Olfactory Evaluation of Geisha Coffee from Panama Using Electronic Nose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physical and Chemical Characteristics of Coffee
2.2.1. Green Coffee Beans
Olfactory and Visual Examination
Humidity
Apparent Density
2.2.2. Coffee Infusion
2.3. Chromatographic Analysis
2.4. Sensory Evaluation
2.5. Electronic Nose Analysis
2.6. Statistical and Multivariate Analysis of the Data
3. Results and Discussion
3.1. Physical and Chemical Characteristics of Coffee
3.2. Determination of Caffeine and Volatile Compounds in Coffee by Chromatography
3.3. Sensory Analysis of Coffee
3.4. Evaluation of the Olfactory Pattern of Coffee with an Electronic Nose
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastian, F.; Hutabarat, O.S.; Dirpan, A.; Nainu, F.; Harapan, H.; Emran, T.B.; Simal-Gandara, J. From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods 2021, 10, 2827. [Google Scholar] [CrossRef] [PubMed]
- International Coffee Organization Informe del Mercado del Café. Available online: http://www.ico.org/ (accessed on 1 September 2023).
- Hall, R.D.; Trevisan, F.; de Vos, R.C.H. Coffee Berry and Green Bean Chemistry—Opportunities for Improving Cup Quality and Crop Circularity. Food Res. Int. 2022, 151, 110825. [Google Scholar] [CrossRef] [PubMed]
- Batista, L.R.; Chalfoun de Souza, S.M.; Silva e Batista, C.F.; Schwan, R.F. Coffee: Types and Production. Encycl. Food Health 2015, 2015, 244–251. [Google Scholar] [CrossRef]
- Geromel, C.; Ferreira, L.P.; Guerreiro, S.M.C.; Cavalari, A.A.; Pot, D.; Pereira, L.F.P.; Leroy, T.; Vieira, L.G.E.; Mazzafera, P.; Marraccini, P. Biochemical and Genomic Analysis of Sucrose Metabolism during Coffee (Coffea Arabica) Fruit Development. J. Exp. Bot. 2006, 57, 3243–3258. [Google Scholar] [CrossRef]
- Rojo Jiménez, E. Café I (G. Coffea). Reduca Biol. Ser. Bot. 2014, 7, 113–132. [Google Scholar]
- Sepúlveda, W.S.; Chekmam, L.; Maza, M.T.; Mancilla, N.O. Consumers’ Preference for the Origin and Quality Attributes Associated with Production of Specialty Coffees: Results from a Cross-Cultural Study. Food Res. Int. 2016, 89, 997–1003. [Google Scholar] [CrossRef]
- Romano, R.; Santini, A.; Le Grottaglie, L.; Manzo, N.; Visconti, A.; Ritieni, A. Identification Markers Based on Fatty Acid Composition to Differentiate between Roasted Arabica and Canephora (Robusta) Coffee Varieties in Mixtures. J. Food Compos. Anal. 2014, 35, 1–9. [Google Scholar] [CrossRef]
- World Coffee Research|Geisha (Panama). Available online: https://varieties.worldcoffeeresearch.org/es/variedades/geisha-panama (accessed on 2 May 2023).
- Ministerio de Comercio e Industrias. Análisis de Indicadores Económicos. Available online: https://mici.gob.pa/ (accessed on 14 June 2023).
- Best of Panama Eauction—Specialty Coffee. 2021. Available online: https://auction.bestofpanama.org/en/lots/auction/best-of-panama-2021 (accessed on 20 June 2023).
- Magalhães Júnior, A.I.; de Carvalho Neto, D.P.; de Melo Pereira, G.V.; da Silva Vale, A.; Medina, J.D.C.; de Carvalho, J.C.; Soccol, C.R. A Critical Techno-Economic Analysis of Coffee Processing Utilizing a Modern Fermentation System: Implications for Specialty Coffee Production. Food Bioprod. Process. 2021, 125, 14–21. [Google Scholar] [CrossRef]
- Bagus Widodo, P.; Endy Yulianto, M.; Dwi Ariyanto, H.; Paramita, V. Efficacy of Natural and Full Washed Post-Harvest Processing Variations on Arabica Coffee Characteristics. Mater. Today Proc. 2023, 87, 79–85. [Google Scholar] [CrossRef]
- Toledo, P.R.A.B.; Pezza, L.; Pezza, H.R.; Toci, A.T. Relationship Between the Different Aspects Related to Coffee Quality and Their Volatile Compounds. Compr. Rev. Food Sci. Food Saf. 2016, 15, 705–719. [Google Scholar] [CrossRef]
- Ceballos, D.A.C.; Meneses, J.A.M.; Luna, D.A.R.; Lopez, C.A.G.; Garcia, J.H.; Narvaez, J.A.G. Estudio de Fragancia y Aroma Del Café Tostado Con La Nariz Electrónica Coffee-NOSE. In Proceedings of the 2020 9th International Congress of Mechatronics Engineering and Automation, CIIMA 2020, Cartagena de Indias, Colombia, 4–6 November 2020; Institute of Electrical and Electronics Engineers Inc.: Cartagena de Indias, Colombia, 2020. [Google Scholar]
- Specialty Coffee Association. Available online: https://sca.coffee/ (accessed on 7 May 2023).
- Defernez, M.; Wren, E.; Watson, A.D.; Gunning, Y.; Colquhoun, I.J.; Le Gall, G.; Williamson, D.; Kemsley, E.K. Low-Field 1H NMR Spectroscopy for Distinguishing between Arabica and Robusta Ground Roast Coffees. Food Chem. 2017, 216, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Rocha Baqueta, M.; Coqueiro, A.; Henrique Março, P.; Mandrone, M.; Poli, F.; Valderrama, P. Integrated 1H NMR Fingerprint with NIR Spectroscopy, Sensory Properties, and Quality Parameters in a Multi-Block Data Analysis Using ComDim to Evaluate Coffee Blends. Food Chem. 2021, 355, 129618. [Google Scholar] [CrossRef] [PubMed]
- De Luca, S.; De Filippis, M.; Bucci, R.; Magrì, A.D.; Magrì, A.L.; Marini, F. Characterization of the Effects of Different Roasting Conditions on Coffee Samples of Different Geographical Origins by HPLC-DAD, NIR and Chemometrics. Microchem. J. 2016, 129, 348–361. [Google Scholar] [CrossRef]
- Wasilewski, T.; Migoń, D.; Gębicki, J.; Kamysz, W. Critical Review of Electronic Nose and Tongue Instruments Prospects in Pharmaceutical Analysis. Anal. Chim. Acta 2019, 1077, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Viejo, C.; Tongson, E.; Fuentes, S. Integrating a Low-cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity. Sensors 2021, 21, 2016. [Google Scholar] [CrossRef] [PubMed]
- Rasekh, M.; Karami, H.; Wilson, A.D.; Gancarz, M. Classification and Identification of Essential Oils from Herbs and Fruits Based on a Mos Electronic-Nose Technology. Chemosensors 2021, 9, 142. [Google Scholar] [CrossRef]
- Vincent, T.A.; Xing, Y.; Cole, M.; Gardner, J.W. Investigation of the Response of High-Bandwidth MOX Sensors to Gas Plumes for Application on a Mobile Robot in Hazardous Environments. Sens. Actuators B Chem. 2019, 279, 351–360. [Google Scholar] [CrossRef]
- Van Duy, L.; Nguyet, T.T.; Le, D.T.T.; Van Duy, N.; Nguyen, H.; Biasioli, F.; Tonezzer, M.; Di Natale, C.; Hoa, N.D. Room Temperature Ammonia Gas Sensor Based on P-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring. Nanomaterials 2023, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Principles and Recent Advances in Electronic Nose for Quality Inspection of Agricultural and Food Products. Trends Food Sci. Technol. 2020, 99, 1–10. [Google Scholar] [CrossRef]
- Sánchez, R.; Martín-tornero, E.; Lozano, J.; Boselli, E.; Arroyo, P.; Meléndez, F.; Martín-vertedor, D. E-nose Discrimination of Abnormal Fermentations in Spanish-style Green Olives. Molecules 2021, 26, 5353. [Google Scholar] [CrossRef]
- Sánchez, R.; Pérez-Nevado, F.; Montero-Fernández, I.; Lozano, J.; Meléndez, F.; Martín-Vertedor, D. Application of Electronic Nose to Discriminate Species of Mold Strains in Synthetic Brines. Front. Microbiol. 2022, 13, 897178. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, P.; Meléndez, F.; Suárez, J.I.; Herrero, J.L.; Rodríguez, S.; Lozano, J. Electronic Nose with Digital Gas Sensors Connected via Bluetooth to a Smartphone for Air Quality Measurements. Sensors 2020, 20, 786. [Google Scholar] [CrossRef]
- Panamanian Coffee|Company. Available online: https://panamaniancoffeeco.com/ (accessed on 2 May 2023).
- Fúnez, N.O.; Canet, G.; García, A. Protocolo de Análisis de Calidad del Café; Instituto Interamericano de Cooperación para la Agricultura: Guatemala de la Asunción, Guatemala, 2010; ISBN 9789292482367. [Google Scholar]
- AOAC International AOAC Official Method 981.12. Official Methods of Analysis of the Association of the Analytical Chemists. Available online: https://www.aoac.org/ (accessed on 19 October 2023).
- AOAC International AOAC Official Method 932.12 (Soluble) in Fruits and Fruit Products: Refractometer Method. Available online: https://www.aoac.org/ (accessed on 19 October 2023).
- Naegele, E. Determination of Caffeine in Coffee Products According to DIN 20481. In Food Testing and Agriculture—Food Authenticity; Agilent Technologies, Inc.: Waldbronn, Germany, 2016. [Google Scholar]
- Rodrigues, C.; Portugal, F.C.M.; Nogueira, J.M.F. Static Headspace Analysis Using Polyurethane Phases—Application to Roasted Coffee Volatiles Characterization. Talanta 2012, 89, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Baltasar, R. Aplicación de La Nariz Electrónica Para La Evaluación de Aceitunas de Mesa. Ph.D. Thesis, Universidad de Extremadura, Badajoz, Extremadura, Spain, 2022. [Google Scholar]
- Tolessa, K.; Rademaker, M.; De Baets, B.; Boeckx, P. Prediction of Specialty Coffee Cup Quality Based on near Infrared Spectra of Green Coffee Beans. Talanta 2016, 150, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Cabrera, H.; Taniwaki, M.H.; Menezes, H.C.; Iamanaka, B.T. The Production of Ochratoxin A by Aspergillus Ochraceus in Raw Coffee at Different Equilibrium Relative Humidity and under Alternating Temperatures. Food Control 2004, 15, 531–535. [Google Scholar] [CrossRef]
- Eldalawy, R.; Kutaif, R.H.; Tawfeeq, T.A.; Fayyadh, M.S. Quantitative Analysis of Caffeine in Different Commercial Kinds of Coffee in Iraq. Res. J. Pharm. Technol. 2023, 16, 3358–3362. [Google Scholar] [CrossRef]
- Cao, X.; Wu, H.; Viejo, C.G.; Dunshea, F.R.; Suleria, H.A.R. Effects of Postharvest Processing on Aroma Formation in Roasted Coffee—A Review. Int. J. Food Sci. Technol. 2023, 58, 1007–1027. [Google Scholar] [CrossRef]
- Palacios-Cabrera, H.A.; Menezes, H.C.; Iamanaka, B.T.; Canepa, F.; Teixeira, A.A.; Carvalhaes, N.; Santi, D.; Leme, P.T.Z.; Yotsuyanagi, K.; Taniwaki, M.H. Effect of Temperature and Relative Humidity during Transportation on Green Coffee Bean Moisture Content and Ochratoxin a Production. J. Food Prot. 2007, 70, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Viejo, C.G.; Fuentes, S.; Dunshea, F.R.; Suleria, H.A.R. The Impact of Wet Fermentation on Coffee Quality Traits and Volatile Compounds Using Digital Technologies. Fermentation 2023, 9, 68. [Google Scholar] [CrossRef]
- Grassi, S.; Giraudo, A.; Novara, C.; Cavallini, N.; Geobaldo, F.; Casiraghi, E.; Savorani, F. Monitoring Chemical Changes of Coffee Beans During Roasting Using Real-Time NIR Spectroscopy and Chemometrics. Food Anal. Methods 2023, 16, 947–960. [Google Scholar] [CrossRef]
- Vidal Villeda, M.A. Rango Ideal de Concentración de Sólidos Solubles Durante La Maduración Del Café y Su Influencia Sobre La Calidad de Taza, En Dos Variedades y Tres Niveles Altitudinales. Ph.D. Thesis, Universidad Rafael Landívar, Guatemala de la Asunción, Guatemala, 2014. Available online: http://biblio3.url.edu.gt/Tesario/2014/06/14/Vidal-Marco.pdf (accessed on 19 October 2023).
- Gloess, A.N.; Schönbächler, B.; Klopprogge, B.; D’Ambrosio, L.; Chatelain, K.; Bongartz, A.; Strittmatter, A.; Rast, M.; Yeretzian, C. Comparison of Nine Common Coffee Extraction Methods: Instrumental and Sensory Analysis. Eur. Food Res. Technol. 2013, 236, 607–627. [Google Scholar] [CrossRef]
- Cui, D.D.; Liu, Y.; Chen, Y.P.; Feng, X.; Lu, Y.; Yu, B. Application of SPME-GC-TOFMS, E-Nose, and Sensory Evaluation to Investigate the Flavor Characteristics of Chinese Yunnan Coffee at Three Different Conditions (Beans, Ground Powder, and Brewed Coffee). Flavour Fragr. J. 2020, 35, 541–560. [Google Scholar] [CrossRef]
- Zakidou, P.; Plati, F.; Matsakidou, A.; Varka, E.M.; Blekas, G.; Paraskevopoulou, A. Single Origin Coffee Aroma: From Optimized Flavor Protocols and Coffee Customization to Instrumental Volatile Characterization and Chemometrics. Molecules 2021, 26, 4609. [Google Scholar] [CrossRef] [PubMed]
- León, J.D.C.; Santín, K.; Figueroa, J.G. Identification of Adulterations in Roasted Coffee by Gas Chromatography Coupled with Mass Spectrometry. Cienc. Tecnol. Agropecu. 2022, 23, e2265. [Google Scholar] [CrossRef]
- Brudzewski, K.; Osowski, S.; Dwulit, A. Recognition of Coffee Using Differential Electronic Nose. IEEE Trans. Instrum. Meas. 2012, 61, 1803–1810. [Google Scholar] [CrossRef]
Signals | Description | Sensor |
---|---|---|
1 | Gas Measurement (Ω) | BME680 |
2 | eCO2 (ppm) | SGP30 |
3 | TVOC (ppb) | SGP30 |
4 | H2 (see note 1) | SGP30 |
5 | Ethanol (see note 1) | SGP30 |
6 | eCO2 (ppm) | CCS811 |
7 | TVOC (ppb) | CCS811 |
8 | Sensor Resistance (Ω) | CCS811 |
9 | eCO2 (ppm) | iAQ-Core |
10 | TVOC (ppb) | iAQ-Core |
11 | Sensor Resistance (Ω) | iAQ-Core |
Characteristics | Physical of Green Beans | Chemical of Infusion | ||||
---|---|---|---|---|---|---|
Post-Harvest Process | Odor/Color | % Humidity | Density (g/L) | Roast Level | pH | °Brix |
Natural | yellowish/ | light | 4.86 ± 0.02 | 1.40 ± 0.36 | ||
fresh, green | 9.39 ± 0.13 | 726.4 ± 0.67 | medium | 4.87 ± 0.05 | 1.56 ± 0.05 | |
coffee aroma | Dark | 4.89 ± 0.01 | 1.90 ± 0.20 A | |||
Washed | grayish/ | Light | 4.87 ± 0.01 | 1.33 ± 0.05 | ||
fresh, very | 8.91 ± 0.12 | 718.6 ± 0.50 | Medium | 4.82 ± 0.02 | 1.56 ± 0.15 | |
herbaceous | Dark | 4.89 ± 0.01 | 1.56 ± 0.05 B |
Post-Harvest Process | Caffeine (%) |
---|---|
Natural | 0.84 ± 0.03 |
Washed | 0.87 ± 0.03 |
Peak Area (×107) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | * RT (min) | Nº CAS | * Odor Descriptor | NL | NM | ND | WL | WM | WD | NLI | WLI | R |
Acids | ||||||||||||
Acetic acid | 2.278 | 64-19-7 | Sharp vinegar | 90.00 | 81.90 | 79.60 | 69.80 | 71.70 | 59.80 | 2.00 | 1.18 | 27.30 |
Butanoic acid, 3-methyl- | 6.870 | 503-74-2 | Rancid/Cheese | 6.59 | 7.03 | 7.70 | 7.11 | 6.44 | 5.16 | nd | nd | 6.31 |
Aldheydes | ||||||||||||
Butanal, 2-methyl- | 2.235 | 96-17-3 | Chocolate/nutty | * nd | nd | nd | nd | nd | nd | 0.43 | 0.41 | nd |
3-Cyclohexene-1-acetaldehyde, alpha 4-dimethyl- | 14.960 | 29548-14-9 | Spicy herbal | nd | nd | nd | nd | nd | nd | 1.08 | 1.09 | nd |
Alcohols | ||||||||||||
3-Buten-2-ol | 2.496 | 598-32-3 | Herbal | 7.96 | 9.70 | 10.42 | 7.95 | 10.76 | 9.26 | nd | nd | 4.32 |
2,3-Butanediol | 4.253 | 513-85-9 | Fruity/creamy/buttery | nd | nd | nd | nd | nd | nd | nd | nd | 0.53 |
Furans | ||||||||||||
3(2H)-Furanone, dihydro-2-methyl- | 4.033 | 3188-00-9 | Bready/nutty | 6.25 | 7.59 | 10.16 | 7.14 | 7.73 | 8.73 | nd | nd | 3.24 |
3-Furaldehyde | 4.567 | 498-60-2 | Almond-like odor | nd | nd | nd | nd | nd | nd | 5.63 | 4.28 | 3.96 |
Furfural | 4.601 | 98-01-1 | Bready/caramellic | 13.50 | 15.23 | 16.34 | 37.87 | 41.79 | 28.71 | nd | nd | nd |
2-Furanmethanol | 5.381 | 98-00-0 | Sweet/caramel/coffee | 4.91 | 3.54 | 4.86 | 63.30 | 70.90 | 72.60 | nd | nd | 91.60 |
2-Furancarboxaldehyde, 5-methyl- | 7.806 | 620-02-0 | Caramellic/bready/coffee | 3.81 | 3.26 | 4.00 | 25.68 | 28.34 | 32.18 | 5.02 | 0.77 | 14.85 |
2-Furanmethanol, acetate | 8.675 | 623-17-6 | Fruity/banana-like | 16.80 | 16.90 | 17.50 | 10.61 | 11.60 | 16.24 | 3.21 | 1.90 | 20.34 |
2,2′-Bifuran | 9.886 | 5905-00-0 | Bitter almond | nd | nd | nd | nd | nd | nd | 0.98 | 0.45 | nd |
Furan, 2,2′-methylenebis- | 11.203 | 1197-40-6 | Rich roasted | nd | nd | nd | nd | nd | nd | 0.89 | 0.48 | nd |
Furan, 2-(2-furanylmethyl)-5-methyl- | 13.987 | 13678-51-8 | Like coffee | nd | nd | nd | nd | nd | nd | 0.74 | 0.39 | nd |
2-Acetyl-5-methylfuran | 14.139 | 1193-79-9 | Nutty/caramellic nuance | 1.68 | 2.38 | 3.46 | 2.27 | 2.70 | 3.61 | nd | nd | 2.30 |
5-Hydroxymethylfurfural | 16.256 | 67-47-0 | Buttery/musty/caramellic | 9.89 | 9.88 | 6.19 | 13.60 | 9.65 | 1.98 | nd | nd | nd |
5-Acetoxymethyl-2-furaldehyde | 17.598 | 10551-58-3 | Baked bread | 1.83 | 2.26 | 2.25 | 2.69 | 2.55 | 1.85 | nd | nd | nd |
Ketones | ||||||||||||
Acetoin | 2.714 | 513-86-0 | Milky fatty | 5.22 | 5.03 | 5.63 | 4.32 | 4.78 | 4.78 | nd | nd | 3.26 |
1-Propanone, 1-(2-furanyl)- | 9.036 | 3194-15-8 | Fruity | 2.04 | 2.49 | 2.99 | 0.68 | 0.84 | 0.90 | nd | nd | 0.72 |
Ethanone, 1-(1H-pyrrol-2-yl)- | 10.892 | 1072-83-9 | Licorice bready/walnut | 2.44 | 2.93 | 3.31 | 4.60 | 5.61 | 7.68 | nd | nd | 10.50 |
2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- | 12.360 | 21835-01-8 | Caramelized/brown sugar | 1.97 | 2.08 | 2.71 | 1.36 | 1.99 | 2.24 | nd | nd | 2.31 |
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 13.357 | 28564-83-2 | Herbal | 16.89 | 12.52 | 6.29 | 16.81 | 13.20 | 4.91 | nd | nd | nd |
Ethanone, 1-(2-hydroxy-5-methylphenyl)- | 17.805 | 1450-72-2 | Sweet floral herbal | 14.06 | 15.36 | 14.83 | 12.88 | 15.60 | 13.56 | nd | nd | 64.07 |
Maltol | 12.092 | 118-71-8 | Burnt with bready nuances | 7.73 | 8.75 | 12.79 | 7.71 | 9.45 | 13.16 | nd | nd | 14.10 |
Phenols | ||||||||||||
Phenol, 3-methyl- | 4.501 | 108-39-4 | Medicinal/woody/ethereal | nd | nd | nd | nd | nd | nd | 1.27 | 0.39 | nd |
Phenol, 2-methoxy- | 11.494 | 90-05-1 | Phenolic/smoky/vanilla | nd | nd | nd | nd | nd | nd | nd | nd | 7.45 |
Phenol, 4-ethyl-2-methoxy- | 16.759 | 2785-89-9 | Medicinal/woody/sweet | 3.79 | 4.99 | 6.23 | 4.69 | 5.45 | 6.06 | nd | nd | 16.40 |
Pirazines | ||||||||||||
Pyrazine, methyl- | 4.332 | 109-08-0 | Nutty/cocoa/chocolate | 3.18 | 2.73 | 3.67 | 14.65 | 15.41 | 15.60 | nd | nd | 22.85 |
Pyrazine, 2,6-dimethyl- | 6.368 | 108-50-9 | Cocoa/nutty/roasted/coffee | 38.16 | 37.87 | 42.24 | 24.10 | 24.90 | 25.41 | nd | nd | 24.21 |
Pyrazine, ethyl- | 6.449 | 13925-00-3 | Fermented coffee/cocoa | 64.20 | 73.40 | 87.20 | 6.40 | 7.36 | 6.85 | nd | nd | 9.88 |
Pyrazine, 2,3-dimethyl- | 6.536 | 5910-89-4 | Musty/roasted potato | 19.74 | 21.49 | 23.52 | 3.33 | 4.13 | 3.28 | nd | nd | nd |
Pyrazine, 2-ethyl-5-methyl- | 8.774 | 13360-64-0 | Coffee/beany/grassy | 23.06 | 27.01 | 33.20 | 4.58 | 4.67 | 4.59 | nd | nd | 6.48 |
Pyrazine, trimethyl- | 8.818 | 14667-55-1 | Powdery/cocoa/musty | 10.38 | 13.34 | 17.36 | 2.41 | 2.40 | 2.83 | nd | nd | 5.06 |
Pyrazine, 2-ethyl-3-methyl- | 8.864 | 15707-23-0 | Musty/corn raw/earthy | 3.59 | 3.99 | 4.07 | 3.37 | 2.42 | 3.73 | nd | nd | 4.76 |
Pyrazinamide | 9.404 | 98-96-4 | Ammonia | 0.53 | 0.80 | 0.97 | 2.45 | 2.86 | 3.45 | nd | nd | 4.27 |
Pyrazine, 3-ethyl-2,5-dimethyl- | 11.039 | 13360-65-1 | Potato/cocoa/roasted nutty | 4.78 | 5.22 | 7.28 | 2.72 | 2.91 | 3.98 | nd | nd | 7.41 |
Pyrazine, (1-methylethenyl)- | 11.829 | 38713-41-6 | Chocolate/nutty/roasted | nd | nd | nd | nd | nd | nd | nd | nd | 2.48 |
2-Acetyl-3-methylpyrazine | 12.198 | 23787-80-6 | Toasted grain/caramellic | 2.68 | 2.60 | 3.17 | 2.62 | 2.84 | 2.98 | nd | nd | 3.62 |
5H-5-Methyl-6, 7-dihydrocyclopentapyrazine | 12.783 | 23747-48-0 | Toasted grain coffee | nd | nd | nd | nd | nd | nd | nd | nd | 1.87 |
Pyrazine, 3,5-diethyl-2-methyl- | 13.301 | 18138-05-1 | Green nutty | nd | nd | nd | nd | nd | nd | nd | nd | 2.15 |
Pyridines | ||||||||||||
Pyridine | 3.102 | 110-86-1 | Sour fishy/ammoniacal | nd | nd | nd | nd | nd | nd | nd | nd | 18.30 |
Pyrroles | ||||||||||||
1H-Pyrrole-1-methyl- | 8.930 | 96-54-8 | Smoky/woody/herbal | 1.95 | 2.42 | 5.43 | 1.89 | 2.49 | 3.03 | nd | nd | 3.82 |
1H-Pyrrole-2-carboxaldehyde, 1-methyl- | 17.057 | 1192-58-1 | Roasted odor burnt | 1.43 | 1.67 | 1.77 | 2.18 | 1.94 | 1.88 | nd | nd | 0.81 |
1H-Pyrrole, 1-(2-furanylmethyl)- | 14.060 | 1438-94-4 | Vegetable/mushroom/potato | 2.58 | 2.89 | 3.19 | 3.20 | 3.17 | 3.13 | 1.92 | 1.62 | 3.58 |
1H-Pyrrole-1-methyl- | 13.105 | 96-54-8 | Smoky/woody/herbal | 1.86 | 2.41 | 2.86 | 2.12 | 2.41 | 3.16 | nd | nd | 2.57 |
Terpenes | ||||||||||||
.beta-Pinene | 8.494 | 127-91-3 | Eucalyptus/camphoraceous | nd | nd | nd | nd | nd | nd | 2.69 | 1.08 | nd |
D-Limonene | 9.548 | 5989-27-5 | Citrus/orange fresh sweet | nd | nd | nd | nd | nd | nd | 2.16 | 1.32 | nd |
trans-beta-Ocimene | 9.839 | 3779-61-1 | Floral/herbal and woody | nd | nd | nd | nd | nd | nd | 1.02 | 0.60 | nd |
(z)-beta-Ocimene | 10.135 | 3338-55-4 | Floral/herbal | nd | nd | nd | nd | nd | nd | 1.79 | 1.41 | nd |
Terpinolene | 11.286 | 586-62-9 | Pine/citrus/woody/lemon | nd | nd | nd | nd | nd | nd | 1.03 | 0.75 | nd |
Linalool | 11.799 | 78-70-6 | Floral/citrus | 2.53 | 2.24 | 3.11 | 2.32 | 2.56 | 2.77 | 2.04 | 1.82 | nd |
alpha-Terpineol | 14.397 | 98-55-5 | Lemon/lime/citrus/floral | nd | nd | nd | nd | nd | nd | 0.79 | 0.46 | nd |
trans-beta-damascenone | 19.521 | 23696-85-7 | Earthy/green floral | nd | nd | nd | nd | nd | nd | 0.58 | 0.39 | nd |
Others | ||||||||||||
Índole | 17.682 | 120-72-9 | Fecal/animal/musty | nd | nd | nd | nd | nd | nd | nd | nd | 2.94 |
Bis(2-furfuryl) disulfide | 20.296 | 4437-20-1 | Sulfurous/roasted/onion | 1.68 | 1.78 | 2.52 | 2.21 | 2.45 | 3.41 | nd | nd | 2.52 |
Samples | Fragrance | Aroma | Flavor | Residual Flavor | Acidity | Body | Sweetness |
---|---|---|---|---|---|---|---|
NL | 8.43 ± 0.53 aA* | 8.57± 0.53 aA | 7.00 ± 1.00 | 7.43 ± 0.97 | 6.86 ± 0.69 b | 6.43 ± 0.53 | 8.43 ± 0.97 a |
NM | 8.29 ± 0.75 ab | 7.29 ± 0.48 bB | 7.29 ± 0.48 | 7.29 ± 0.48 | 7.14 ± 0.37 ab | 7.00 ± 0.57 | 7.43 ± 1.27 ab |
ND | 7.29 ± 0.48 bB | 7.57 ± 0.53 bA | 7.14 ± 0.69 | 7.71 ± 0.75 | 7.50 ± 0.81 a | 7.43 ± 0.97 | 6.86 ± 0.90 b |
WL | 7.14 ± 0.69 bB | 7.29 ± 0.48 bB | 7.71 ± 0.75 | 7.14 ± 0.69 | 7.29 ± 0.75 | 7.14 ± 0.69 | 7.57 ± 0.78 |
WM | 8.14 ± 0.69 a | 8.14 ± 0.69 abA | 7.14 ± 0.37 | 7.00 ± 0.57 | 6.86 ± 0.69 | 7.00 ± 0.57 | 6.86 ± 0.37 |
WD | 8.57 ± 0.53 aA | 8.57 ± 0.53 aA | 7.29 ± 0.75 | 6.86 ± 1.06 | 7.50 ± 0.54 | 7.14 ± 0.90 | 7.29 ± 1.11 |
Samples | Fragrance |
---|---|
N100 | 9.00 ± 0.75 a |
N90R10 | 7.75 ± 0.58 ab* |
N80R20 | 6.62 ± 1.30 bc |
N50R50 | 5.75 ± 1.48 cd |
R100 | 4.37 ± 1.50 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaría, N.; Meléndez, F.; Arroyo, P.; Calvo, P.; Sánchez, F.; Lozano, J.; Sánchez, R. Olfactory Evaluation of Geisha Coffee from Panama Using Electronic Nose. Chemosensors 2023, 11, 559. https://doi.org/10.3390/chemosensors11110559
Santamaría N, Meléndez F, Arroyo P, Calvo P, Sánchez F, Lozano J, Sánchez R. Olfactory Evaluation of Geisha Coffee from Panama Using Electronic Nose. Chemosensors. 2023; 11(11):559. https://doi.org/10.3390/chemosensors11110559
Chicago/Turabian StyleSantamaría, Nohely, Félix Meléndez, Patricia Arroyo, Patricia Calvo, Francisco Sánchez, Jesús Lozano, and Ramiro Sánchez. 2023. "Olfactory Evaluation of Geisha Coffee from Panama Using Electronic Nose" Chemosensors 11, no. 11: 559. https://doi.org/10.3390/chemosensors11110559
APA StyleSantamaría, N., Meléndez, F., Arroyo, P., Calvo, P., Sánchez, F., Lozano, J., & Sánchez, R. (2023). Olfactory Evaluation of Geisha Coffee from Panama Using Electronic Nose. Chemosensors, 11(11), 559. https://doi.org/10.3390/chemosensors11110559