N-Doped Graphene and Its Derivatives as Resistive Gas Sensors: An Overview
Abstract
:1. Introduction
2. N-Doped Graphene and Its Derivatives as Resistive Gas Sensors: Theoretical Studies
3. N-Doped Graphene and Its Derivatives as Resistive Gas Sensors: Experimental Studies
4. Conclusions and Outlooks
- (i)
- Optimization of the amount of N doping in graphene and rGO: Only a few papers mentioned the optimization of N doping in rGO. Generally, there is a volcano-shape dependency of the sensing response with respect to the amount of N doping. Therefore, at very low and very high amounts of doping, the sensing performance decreases. Hence, it is important to find the optimal value of N doping, where the maximum sensing response can be achieved.
- (ii)
- The study of N-doping effect in GO for gas-sensing studies: As far as we know, there is no study about the effect of N doping on the gas response of GO gas sensors. Hence, we think that this aspect needs some studies. In fact, N doping will increase the conductivity of GO, and in this way, it is expected that the gas-sensing performance will be increased after N doping in GO.
- (iii)
- Noble metal decoration on N-doped graphene and rGO: Noble metals such as Au [109], Pt [110], Pd [111], Ag [112], and Rh [113] are commonly used for the decoration of metal oxide gas sensors. They have catalytic activity towards some gases and can facilitate the adsorption and dissociation of gases on the surface of N-doped graphene. Furthermore, due to having a different work function than N-doped graphene or N-doped rGO, upon intimate contact, they will form heterojunctions with N-doped graphene or N-doped rGO with potential barriers to the flow of charge carriers. In the presence of target gases, due to related reactions and the release of abstraction of electrons on the sensor surface, the height of potential barriers changes, leading to a resistance modulation of the gas senor. In this way, it is expected that the overall response of the sensor will increase after noble metal decoration.
- (iv)
- Investigation of the effect of high-energy irradiation on the sensing properties of N-doped graphene or rGO: Generally, high-energy ion beams such as electron beams [114], laser irradiation [115], and gamma rays [116] cause the breaking of bonds and the formation of structural defects within the regions near the surface of the host material. These formed defects are favorable sites for the adsorption of gases, and it is expected that more gases will be adsorbed on the sensor after high-energy irradiation. However, it should be noted that, generally, there is an optimal dosage of irradiation where the maximum response is observed [117]. Hence, the effect of high-energy irradiation on the response of N-doped graphene or N-doped rGO should be investigated.
- (v)
- Hybrids of CPs with N-doped graphene for gas-sensing studies: Even though some works in this aspect have been reported, it seems that more studies are necessary. Generally, CPs such as graphene can work at low or room temperature, and some of them have a good sensing response to some gases such as NH3 [118]. Hence, hybrids of CPs with N-doped graphene or N-doped rGO can enhance the overall sensing performance.
- (vi)
- Hybrids of MXenes with N-doped graphene for gas-sensing studies: MXenes are a new family of 2D materials. They are synthesized via the etching of the MAX phase, and the resultant accordion-like morphology with open channels is very promising for the diffusion of gases [119]. Furthermore, they can work at low or room temperature [120]. Hence, hybrids of MXenes with N-doped graphene or N-doped rGO can work at room temperature; with a high surface area and good conductivity, all are beneficial for sensing applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Navale, S.; Mirzaei, A.; Majhi, S.M.; Kim, H.W.; Kim, S.S. State-of-the-art research on chemiresistive gas sensors in Korea: Emphasis on the achievements of the research labs of professors Hyoun Woo Kim and Sang Sub Kim. Sensors 2022, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Navale, S.; Shahbaz, M.; Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S. CuxO nanostructure-based gas sensors for H2S detection: An overview. Chemosensors 2021, 9, 127. [Google Scholar] [CrossRef]
- Mirzaei, A.; Ansari, H.R.; Shahbaz, M.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Metal Oxide Semiconductor Nanostructure Gas Sensors with Different Morphologies. Chemosensors 2022, 10, 289. [Google Scholar] [CrossRef]
- Kotecha, A.M.; Corrêa, A.D.C.; Fisher, K.M.; Rushworth, J.V. Olfactory dysfunction as a global biomarker for sniffing out Alzheimer’s disease: A meta-analysis. Biosensors 2018, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, A.; Kim, S.S.; Kim, H.W. Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. J. Hazard. Mater. 2018, 357, 314–331. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, M.; Luo, X.; Tai, H.; Jiang, Y.; Yang, M.; Xie, G.; Su, Y. Ni-Co-P hollow nanobricks enabled humidity sensor for respiratory analysis and human-machine interfacing. Sens. Actuators B Chem. 2022, 370, 132441. [Google Scholar] [CrossRef]
- Su, Y.; Liu, Y.; Li, W.; Xiao, X.; Chen, C.; Lu, H.; Yuan, Z.; Tai, H.; Jiang, Y.; Zou, J.; et al. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater. Horiz. 2023, 10, 842–851. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kordrostami, Z.; Shahbaz, M.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Resistive-Based Gas Sensors Using Quantum Dots: A Review. Sensors 2022, 22, 4369. [Google Scholar] [CrossRef]
- Navale, S.; Shahbaz, M.; Mirzaei, A.; Kim, S.S.; Kim, H.W. Effect of Ag addition on the gas-sensing properties of nanostructured resistive-based gas sensors: An overview. Sensors 2021, 21, 6454. [Google Scholar] [CrossRef]
- Brattain, W.H.; Bardeen, J. Surface properties of germanium. Bell Syst. Tech. J. 1953, 32, 1–41. [Google Scholar] [CrossRef]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A new detector for gaseous components using semiconductive thin films. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.C.; Ang, B.C.; Haseeb, A.S.M.A.; Baharuddin, A.A.; Wong, Y.H. Conducting polymers as chemiresistive gas sensing materials: A review. J. Electrochem. Soc. 2020, 167, 037503. [Google Scholar] [CrossRef]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Deshmukh, K.; Kovářík, T.; Pasha, S.K.K. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coord. Chem. Rev. 2020, 424, 213514. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, N.; Hojamberdiev, M.; Kumar, M. Transition metal dichalcogenides-based flexible gas sensors. Sens. Actuators A Phys. 2020, 303, 111875. [Google Scholar] [CrossRef]
- Mirzaei, A.; Janghorban, K.; Hashemi, B.; Bonyani, M.; Leonardi, S.G.; Neri, G. A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites. Ceram. Int. 2016, 42, 18974–18982. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhang, D.; Li, S.; Jiang, C.; Su, Y. Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase. Sens. Actuators B Chem. 2019, 285, 607–616. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S.H.M.; Li, H. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications. Materials 2022, 15, 1012. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Arora, A.; Tripathi, S.K. Fabrication and characterization of metal insulator semiconductor Ag/PVA/GO/PVA/n-Si/Ag device. Microelec. Eng. 2020, 233, 111419. [Google Scholar] [CrossRef]
- Ren, P.G.; Yan, D.X.; Ji, X.; Chen, T.; Li, Z.M. Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 2010, 22, 055705. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Reduced graphene oxide (rGO)-loaded metal-oxide nanofiber gas sensors: An overview. Sensors 2021, 21, 1352. [Google Scholar] [CrossRef]
- He, D.; Jiang, Y.; Lv, H.; Pan, M.; Mu, S. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Appl. Catal. B Environ. 2013, 132, 379–388. [Google Scholar] [CrossRef]
- Luo, Z.; Lim, S.; Tian, Z.; Shang, J.; Lai, L.; MacDonald, B.; Fu, C.; Shen, Z.; Yu, T.; Lin, J. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 2011, 21, 8038–8044. [Google Scholar] [CrossRef]
- Kazemi, A.; Rodner, M.; Fadavieslam, M.R.; Kaushik, P.D.; Ivanov, I.G.; Eriksson, J.; Syväjärvi, M.; Yakimova, R.; Yazdi, G.R. The effect of Cl- and N-doped MoS2 and WS2 coated on epitaxial graphene in gas-sensing applications. Surf. Interfaces 2021, 25, 101200. [Google Scholar] [CrossRef]
- Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Sahu, D.; Sutar, H.; Senapati, P.; Murmu, R.; Roy, D. Graphene, graphene-derivatives and composites: Fundamentals, synthesis approaches to applications. J. Compos. Sci. 2021, 5, 181. [Google Scholar] [CrossRef]
- Wang, C.-N.; Li, Y.-L.; Gong, F.-L.; Zhang, Y.-H.; Fang, S.-M.; Zhang, H.-L. Advances in doped ZnO nanostructures for gas sensor. Chem. Rec. 2020, 20, 1553–1567. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Terrones, M. Towards new graphene materials: Doped graphene sheets and nanoribbons. Mater. Lett. 2012, 78, 209–218. [Google Scholar] [CrossRef]
- Putri, L.K.; Ong, W.j.; Chang, W.S.; Chai, S.P. Heteroatom doped graphene in photocatalysis: A review. Appl. Surf. Sci. 2015, 358, 2–14. [Google Scholar] [CrossRef]
- Sui, Y.; Zhu, B.; Zhang, H.; Shu, H.; Chen, Z.; Zhang, Y.; Zhang, Y.; Wang, B.; Tang, C.; Xie, X.; et al. Temperature-dependent nitrogen configuration of N-doped graphene by chemical vapor deposition. Carbon 2015, 81, 814–820. [Google Scholar] [CrossRef]
- Shao, L.; Chen, G.; Ye, H.; Wu, Y.; Qiao, Z.; Zhu, Y.; Niu, H. Sulfur dioxide adsorbed on graphene and heteroatom-doped graphene: A first-principles study. Eur. Phys. J. B 2013, 86, 54. [Google Scholar] [CrossRef]
- Salih, E.; Ayesh, A.I. Sensitive SO2 gas sensor utilizing Pt-doped graphene nanoribbon: First principles investigation. Mater. Chem. Phys. 2021, 267, 124695. [Google Scholar] [CrossRef]
- Guo, B.; Fang, L.; Zhang, B.; Gong, J.R. Graphene doping: A review. Insciences J. 2011, 1, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Gaidukevic, J.; Aukstakojyte, R.; Kozłowski, M.; Barkauskas, J.; Pauliukaite, R. A Simple Preparation of N-doped Reduced Graphene Oxide as an Electrode Material for the Detection of Hydrogen Peroxide and Glucose. Electrochim. Acta 2023, 446, 142113. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Lei, W.; Xia, X.; Xia, M.; Hao, Q. Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode. Electrochim. Acta 2014, 146, 568–576. [Google Scholar] [CrossRef]
- Fan, M.; Feng, Z.-Q.; Zhu, C.; Chen, X.; Chen, C.; Yang, J.; Sun, D. Recent progress in 2D or 3D N-doped graphene synthesis and the characterizations, properties, and modulations of N species. J. Mater. Sci. 2016, 51, 10323–10349. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Kavadiya, S.; Soundappan, T.; Biswas, P. N-doped reduced graphene oxide promoted nano TiO2 as a bifunctional adsorbent/photocatalyst for CO2 photoreduction: Effect of N species. Chem. Eng. J. 2017, 316, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, G.; Wang, D.; Qiao, Z.; Qu, L. Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: A three-dimensional hybrid for nonenzymatic glucose sensor. Sens. Actuators B Chem. 2017, 238, 588–595. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2019, 368, 285–298. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Wang, K.; Mao, H.; You, T. Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sens. Actuators B Chem. 2017, 252, 17–23. [Google Scholar] [CrossRef]
- Janyasupab, M.; Liu, C.-W.; Chanlek, N.; Chio-Srichan, S.; Promptmas, C.; Surareungchai, W. A comparative study of non-enzymatic glucose detection in artificial human urine and human urine specimens by using mesoporous bimetallic cobalt-iron supported N-doped graphene biosensor based on differential pulse voltammetry. Sens. Actuators B Chem. 2019, 286, 550–563. [Google Scholar] [CrossRef]
- Du, X.; Dai, L.; Jiang, D.; Li, H.; Hao, N.; You, T.; Mao, H.; Wang, K. Gold nanrods plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasensitive analysis of 17β-estradiol. Biosens. Bioelectron. 2017, 91, 706–713. [Google Scholar] [CrossRef]
- Singh, S.K.; Tiwari, N.K.; Yadav, A.K.; Akhtar, M.J.; Kar, K.K. Design of ZnO/N-doped graphene nanohybrid incorporated RF complementary split ring resonator sensor for ammonia gas detection. IEEE Sens. J. 2019, 19, 7968–7975. [Google Scholar] [CrossRef]
- Wu, S.; Deng, D.; Zhang, E.; Li, H.; Xu, L. CoN nanoparticles anchored on ultra-thin N-doped graphene as the oxygen reduction electrocatalyst for highly stable zinc-air batteries. Carbon 2022, 196, 347–353. [Google Scholar] [CrossRef]
- Karatekin, R.S.; Kaplan, S.; Ozmen, S.I.; Dudukcu, M.K. N-doped reduced graphene oxide/ZnO/nano-Pt composites for hydrogen peroxide sensing. Mater. Chem. Phys. 2022, 280, 125792. [Google Scholar] [CrossRef]
- Hadadian, M.; Correa-Baena, J.-P.; Goharshadi, E.K.; Ummadisingu, A.; Seo, J.-Y.; Luo, J.; Gholipour, S.; Zakeeruddin, S.M.; Saliba, M.; Abate, A.; et al. Enhancing efficiency of perovskite solar cells via N-doped graphene: Crystal modification and surface passivation. Adv. Mater. 2016, 28, 8681–8686. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Li, M.; Zhao, W.; Duan, C.; Ni, Y. Flexible N-Doped reduced graphene oxide/carbon Nanotube-MnO2 film as a Multifunctional Material for High-Performance supercapacitors, catalysts and sensors. J. Mater. 2020, 6, 523–531. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, J.; Zhou, Y.; Lu, J.; Zhou, K.; Yang, L.; Tang, Z.; Li, L.; Chen, S. N-doped carbon-wrapped cobalt nanoparticles on N-doped graphene nanosheets for high-efficiency hydrogen production. Chem. Mater. 2015, 27, 2026–2032. [Google Scholar] [CrossRef]
- Sardana, S.; Aggarwal, K.; Siwach, P.; Gaba, L.; Maan, A.S.; Singh, K.; Ohlan, A. Hierarchical three dimensional polyaniline/N-doped graphene nanocomposite hydrogel for energy storage applications. Energy Storage 2023, 5, e328. [Google Scholar] [CrossRef]
- Wang, H.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
- Vesel, A.; Zaplotnik, R.; Primc, G.; Mozetič, M. A review of strategies for the synthesis of N-doped graphene-like materials. Nanomaterials 2020, 10, 2286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, C.; Liu, N.; Zhang, H.; Liu, J.; Fu, Y.Q.; Guo, B.; Wang, Z.; Lei, S.; Hu, P. Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms. Sci. Rep. 2016, 6, 28330. [Google Scholar] [CrossRef] [Green Version]
- Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L.; Kim, K.S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C.; et al. Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 2012, 12, 4025–4031. [Google Scholar] [CrossRef]
- Bhuyan, M.S.A.; Uddin, M.N.; Islam, M.M.; Bipasha, F.A.; Hossain, S.S. Synthesis of graphene. Int. Nano Lett. 2016, 6, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.V.; Kim, J.-G.; Jung, J.Y.; Kim, J.H.; Cho, H.; Seo, T.H.; Lee, H.; Kim, N.D.; Kim, M.J. High areal capacitance of N-doped graphene synthesized by arc discharge. Adv. Funct. Mater. 2019, 29, 1905511. [Google Scholar] [CrossRef]
- Son, M.; Chee, S.-S.; Kim, S.-Y.; Lee, W.; Kim, Y.H.; Oh, B.-Y.; Hwang, J.Y.; Lee, B.H.; Ham, M.-H. High-quality nitrogen-doped graphene films synthesized from pyridine via two-step chemical vapor deposition. Carbon 2020, 159, 579–585. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Liu, R.; Gao, Z.; Yang, X.; Tu, Z.; Yang, F.; Ye, Z.; Cui, L.; Xu, C.; et al. Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties. J. Alloys Compd. 2016, 656, 24–32. [Google Scholar] [CrossRef]
- Wang, D.-W.; Gentle, I.R.; Lu, G.Q. Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. Electrochem. Commun. 2010, 12, 1423–1427. [Google Scholar] [CrossRef]
- Fouda, A.N.; Duraia, E.S.M.; Almaqwashi, A.A. Facile and scalable green synthesis of N-doped graphene/CNTs nanocomposites via ball milling. Ain Shams Eng. J. 2021, 12, 1017–1024. [Google Scholar] [CrossRef]
- Magureanu, M.; Mandache, N.B.; Rizescu, C.; Bucur, C.; Cojocaru, B.; Man, I.C.; Primo, A.; Parvulescu, V.I.; Garcia, H. Engineering hydrogenation active sites on graphene oxide and N-doped graphene by plasma treatment. Appl. Catal. B Environ. 2021, 287, 119962. [Google Scholar] [CrossRef]
- Lemes, G.; Sebastián, D.; Pastor, E.; Lázaro, M.J. N-doped graphene catalysts with high nitrogen concentration for the oxygen reduction reaction. J. Power Sources 2019, 438, 227036. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Zhao, S.; Wang, Y.Q.; Lin, X.; Tian, Z.Q.; Shen, P.K.; Jiang, S.P. Precursor modulated active sites of nitrogen doped graphene-based carbon catalysts via one-step pyrolysis method for the enhanced oxygen reduction reaction. Electrochim. Acta 2021, 370, 137712. [Google Scholar] [CrossRef]
- Kuniyil, M.; Kumar, J.V.S.; Adil, S.F.; Shaik, M.R.; Khan, M.; Assal, M.E.; Siddiqui, M.R.H.; Al-Warthan, A. One-pot synthesized Pd@N-doped graphene: An efficient catalyst for Suzuki–Miyaura couplings. Catalysts 2019, 9, 469. [Google Scholar] [CrossRef] [Green Version]
- Deokar, G.; Jin, J.; Schwingenschlögl, U.; Costa, P.M.F.J. Chemical vapor deposition-grown nitrogen-doped graphene’s synthesis, characterization and applications. npj 2D Mater. Appl. 2022, 6, 14. [Google Scholar] [CrossRef]
- Wang, J.-B.; Ren, Z.; Hou, Y.; Yan, X.; Liu, P.; Zhang, H.; Zhang, H.; Guo, J. A review of graphene synthesis at low temperatures by CVD methods. New Carbon Mater. 2020, 35, 193–208. [Google Scholar] [CrossRef]
- Yadav, R.; Dixit, C.K. Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review. J. Sci. Adv. Mater. Dev. 2017, 2, 141–149. [Google Scholar] [CrossRef]
- Ikram, R.; Mohamed Jan, B.; Atif Pervez, S.; Papadakis, V.M.; Ahmad, W.; Bushra, R.; Kenanakis, G.; Rana, M. Recent advancements of N-doped graphene for rechargeable batteries: A review. Crystals 2020, 10, 1080. [Google Scholar] [CrossRef]
- Xu, H.; Ma, L.; Jin, Z. Nitrogen-doped graphene: Synthesis, characterizations and energy applications. J. Energy Chem. 2018, 27, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhang, Y.; Kang, W.; Deng, N.; Pan, Y.; Sun, W.; Ni, J.; Kang, X. TiO2 Gas sensors combining experimental and DFT calculations: A review. Nanomaterials 2022, 12, 3611. [Google Scholar] [CrossRef] [PubMed]
- Spencer, M.J. Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations. Prog. Mater. Sci. 2012, 57, 437–486. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Rojas-Chávez, H.; Montejo-Alvaro, F.; Peña-Castañeda, Y.A.; Matadamas-Ortiz, P.T.; Medina, D.I. Recent developments in graphene-based toxic gas sensors: A theoretical overview. Sensors 2021, 21, 1992. [Google Scholar] [CrossRef]
- Ma, C.C.; Shao, X.H.; Cao, D.P. Nitrogen-doped graphene as an excellent candidate for selective gas sensing. Sci. China Chem. 2014, 57, 911–917. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Shen, C.; Chai, Y. Adsorption of CO molecules on doped graphene: A first-principles study. AIP Adv. 2016, 6, 025317. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Zhang, J.-M. Formaldehyde molecule adsorbed on doped graphene: A first-principles study. Appl. Surf. Sci. 2014, 293, 216–219. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, H. Different elements doped graphene sensor for CO2 greenhouse gases detection: The DFT study. Chem. Phys. Lett. 2019, 721, 33–37. [Google Scholar] [CrossRef]
- Hamaya, N.; Ishizuka, M.; Onoda, S.; Guishan, J.; Ohmura, A.; Shimizu, K. Pressure-induced phase transition, metallization, and superconductivity in boron triiodide. Phys. Rev. B 2010, 82, 094506. [Google Scholar] [CrossRef]
- Rad, A.S.; Shadravan, A.; Soleymani, A.A.; Motaghedi, N. Lewis acid-base surface interaction of some boron compounds with N-doped graphene; first principles study. Curr. Appl. Phys. 2015, 15, 1271–1277. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, X.; Lin, X.; Lu, X.; Leng, Y. Density functional theory calculations of hydrogen adsorption on Ti-, Zn-, Zr-, Al-, and N-doped and intrinsic graphene sheets. Int. J. Hydrogen Energy 2013, 38, 14269–14275. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, X.; Lin, X.; Lu, X.; Leng, Y.; Song, H. Density functional theory calculations on the adsorption of formaldehyde and other harmful gases on pure, Ti-doped, or N-doped graphene sheets. Appl. Surf. Sci. 2013, 283, 559–565. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Huang, X. Adsorption behavior of B-doped/N-doped graphene sheets toward NO2, NO and NH3 molecules: A first-principles study. Phys. Status Solidi C 2017, 14, 1600110. [Google Scholar] [CrossRef]
- Abe, I.; Fukuhara, T.; Maruyama, J.; Tatsumoto, H.; Iwasaki, S. Preparation of carbonaceous adsorbents for removal of chloroform from drinking water. Carbon 2001, 39, 1069–1073. [Google Scholar] [CrossRef]
- Tian, Y.L.; Ren, J.F.; Yue, W.W.; Chen, M.N.; Hu, G.C.; Yuan, X.B. Adsorption of chloroform on N-doped and Al-doped graphene: A first-principle study. Chem. Phys. Lett. 2017, 685, 344–348. [Google Scholar] [CrossRef]
- Rad, A.S.; Esfahanian, M.; Maleki, S.; Gharati, G. Application of carbon nanostructures toward SO2 and SO3 adsorption: A comparison between pristine graphene and N-doped graphene by DFT calculations. J. Sulfur Chem. 2016, 37, 176–188. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, X.; Lin, X.; Zhang, Y.; Tang, P.; Lu, X.; Tang, Y. Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring. J. Mol. Graph. Model. 2015, 61, 224–230. [Google Scholar] [CrossRef]
- Vinayan, B.P.; Sethupathi, K.; Ramaprabhu, S. Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications. Int. J. Hydrogen Energy 2013, 38, 2240–2250. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, H.; Chen, W.; Li, Z.; Teng, D.; Dai, X. Modulating geometric, electronic, gas sensing and catalytic properties of single-atom Pd supported on divacancy and N-doped graphene sheets. Appl. Surf. Sci. 2020, 508, 145245. [Google Scholar] [CrossRef]
- Carraro, G.; Celasco, E.; Smerieri, M.; Savio, L.; Bracco, G.; Rocca, M.; Vattuone, L. Chemisorption of CO on N-doped graphene on Ni (111). Appl. Surf. Sci. 2018, 428, 775–780. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, M.; Sharma, V.K. Nitrogen-doped graphene and graphene quantum dots: A review on synthesis and applications in energy, sensors and environment. Adv. Colloid Interface Sci. 2018, 259, 44–64. [Google Scholar] [CrossRef] [PubMed]
- Masemola, C.M.; Moloto, N.; Tetana, Z.N.; Gqoba, S.S.; Mubiayi, P.K.; Linganiso, E.C. N-doped graphene quantum dot-modified polyaniline for room-temperature sensing of alcohol vapors. Mater. Chem. Phys. 2022, 287, 126229. [Google Scholar] [CrossRef]
- Kumar, V.; Mirzaei, A.; Bonyani, M.; Kim, K.-H.; Kim, H.W.; Kim, S.S. Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia. TrAC-Trends Anal. Chem. 2020, 129, 115938. [Google Scholar] [CrossRef]
- Gavgani, J.N.; Dehsari, H.S.; Hasani, A.; Mahyari, M.; Shalamzari, E.K.; Salehi, A.; Taromi, F.A. A room temperature volatile organic compound sensor with enhanced performance, fast response and recovery based on N-doped graphene quantum dots and poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) nanocomposite. RSC Adv. 2015, 5, 57559–57567. [Google Scholar] [CrossRef]
- Duan, K.; Li, W.; Zhu, C.; Li, J.; Xu, J.; Wang, X. Promoting sensitivity and selectivity of NO2 gas sensor based on (P, N)-doped single-layer WSe2: A first principles study. Results Phys. 2022, 34, 105296. [Google Scholar] [CrossRef]
- Lv, Y.-K.; Li, Y.-Y.; Zhou, R.-H.; Pan, Y.-P.; Yao, H.-C.; Li, Z.-J. N-doped graphene quantum dot-decorated three-dimensional ordered macroporous In2O3 for NO2 sensing at low temperatures. ACS Appl. Mater. Interfaces 2020, 12, 34245–34253. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Chen, F.-K.; Tsai, D.-C.; Kuo, B.-H.; Shieu, F.-S. N-doped reduced graphene oxide for room-temperature NO gas sensors. Sci. Rep. 2021, 11, 20719. [Google Scholar] [CrossRef]
- Yan, W.-Y.; Zhou, Q.; Chen, X.; Huang, X.-J.; Wu, Y.-C. C-doped and N-doped reduced graphene oxide/TiO2 composites with exposed (0 0 1) and (1 0 1) facets controllably synthesized by a hydrothermal route and their gas sensing characteristics. Sens. Actuators B Chem. 2016, 230, 761–772. [Google Scholar] [CrossRef]
- Lin, G.; Wang, H.; Lai, X.; Yang, R.; Zou, Y.; Wan, J.; Liu, D.; Jiang, H.; Hu, Y. Co3O4/N-doped RGO nanocomposites derived from MOFs and their highly enhanced gas sensing performance. Sens. Actuators B Chem. 2020, 303, 127219. [Google Scholar] [CrossRef]
- Modak, M.; Jagtap, S. Low temperature operated highly sensitive, selective and stable NO2 gas sensors using N-doped SnO2-rGO nanohybrids. Ceram. Int. 2022, 48, 19978–19989. [Google Scholar] [CrossRef]
- Niu, F.; Liu, J.-M.; Wang, W.; Song, W.-G. Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J. Mater. Chem. A 2013, 1, 6130–6133. [Google Scholar] [CrossRef]
- Timmer, B.; Olthuis, W.; Van Den Berg, A. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B Chem. 2013, 178, 485–493. [Google Scholar] [CrossRef]
- Gavgani, J.N.; Hasani, A.; Nouri, M.; Mahyari, M.; Salehi, A. Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators B Chem. 2016, 229, 239–248. [Google Scholar] [CrossRef]
- Hakimi, M.; Salehi, A.; Boroumand, F.A.; Mosleh, N. Fabrication of a room temperature ammonia gas sensor based on polyaniline with N-doped graphene quantum dots. IEEE Sens. J. 2018, 18, 2245–2252. [Google Scholar] [CrossRef]
- Hakimi, M.; Salehi, A.; Boroumand, F.A. Fabrication and characterization of an ammonia gas sensor based on PEDOT-PSS with N-doped graphene quantum dots dopant. IEEE Sens. J. 2016, 16, 6149–6154. [Google Scholar] [CrossRef]
- Purbia, R.; Kwon, Y.M.; Kim, H.D.; Lee, Y.S.; Shin, H.; Baik, J.M. Zero-dimensional heterostructures: N-doped graphene dots/SnO2 for ultrasensitive and selective NO2 gas sensing at low temperatures. J. Mater. Chem. A 2020, 8, 11734–11742. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: A review. Microchim. Acta 2016, 183, 1033–1054. [Google Scholar] [CrossRef]
- Fu, X.; Yang, P.; Xiao, X.; Zhou, D.; Huang, R.; Zhang, X.; Cao, F.; Xiong, J.; Hu, Y.; Tu, Y.; et al. Ultra-fast and highly selective room-temperature formaldehyde gas sensing of Pt-decorated MoO3 nanobelts. J. Alloys Comp. 2019, 797, 666–675. [Google Scholar] [CrossRef]
- Mirzaei, A.; Yousefi, H.R.; Falsafi, F.; Bonyani, M.; Lee, J.H.; Kim, J.H.; Kim, H.W.; Kim, S.S. An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas. Int. J. Hydrogen Energy 2019, 44, 20552–20571. [Google Scholar] [CrossRef]
- Yousefi, H.R.; Hashemi, B.; Mirzaei, A.; Roshan, H.; Sheikhi, M.H. Effect of Ag on the ZnO nanoparticles properties as an ethanol vapor sensor. Mater. Sci. Semicond. Process. 2020, 117, 105172. [Google Scholar] [CrossRef]
- Adeli, B.; Espid, E.; Taghipour, F. Selective sensing performance of UV-activated ZnO nanowires decorated with Ir and Rh nanoparticles. Mater. Sci. Eng. B 2023, 290, 116307. [Google Scholar] [CrossRef]
- Mirzaei, A.; Bang, J.H.; Choi, M.S.; Han, S.; Lee, H.Y.; Kim, S.S.; Kim, H.W. Changes in characteristics of Pt-functionalized RGO nanocomposites by electron beam irradiation for room temperature NO2 sensing. Ceram. Int. 2020, 46, 21638–21646. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.H.; Shin, W.S.; Mirzaei, A.; Kim, Y.J.; Kim, S.S.; Halik, M.; Park, C. Facile strategy for advanced selectivity and sensitivity of SnO2 nanowire-based gas sensor using chemical affinity and femtosecond laser irradiation. Sens. Actuators B Chem. 2022, 372, 132657. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Z.; Yao, S.; Liao, F.; Ding, J.; Shao, M. Gamma ray irradiated AgFeO2 nanoparticles with enhanced gas sensor properties. J. Solid State Chem. 2014, 219, 228–231. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Navale, S.; Kim, H.W.; Kim, S.S. Boosting the sensing properties of resistive-based gas sensors by irradiation techniques: A review. Nanoscale 2021, 13, 4728–4757. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, W.; Kumar, R.; Kumar, M.; Zhang, J. Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 2022, 462, 214517. [Google Scholar] [CrossRef]
- Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-based composites: Synthesis, properties and environment-related applications. Nanoscale Horiz. 2020, 5, 235–258. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Zeng, W. Preparation and application of 2D MXene-based gas sensors: A review. Chemosensors 2021, 9, 225. [Google Scholar] [CrossRef]
Sensing Material | Target Gas | Conc. (ppm) | Response * | T (°C) | Response Time (s)/Recovery Time (s) | Ref. |
---|---|---|---|---|---|---|
N-doped GQDs/PANI composite | Ethanol | 100 | 0.7% [(Ra − Rg)/Ra] × 100 | 25 | 85/62 | [93] |
N-GQDs/PEDOT–PSS nanocomposite | Methanol | 50 | 140% [ΔR/Ra] × 100 | 25 | 12/32 | [95] |
N-doped GQD- (3DOM)–In2O3 composite | NO2 | 1 | 82 Rg/Ra | 100 | ~95/~36 | [97] |
N-doped rGO | NO2 | 1000 | 1.7 Rg/Ra | 25 | ~100/~20 | [98] |
N-doped rGO/TiO2 nanocomposite | Isopropanol | 300 | 6 Ig/Ia | 210 | ~100/120 | [99] |
Co3O4/N-doped rGO nanocomposite | Ethanol | 100 | 24.5 Rg/Ra | 100 | ~20/~50 | [100] |
SnO2-N-doped rGO | NO2 | 0.5 | 85% [ΔR/Ra] × 100 | 120 | 22/125 | [101] |
S/N-codoped GQDs/PANI | NH3 | 100 | 42.3% [ΔR/Ra] × 100 | 25 | 115/44 | [105] |
N-doped GQDs/PANI composite | NH3 | 1500 | 110 Rg/Ra | 25 | ~900/940 | [106] |
N-doped GQDs | NH3 | 1500 | 212.32% [ΔR/Ra] × 100 | 25 | 900/910 | [107] |
N-doped GQDs/SnO2 nanocomposites | NO2 | 100 ppb | 292 Rg/Ra | 150 | 181/81 | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaei, A.; Bharath, S.P.; Kim, J.-Y.; Pawar, K.K.; Kim, H.W.; Kim, S.S. N-Doped Graphene and Its Derivatives as Resistive Gas Sensors: An Overview. Chemosensors 2023, 11, 334. https://doi.org/10.3390/chemosensors11060334
Mirzaei A, Bharath SP, Kim J-Y, Pawar KK, Kim HW, Kim SS. N-Doped Graphene and Its Derivatives as Resistive Gas Sensors: An Overview. Chemosensors. 2023; 11(6):334. https://doi.org/10.3390/chemosensors11060334
Chicago/Turabian StyleMirzaei, Ali, Somalapura Prakasha Bharath, Jin-Young Kim, Krishna K. Pawar, Hyoun Woo Kim, and Sang Sub Kim. 2023. "N-Doped Graphene and Its Derivatives as Resistive Gas Sensors: An Overview" Chemosensors 11, no. 6: 334. https://doi.org/10.3390/chemosensors11060334