzymatic system for specific detection of monosaccharides. Biosens. Bioelectron. 2021, 188, 113355. [Google Scholar] [CrossRef]
- Wang, B.; Luo, Y.; Gao, L.; Liu, B.; Duan, G. High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. Biosens. Bioelectron. 2021, 171, 112736. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, Y.; Liu, W.; Ye, F.; Zhao, S. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous MOF as an integrated nanozyme for one-step glucose detection. ACS Sustain. Chem. Eng. 2020, 8, 4481–4488. [Google Scholar] [CrossRef]
- Xu, W.; Jiao, L.; Yan, H.; Wu, Y.; Chen, L.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101. [Google Scholar] [CrossRef]
- Zhu, N.; Gu, L.; Wang, J.; Li, X.; Liang, G.; Zhou, J.; Zhang, Z. Novel and Sensitive Chemiluminescence Sensors Based on 2D-MOF Nanosheets for One-Step Detection of Glucose in Human Urine. J. Phys. Chem. C 2019, 123, 9388–9393. [Google Scholar] [CrossRef]
- Zhong, N.; Gao, R.; Shen, Y.; Kou, X.; Wu, J.; Huang, S.; Chen, G.; Ouyang, G. Enzymes-Encapsulated Defective Metal-Organic Framework Hydrogel Coupling with a Smartphone for a Portable Glucose Biosensor. Anal. Chem. 2022, 94, 14385–14393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, W.; Zeng, J.; He, Z.; Wang, X.; Zhu, Z.; Hu, R.; Liu, C.; Wang, Q. Wearable non-invasive glucose sensors based on metallic nanomaterials. Mater. Today Bio 2023, 20, 100638. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ma, Q.; Li, M.; Chao, D.; Huang, L.; Wu, W.; Fang, Y.; Dong, S. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375. [Google Scholar] [CrossRef]
- Yogesh, M.C.; Satish, B.J.; Padamaja, N.P.; Vikas, V.M.; Jayavant, L.G.; Chandrakant, D.L. Metal oxide-based composites in nonenzymatic electrochemical glucose sensors. Ind. Eng. Chem. Res. 2021, 60, 18195–18217. [Google Scholar]
- Gonçalves, J.M.; Martins, P.R.; Rocha, D.P.; Matias, T.A.; Julião, M.S.S.; Munoz, R.A.A.; Angnes, L. Recent trends and perspectives in electrochemical sensors based on MOF-derived materials. J. Mater. Chem. C 2021, 9, 8718–8745. [Google Scholar] [CrossRef]
- Lu, X.F.; Fang, Y.; Luan, D.; Lou, X.W.D. Metal–organic frameworks derived functional materials for electrochemical energy storage and conversion: A mini review. Nano Lett. 2021, 21, 1555–1565. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Cheng, M.; Liu, Y.; Wang, J.; Zhang, G.; Wei, Z.; Li, L.; Du, L.; Wang, G.; Liu, H. Functional metal/carbon composites derived from metal–organic frameworks: Insight into structures, properties, performances, and mechanisms. ACS Catal. 2023, 13, 1759–1790. [Google Scholar] [CrossRef]
- Zhao, C.; Tang, X.; Zhao, J.; Cao, J.; Jiang, Z.; Qin, J. MOF derived core-shell CuO/C with temperature-controlled oxygen-vacancy for real time analysis of glucose. J. Nanobiotechnol. 2022, 20, 507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Guo, W.; Wan, K.; Zhang, T.; Arbiol, J.; Zhao, Y.-Q.; Xu, C.-L.; Xu, M.; Fransaer, J. A yolk-albumen-shell structure of mixed Ni-Co oxide with an ultrathin carbon shell for high-sensitivity glucose sensors. Mater. Adv. 2020, 1, 908–917. [Google Scholar] [CrossRef]
- Archana, V.; Xia, Y.; Fang, R.; Kumar, G.G. Hierarchical CuO/NiO-Carbon Nanocomposite Derived from Metal Organic Framework on Cello Tape for the Flexible and High Performance Nonenzymatic Electrochemical Glucose Sensors. ACS Sustain. Chem. Eng. 2019, 7, 6707–6719. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Ai, L.; Jiang, J. Synthesis of the crystalline porous copper oxide architectures derived from metal-organic framework for electrocatalytic oxidation and sensitive detection of glucose. J. Ind. Eng. Chem. 2019, 70, 330–337. [Google Scholar] [CrossRef]
- Chu, D.; Li, F.; Song, X.; Ma, H.; Tan, L.; Pang, H.; Wang, X.; Guo, D.; Xiao, B. A novel dual-tasking hollow cube NiFe2O4-NiCo-LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor. J. Colloid Interface Sci. 2020, 568, 130–138. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, K.; Duan, J.; Zheng, S.; Jiang, J. The nickel phosphate rods derived from Ni-MOF with enhanced electrochemical activity for non-enzymatic glucose sensing. Talanta 2022, 247, 123587. [Google Scholar] [CrossRef]
- Zhu, Q.; Hu, S.; Zhang, L.; Li, Y.; Carraro, C.; Maboudian, R.; Wei, W.; Liu, A.; Zhang, Y.; Liu, S. Reconstructing hydrophobic ZIF-8 crystal into hydrophilic hierarchically-porous nanoflowers as catalyst carrier for nonenzymatic glucose sensing. Sens. Actuators B Chem. 2020, 313, 128031. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Gao, P.; Yin, W.; Yin, M.; Pu, H.; Sun, Q.; Liang, X.; Fa, H.-b. Bimetal-organic frameworks MnCo-MOF-74 derived Co/MnO@HC for the construction of a novel enzyme-free glucose sensor. Microchem. J. 2022, 175, 107097. [Google Scholar] [CrossRef]
- Vignesh, A.; Vajeeston, P.; Pannipara, M.; Al-Sehemi, A.G.; Xia, Y.; Kumar, G.G. Bimetallic metal-organic framework derived 3D hierarchical NiO/Co3O4/C hollow microspheres on biodegradable garbage bag for sensitive, selective, and flexible enzyme-free electrochemical glucose detection. Chem. Eng. J. 2022, 430, 133157. [Google Scholar] [CrossRef]
- Jia, H.; Shang, N.; Feng, Y.; Ye, H.; Zhao, J.; Wang, H.; Wang, C.; Zhang, Y. Facile preparation of Ni nanoparticle embedded on mesoporous carbon nanorods for non-enzymatic glucose detection. J. Colloid Interface Sci. 2021, 583, 310–320. [Google Scholar] [CrossRef]
- Abrori, S.A.; Septiani, N.L.W.; Nugraha; Anshori, I.; Suyatman; Suendo, V.; Yuliarto, B. Metal-organic-framework FeBDC-derived Fe3O4 for non-enzymatic electrochemical detection of glucose. Sensors 2020, 20, 4891. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Wang, B.; Duan, C.; Li, J.; Zheng, L.; Li, J.; Yin, Z. Bifunctional three-dimensional self-supporting multistage structure CC@MOF-74(NiO)@NiCo LDH electrode for supercapacitors and non-enzymatic glucose sensors. J. Alloys Compd. 2021, 885, 160899. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Li, J.; Hu, C.; Zhang, X.; Jiang, B.; Cao, Z.; Zhang, J.; Zhang, R. MOF-derived ZnCo2O4 porous micro-rice with enhanced electro-catalytic activity for the oxygen evolution reaction and glucose oxidation. RSC Adv. 2020, 10, 9063–9069. [Google Scholar] [CrossRef]
- Li, G.; Xie, G.; Chen, D.; Gong, C.; Chen, X.; Zhang, Q.; Pang, B.; Zhang, Y.; Li, C.; Hu, J.; et al. Facile synthesis of bamboo-like Ni3S2@NCNT as efficient and stable electrocatalysts for non-enzymatic glucose detection. Appl. Surf. Sci. 2022, 585, 152683. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.-R.; Han, C.; Zhang, Y.-H.; Yang, S.-H.; Meng, W. Synthesis of Porous CuO Based on an Etching Strategy and Application in Electrochemical Glucose Sensing. Chin. J. Inorg. Chem. 2021, 37, 2249–2259. [Google Scholar]
- Zhang, D.; Zhang, X.; Bu, Y.; Zhang, J.; Zhang, R. Copper cobalt sulfide structures derived from MOF precursors with enhanced electrochemical glucose sensing properties. Nanomaterials 2022, 12, 1394. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hu, J.; Liu, Y.; Yuan, G.; Zhang, S.; Xu, L.; Xue, H.; Pang, H. Turning coordination environment of 2D nickel-based metal-organic frameworks by pi-conjugated molecule for enhancing glucose electrochemical sensor performance. Mater. Today Chem. 2022, 24, 100885. [Google Scholar] [CrossRef]
- Sobhanie, E.; Roshani, A.; Hosseini, M. Microfluidic systems with amperometric and voltammetric detection and paper-based sensors and biosensors. In Carbon Nanomaterials-Based Sensors, 1st ed.; Manjunatha, J.G., Hussain, C.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 275–287. [Google Scholar]
- Ünlüer, Ö.B.; Ghorbani-Bidkorbeh, F.; Keçili, R.; Hussain, C.M. Future of the modern age of analytical chemistry: Nanominiaturization. In Handbook on Miniaturization in Analytical Chemistry, 1st ed.; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 277–296. [Google Scholar]
- Venton, B.J.; DiScenza, D.J. Voltammetry. In Electrochemistry for Bioanalysis, 1st ed.; Patel, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 27–50. [Google Scholar]
- Foley, M.P.; Du, P.; Griffith, K.J.; Karty, J.A.; Mubarak, M.S.; Raghavachari, K.; Peters, D.G. Electrochemistry of substituted salen complexes of nickel(II): Nickel(I)-catalyzed reduction of alkyl and acetylenic halides. J. Electroanal. Chem. 2010, 647, 194–203. [Google Scholar] [CrossRef]
- Nandhini, C.; Arul, P.; Huang, S.-T.; Tominaga, M.; Huang, C.-H. Electrochemical sensing of dual biomolecules in live cells and whole blood samples: A flexible gold wire-modified copper-organic framework-based hybrid composite. Bioelectrochemistry 2023, 152, 108434. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Jia, L.; Zhu, R.-R.; Du, L.; Zhao, Q.-H. High-performance non-enzymatic glucose electrochemical sensor constructed by transition nickel modified Ni@Cu-MOF. J. Electroanal. Chem. 2020, 858, 113783. [Google Scholar] [CrossRef]
- Lu, M.; Deng, Y.; Li, Y.; Li, T.; Xu, J.; Chen, S.W.; Wang, J. Core-shell MOF@MOF composites for sensitive nonenzymatic glucose sensing in human serum. Anal. Chim. Acta 2020, 1110, 35–43. [Google Scholar] [CrossRef]
- Niu, X.; Li, X.; Pan, J.; He, Y.; Qiu, F.; Yan, Y. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: Opportunities and challenges. RSC Adv. 2016, 6, 84893–84905. [Google Scholar] [CrossRef]
- Kim, S.E.; Muthurasu, A. Metal-organic framework–assisted bimetallic Ni@Cu microsphere for enzyme-free electrochemical sensing of glucose. J. Electroanal. Chem. 2020, 873, 114356. [Google Scholar] [CrossRef]
- Kim, S.E.; Muthurasu, A. Highly Oriented Nitrogen-doped Carbon Nanotube Integrated Bimetallic Cobalt Copper Organic Framework for Non-enzymatic Electrochemical Glucose and Hydrogen Peroxide Sensor. Electroanalysis 2021, 33, 1333–1345. [Google Scholar] [CrossRef]
- Zoski, C.G. Handbook of Electrochemistry; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Franklin, R.K.; Martin, S.M.; Strong, T.D.; Brown, R.B. Chemical Sensors. In Comprehensive Microsystems, 1st ed.; Gianchandani, Y.B., Tabata, O., Zappe, H., Eds.; Elsevier: Oxford, UK, 2008; pp. 433–461. [Google Scholar]
- Uzak, D.; Atiroglu, A.; Atiroglu, V.; Cakiroglu, B.; Ozacar, M. Reduced Graphene Oxide/Pt Nanoparticles/Zn-MOF-74 Nanomaterial for a Glucose Biosensor Construction. Electroanalysis 2020, 32, 510–519. [Google Scholar] [CrossRef]
- Cheng, X.; Zhou, J.; Chen, J.; Xie, Z.; Kuang, Q.; Zheng, L. One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection. Nano Res. 2019, 12, 3031–3036. [Google Scholar] [CrossRef]
- Batista Deroco, P.; Giarola, J.d.F.; Wachholz Júnior, D.; Arantes Lorga, G.; Tatsuo Kubota, L. Paper-based electrochemical sensing devices. In Comprehensive Analytical Chemistry, 1st ed.; Merkoçi, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 89, pp. 91–137. [Google Scholar]
- Simões, F.R.; Xavier, M.G. Electrochemical Sensors. In Nanoscience and Its Applications, 1st ed.; Da Róz, A.L., Ferreira, M., de Lima Leite, F., Oliveira, O.N., Eds.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 155–178. [Google Scholar]
- Song, Y.; Xu, M.; Gong, C.; Shen, Y.; Wang, L.; Xie, Y.; Wang, L. Ratiometric electrochemical glucose biosensor based on GOD/AuNPs/Cu-BTC MOFs/macroporous carbon integrated electrode. Sens. Actuators B Chem. 2018, 257, 792–799. [Google Scholar] [CrossRef]
- Clark, L.C., Jr.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Adeloju, S.B. AMPEROMETRY. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 70–79. [Google Scholar]
- Chu, C.; Rao, S.; Ma, Z.; Han, H. Copper and cobalt nanoparticles doped nitrogen-containing carbon frameworks derived from CuO-encapsulated ZIF-67 as high-efficiency catalyst for hydrogenation of 4-nitrophenol. Appl. Catal. B 2019, 256, 117792. [Google Scholar] [CrossRef]
- Zhai, Z.; Wang, J.; Sun, Y.; Hao, X.; Niu, B.; Xie, H.; Li, C. MOFs/nanofiber-based capacitive gas sensors for the highly selective and sensitive sensing of trace SO2. Appl. Surf. Sci. 2023, 613, 155772. [Google Scholar] [CrossRef]
- Mo, G.; Zheng, X.; Ye, N.; Ruan, Z. Nitrogen-doped carbon dodecahedron embedded with cobalt nanoparticles for the direct electro-oxidation of glucose and efficient nonenzymatic glucose sensing. Talanta 2021, 225, 121954. [Google Scholar] [CrossRef]
- Wang, L.; Miao, X.; Qu, Y.; Duan, C.; Wang, B.; Yu, Q.; Gao, J.; Song, D.; Li, Y.; Yin, Z. Rattle-type Au@NiCo LDH hollow core-shell nanostructures for nonenzymatic glucose sensing. J. Electroanal. Chem. 2020, 858, 113810. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Ren, X.; Zhang, W.; Zhang, T.; Liu, X.; Du, T.; Li, T.; Wang, J. Internally extended growth of core–shell NH2-MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(II). J. Mater. Chem. A 2018, 6, 21029–21038. [Google Scholar] [CrossRef]
- Heller, A.; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowska Nery, E.; Kundys, M.; Jeleń, P.S.; Jönsson-Niedziółka, M. Electrochemical Glucose Sensing: Is There Still Room for Improvement? Anal. Chem. 2016, 88, 11271–11282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, Y.; Su, T.; Lu, Q.; Shang, Z.; Xu, Q.; Hu, X. Highly Stretchable Wearable Electrochemical Sensor Based on Ni-Co MOF Nanosheet-Decorated Ag/rGO/PU Fiber for Continuous Sweat Glucose Detection. Anal. Chem. 2021, 93, 16222–16230. [Google Scholar] [CrossRef]
- Sun, L.; Hendon, C.H.; Park, S.S.; Tulchinsky, Y.; Wan, R.; Wang, F.; Walsh, A.; Dincă, M. Is iron unique in promoting electrical conductivity in MOFs? Chem. Sci. 2017, 8, 4450–4457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, X.; Qian, M.; Pan, L.; Lu, T.; Han, L.; Yu, H.; Wan, L.; Niu, Y.; Gong, S. A longitudinally expanded Ni-based metal–organic framework with enhanced double nickel cation catalysis reaction channels for a non-enzymatic sweat glucose biosensor. J. Mater. Chem. B 2020, 8, 9094–9109. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, Y.; Zhu, P.; Du, L.; Chen, W.; Wu, C. Electrochemically Activated Conductive Ni-Based MOFs for Non-enzymatic Sensors Toward Long-Term Glucose Monitoring. Front. Chem. 2020, 8, 602752. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Wang, N.; Xu, Q.Q.; Xu, L.; Lin, M. Copper-based Metal-organic Framework for Non-enzymatic Electrochemical Detection of Glucose. Electroanalysis 2018, 30, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Qin, J.; Wang, X.F.; Ran, G.Y.; Wang, Q.; Liu, G.X.; Ma, J.P.; Ge, J.Y.; Wang, H.Y. Cu-Based Conductive MOF Grown in situ on Cu Foam as a Highly Selective and Stable Non-Enzymatic Glucose Sensor. Front. Chem. 2021, 9, 786970. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; Lee, H.N.; Park, Y.M.; Bae, Y.-S.; Kim, H.-J. Electrochemically derived CuO nanorod from copper-based metal-organic framework for non-enzymatic detection of glucose. Appl. Surf. Sci. 2019, 479, 720–726. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T.; Yu, Y.; Asif, M.; Xu, N.; Xiao, F.; Liu, H. Coffee Ring-Inspired Approach toward Oriented Self-Assembly of Biomimetic Murray MOFs as Sweat Biosensor. Small 2018, 14, e1802670. [Google Scholar] [CrossRef]
- Ezzati, M.; Shahrokhian, S.; Hosseini, H. In Situ Two-Step Preparation of 3D NiCo-BTC MOFs on a Glassy Carbon Electrode and a Graphitic Screen Printed Electrode as Nonenzymatic Glucose-Sensing Platforms. ACS Sustain. Chem. Eng. 2020, 8, 14340–14352. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, N.; Cao, P.; Lin, M.; Xu, L.; Ma, H. Electrochemical non-enzymatic glucose sensor using ionic liquid incorporated cobalt-based metal-organic framework. Microchem. J. 2020, 159, 105343. [Google Scholar] [CrossRef]
- Chen, C.; Xu, H.; Zhan, Q.; Zhang, Y.; Wang, B.; Chen, C.; Tang, H.; Xie, Q. Preparation of novel HKUST-1-glucose oxidase composites and their application in biosensing. Microchim. Acta 2022, 190, 10. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Chauhan, S. Nano/micro-scaled materials based optical biosensing of glucose. Ceram. Int. 2022, 48, 2913–2947. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Mu, Z.; Wu, S.; Wang, J.; Yang, Y.; Zhao, M.; Wang, Y. Label-free fluorescence detection of hydrogen peroxide and glucose based on the Ni-MOF nanozyme–induced self-ligand emission. Microchim. Acta 2022, 189, 219. [Google Scholar] [CrossRef]
- Zhong, X.; Xia, H.; Huang, W.; Li, Z.; Jiang, Y. Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chem. Eng. J. 2020, 381, 122758. [Google Scholar] [CrossRef]
- Shi, M.-Y.; Xu, M.; Gu, Z.-Y. Copper-based two-dimensional metal-organic framework nanosheets as horseradish peroxidase mimics for glucose fluorescence sensing. Anal. Chim. Acta 2019, 1079, 164–170. [Google Scholar] [CrossRef]
- Ning, D.; Liu, Q.; Wang, Q.; Du, X.-M.; Ruan, W.-J.; Li, Y. Luminescent MOF nanosheets for enzyme assisted detection of H2O2 and glucose and activity assay of glucose oxidase. Sens. Actuators B Chem. 2019, 282, 443–448. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, F.; Yin, X.-B. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens. Bioelectron. 2019, 135, 208–215. [Google Scholar] [CrossRef]
- Li, D.; Zhang, S.; Feng, X.; Yang, H.; Nie, F.; Zhang, W. A novel peroxidase mimetic Co-MOF enhanced luminol chemiluminescence and its application in glucose sensing. Sens. Actuators B Chem. 2019, 296, 126631. [Google Scholar] [CrossRef]
- Jiang, G.; Yang, Z.; Zhu, K.; Zong, S.; Wu, L.; Wang, Z.; Cui, Y. Universal peroxidase-like strategy for sensitive glucose detection in complex matrix. Nano Res. 2023, 16, 1141–1148. [Google Scholar] [CrossRef]
- Guo, L.; Chen, S.; Yu, Y.-L.; Wang, J.-H. A Smartphone Optical Device for Point-of-Care Testing of Glucose and Cholesterol Using Ag NPs/UiO-66-NH2-Based Ratiometric Fluorescent Probe. Anal. Chem. 2021, 93, 16240–16247. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Pang, Y.; Shi, Y.; Zheng, W.; Long, Y.; Huang, Y.; Zheng, H. One-pot synthesis of a composite consisting of the enzyme ficin and a zinc(II)-2-methylimidazole metal organic framework with enhanced peroxidase activity for colorimetric detection for glucose. Microchim. Acta 2019, 186, 213. [Google Scholar] [CrossRef]
- Ilacas, G.C.; Basa, A.; Nelms, K.J.; Sosa, J.D.; Liu, Y.; Gomez, F.A. Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF). Anal. Chim. Acta 2019, 1055, 74–80. [Google Scholar] [CrossRef]
- Hong, J.I.; Chang, B.Y. Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip 2014, 14, 1725–1732. [Google Scholar] [CrossRef]
- Wu, T.; Gao, X.-J.; Ge, F.; Zheng, H.-G. Metal–organic frameworks (MOFs) as fluorescence sensors: Principles, development and prospects. CrystEngComm 2022, 24, 7881–7901. [Google Scholar] [CrossRef]
- Gui, R.; Jin, H.; Bu, X.; Fu, Y.; Wang, Z.; Liu, Q. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord. Chem. Rev. 2019, 383, 82–103. [Google Scholar] [CrossRef]
- Hirano, T.; Matsuhashi, C. A stable chemiluminophore, adamantylideneadamantane 1,2-dioxetane: From fundamental properties to utilities in mechanochemistry and soft crystal science. J. Photochem. Photobiol. C 2022, 51, 100483. [Google Scholar] [CrossRef]
- Zheng, Z.; Cong, S.; Gong, W.; Xuan, J.; Li, G.; Lu, W.; Geng, F.; Zhao, Z. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 2017, 8, 1993. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Yu, B.; Pan, X.; Zhu, X.; Liu, Z. Recent progress in metal–organic frameworks-based materials toward surface-enhanced Raman spectroscopy. Appl. Spectrosc. Rev. 2022, 57, 513–528. [Google Scholar] [CrossRef]
- Xue, Q.; Li, Z.; Wang, Q.; Pan, W.; Chang, Y.; Duan, X. Nanostrip flexible microwave enzymatic biosensor for noninvasive epidermal glucose sensing. Nanoscale Horiz. 2020, 5, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 2019, 5, eaav3294. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Su, R.; Teng, L.; Tian, Q.; Han, F.; Li, H.; Cao, Z.; Xie, R.; Li, G.; Liu, X.J.N. Recent advances in flexible and wearable sensors for monitoring chemical molecules. Nanoscale 2022, 14, 1653–1669. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pr. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Chen, J.; Xie, Q.; Mi, L. Functional metal/covalent organic framework materials for triboelectric nanogenerator. Coord. Chem. Rev. 2023, 486, 215118. [Google Scholar] [CrossRef]
- Barsiwal, S.; Babu, A.; Khanapuram, U.K.; Potu, S.; Madathil, N.; Rajaboina, R.K.; Mishra, S.; Divi, H.; Kodali, P.; Nagapuri, R.; et al. ZIF-67-Metal-Organic-Framework-Based Triboelectric Nanogenerator for Self-Powered Devices. Nanoenergy Adv. 2022, 2, 291–302. [Google Scholar] [CrossRef]
- Yang, T.; Yu, X.; Ma, N.; Wu, R.; Li, H. An autonomous channel deep learning framework for blood glucose prediction. Appl. Soft Comput. 2022, 120, 108636. [Google Scholar] [CrossRef]
- Zhu, T.; Kuang, L.; Daniels, J.; Herrero, P.; Li, K.; Georgiou, P. IoMT-Enabled Real-Time Blood Glucose Prediction With Deep Learning and Edge Computing. IEEE Internet Things J. 2023, 10, 3706–3719. [Google Scholar] [CrossRef]
- Wu, K.; He, X.; Wang, J.; Pan, T.; He, R.; Kong, F.; Cao, Z.; Ju, F.; Huang, Z.; Nie, L. Recent progress of microfluidic chips in immunoassay. Front. Bioeng. Biotechnol. 2022, 10, 1112327. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem. Int. Ed. 2007, 119, 1340–1342. [Google Scholar] [CrossRef]
- Liu, H.; Crooks, R.M. Paper-Based Electrochemical Sensing Platform with Integral Battery and Electrochromic Read-Out. Anal. Chem. 2012, 84, 2528–2532. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Bandodkar, A.J.; Reeder, J.T.; Ray, T.R.; Turnquist, A.; Kim, S.B.; Nyberg, N.; Hourlier-Fargette, A.; Model, J.B.; Aranyosi, A.J.; et al. Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of Sweat Biomarkers and Temperature. ACS Sens. 2019, 4, 379–388. [Google Scholar] [CrossRef] [PubMed]
Electrode Material | Electrochemical Method | Mechanism | pH | Linear Range (μM) | LOD (μM) | Sensitivity (μA mM−1 cm−2) | Ref |
---|---|---|---|---|---|---|---|
PDA-GOx-HKUST-1-MWCNTs/Pt/Au | AMP | electrooxidation of H2O2 | 7.0 | 5–7050 | 0.12 | 178 | [151] |
GOD-GA-Ni/Cu-MOFs-FET | AMP | electrooxidation of H2O2 | 7.4 | 1–100 | 0.51 | 26.05 | [87] |
rGO/Pt NPs@Zn-MOF-74 | LSV | electrooxidation of H2O2 | 7.4 | 6–6000 | 1.8 | 64.51 | [127] |
GOX-AuNPs/N-GQDs-P-MOF@GCE | AMP | electroreduction of H2O2 | 4.0 | 2–10, 20–3000 | 0.7 | 1512.4 | [66] |
GOx/Hemin@NC-ZIF | AMP | oxidation of H2O2 by peroxidase | 7.2 | 0–20,000 | 10 | − | [24] |
GOx@Cu-MOF/CF | CV | electroreduction of H2O2 | 7.4 | 0–6000 | − | − | [128] |
GOD/AuNPs/Cu-BTC/3D-KSCs | DPV | O2 depletion monitoring | 7.0 | 44.9–4000, 4000–19,000 | 14.77 | − | [131] |
Materials | Detection Method | Linear Range (μM) | LOD (μM) | Ref |
---|---|---|---|---|
dZIF-8 BH | colorimetry | 50–4000 | − | [91] |
G&L@ZIF@Paper | colorimetry | 200–2000 | 120 | [19] |
GOx/Hemin@NC-ZIF | colorimetry | 1000–20,000 | 10 | [24] |
Aga/GOD@Cu-hemin MOF/TMB | colorimetry | 30–800 | 10 | [49] |
GOx@FCM-TA | colorimetry | 5–750 | 0.94 | [81] |
Fe3Ni-MOF | colorimetry | 2–1000 | 1 | [79] |
5R@Eu-MOF | FL | 0–6 | 0.00692 | [67] |
Ni-MOF | FL | 8–30 | 4 | [153] |
Pt/Fe-MOF | colorimetry | 3900–6400 | 2.3 | [18] |
MOF@GOx@BHb-MIPs | colorimetry | 0.5–20 | 0.4 | [86] |
GOx@MOF-545(Fe) | colorimetry | 0.5–20 | 0.28 | [154] |
GOx@MAF-2 | CL | 20–200, 500–30,000 | 1.4 | [23] |
Cu(bpy)2(OTf)2 nanosheets | FL | 10–1000 | 0.41 | [155] |
In-aip nanosheets | FL | 0–160 | 0.87 | [156] |
boric-acid Eu-MOF | FL | 0.1–4 | 0.0643 | [157] |
Co-TCPP(Fe)@Luminol@GOD | CL | 0.177–30.53 | 0.0592 | [90] |
Co-MOF | CL | 0.04–8 | 0.012 | [158] |
AuNPs/Cu-TCPP(Fe) | SERS | 160–8000 | 3.9 | [75] |
MBs@MIL-100(Fe)@Ag | SERS | 20–1000 | 15.95 | [159] |
Ag NPs/UiO-66-NH2 | FL | 1–200 | 0.5 | [160] |
MOF-235/β-CD | CL | 0.01–3 | 0.01 | [23] |
ficin@MOF | colorimetry | 1–140 | 0.12 | [161] |
GOx@Zr-PCN-222 (Fe) | colorimetry | 0–5000 | 250 | [162] |
CeO2@NH2-MIL-88B(Fe) | colorimetry | 200–15,000 | 80 | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lin, Q.; Song, Y.; Huang, J.; Chen, M.; Ouyang, R.; Liu, S.-Y.; Dai, Z. MOF-Based Materials for Glucose Detection. Chemosensors 2023, 11, 429. https://doi.org/10.3390/chemosensors11080429
Zhang Y, Lin Q, Song Y, Huang J, Chen M, Ouyang R, Liu S-Y, Dai Z. MOF-Based Materials for Glucose Detection. Chemosensors. 2023; 11(8):429. https://doi.org/10.3390/chemosensors11080429
Chicago/Turabian StyleZhang, Yiling, Qian Lin, Yiteng Song, Jiaqi Huang, Miaomiao Chen, Runqi Ouyang, Si-Yang Liu, and Zong Dai. 2023. "MOF-Based Materials for Glucose Detection" Chemosensors 11, no. 8: 429. https://doi.org/10.3390/chemosensors11080429
APA StyleZhang, Y., Lin, Q., Song, Y., Huang, J., Chen, M., Ouyang, R., Liu, S. -Y., & Dai, Z. (2023). MOF-Based Materials for Glucose Detection. Chemosensors, 11(8), 429. https://doi.org/10.3390/chemosensors11080429