Phenylamine/Amide Grafted in Silica as Sensing Nanocomposites for the Removal of Carbamazepine: A DFT Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Phenyl-Amide-Substituted Silica
2.2.1. Preparation of Silica-Gel-Immobilized Propylamine (SiPr)
2.2.2. Synthesis of Phenylamine-Substituted Silica
2.3. Adsorption Experiments
2.4. Adsorption Kinetics
2.5. Adsorption Isotherms
2.6. Adsorption Thermodynamics
2.7. FT-IR, TGA, Adsorption and SEM
2.8. Computational Details
3. Results and Discussion
3.1. Adsorbent Characterization
3.2. SEM Analysis
3.3. FT-IR Analysis
3.4. TGA Analysis
3.5. Adsorption Study
3.5.1. Effect of Contact Time
3.5.2. Effect of pH
3.5.3. Effect of Temperature
3.5.4. Effect of Initial Concentration
3.5.5. Kinetic Models and Adsorption Isotherms
3.5.6. Equilibrium Modeling
3.6. Thermodynamic Study
3.7. Theoretical Calculation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weber, F.A.; Aus der Beek, T.; Bergman, A.; Carius, A.; Grüttner, G.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A.; Rose, J.; et al. Pharmaceuticals in the Environment the Global Perspective: Occurrence, Effects, and Potential Cooperative Action under SAICM; IWW Rheinisch-Westfaelisches Institut für Wasser, Muelheim an der Ruhr; German Environment Agency: Berlin, Germany, 2016; p. 12. [Google Scholar]
- Abdel-Shafy, H.; Mansour, M.S.M. Issue of Pharmaceutical Compounds in Water and Wastewater: Sources, Impact, and Elimination. Egypt. J. Chem. 2013, 566, 449–471. [Google Scholar] [CrossRef]
- Adams, E.N.; Marks, A.; Lizer, M.H. Carbamazepine-induced hyperammonemia. Am. J. Health-Syst. Pharm. 2009, 66, 1468–1470. [Google Scholar] [CrossRef] [PubMed]
- Nevitt, S.J.; Marson, A.G.; Tudur-Smith, C. Carbamazepine versus phenytoin monotherapy for epilepsy: An individual participant data review. Cochrane Database Syst. Rev. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Oropesa, A.L.; Floro, A.M.; Palma, P. Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna. Environ. Sci. Pollut. Res. 2016, 23, 17311–17321. [Google Scholar] [CrossRef] [PubMed]
- Martín-Díaz, L.; Franzellitti, S.; Buratti, S.; Valbonesi, P.; Capuzzo, A.; Fabbri, E. Effects of environmental concentrations of the antiepilectic drug carbamazepine on biomarkers and cAMP-mediated cell signaling in the mussel Mytilus galloprovincialis. Aquat. Toxicol. 2009, 94, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.P.; Brar, S.K.; Daghrir, R.; Tyagi, R.D.; Picard, P.; Surampalli, R.Y.; Drogui, P. Photocatalytic degradation of carbamazepine in wastewater by using a new class of whey-stabilized nanocrystalline TiO2 and ZnO. Sci. Total Environ. 2014, 485, 263–269. [Google Scholar] [CrossRef]
- Scheytt, T.; Mersmann, P.; Lindstädt, R.; Heberer, T. 1-Octanol/water partition coefficients of 5 pharmaceuticals from human medical care: Carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Water Air Soil Pollut. 2005, 165, 3–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Geißen, S.U.; Gal, C. Carbamazepine, and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 731, 151–161. [Google Scholar] [CrossRef]
- Azizollah, N.; Koushali, S.E.; Divsar, F. Synthesis of polypyrrole-chitosan magnetic nanocomposite for the removal of carbamazepine from wastewater: Adsorption isotherm and kinetic study. J. Environ. Chem. Engin. 2021, 9, 105648. [Google Scholar] [CrossRef]
- Fent, K. Effects of pharmaceuticals on aquatic organisms. In Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks; Kümmerer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 175–203. [Google Scholar] [CrossRef]
- Kebede, T.; Dube, S.; Nindi, M.M. Removal of non-steroidal anti-inflammatory drugs (NSAIDs) and carbamazepine from wastewater using water-soluble protein extracted from Moringa stenopetala seeds. J. Environ. Chem. Eng. 2018, 6, 3095–3103. [Google Scholar] [CrossRef]
- Rajendran, K.; Sen, S. Adsorptive removal of carbamazepine using biosynthesized hematite nanoparticles. Environ. Nanotechnol. Monitor. Manag. 2018, 9, 122–127. [Google Scholar] [CrossRef]
- Akpinar, I.; Yazaydin, A.O. Rapid and Efficient Removal of Carbamazepine from Water by UiO-67. Ind. Eng. Chem. Res. 2011, 56, 15122–15130. [Google Scholar] [CrossRef]
- Dwivedi, K.; Morone, A.; Chakrabarti, T.; Pandey, A. Evaluation and optimization of Fenton pretreatment integrated with granulated activated carbon (GAC) filtration for carbamazepine removal from complex wastewater of pharmaceutical industry. J. Environ. Chem. Eng. 2018, 6, 3681–3689. [Google Scholar] [CrossRef]
- Liu, K.; Yu, J.C.; Dong, H.; Wu, J.C.S.; Hoffmann, M.R. Degradation and mineralization of carbamazepine using an electro-Fenton reaction catalyzed by magnetite nanoparticles fixed on an electrocatalytic carbon fiber textile cathode. Environ. Sci. Technol. 2018, 52, 12667–12674. [Google Scholar] [CrossRef] [PubMed]
- McDowell, D.C.; Huber, M.M.; Wagner, M.; von Gunten, U.; Ternes, T.A. Ozonation of Carbamazepine in Drinking Water: Identification and Kinetic Study of Major Oxidation Products. Environ. Sci. Technol. 2005, 39, 8014–8022. [Google Scholar] [CrossRef]
- Aguilar, C.; Vazquez-Arenas, J.; Castillo-Araiza, O.; Rodríguez, J.L.; Chairez, I.; Salinas, E.; Poznyak, T. Improving ozonation to remove carbamazepine through ozone-assisted catalysis using different NiO concentrations. Environ. Sci. Pollut. Res. 2020, 27, 22184–22194. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, S.; Jiang, S.F.; Hu, W.F.; Jiang, H. High-efficiency, and ground-state atomic oxygen-dominant photodegradation of carbamazepine by coupling chlorine and g-C3N4. Ind. Eng. Chem. Res. 2012, 60, 2112–2122. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B. Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. J. Hazard. Mater. 2012, 199–200, 135–142. [Google Scholar] [CrossRef]
- Suriyanon, N.; Punyapalakul, P.; Ngamcharussrivichai, C. Mechanistic study of diclofenac and carbamazepine adsorption on functionalized silica-based porous materials. Chem. Eng. J. 2013, 214, 208–218. [Google Scholar] [CrossRef]
- Price, P.M.; Clark, J.H.; Macquarrie, D.J. Modified silicas for clean technology. J. Chem. Soc. Dalton Trans. 2000, 101–110. [Google Scholar] [CrossRef]
- Walcarius, A.; Etienne, M.; Lebeau, B. Rate of access to the binding sites in organically modified silicates. 2. Ordered mesoporous silicas grafted with amine or thiol groups. Chem. Mater. 2003, 15, 2161–2173. [Google Scholar] [CrossRef]
- Grigoropoulou, G.; Stathi, P.; Karakassides, M.A.; Louloudi, M.; Deligibiannakis, Y. Functionalized SiO2 with N-, S-containing ligands for Pb(II) and Cd(II) adsorption. Colloids Surf. 2008, 320, 25–35. [Google Scholar] [CrossRef]
- Fan, J.; Wu, C.; Peng, C.; Peng, P. Preparation of xylenol orange functionalized silica gel as a selective solid phase extractor and application for preconcentration-separtion of mercury from waters. J. Hazard. Mater. 2007, 145, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Yoshino, A.; Okabayashi, H.; Nishio, E.; O’Connor, C.J. Kinetic. s of interaction of 3-aminopropyltriethoxysilane on a silica gel surface using elemental analysis and diffuse reflectance infrared Fourier transform spectra. J. Chem. Soc. Faraday Trans. 1997, 93, 1971–1979. [Google Scholar] [CrossRef]
- Calisto, V.; Domingues, M.R.M.; Erny, G.L.; Esteves, V.I. Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry. Water Res. 2011, 45, 1095–1104. [Google Scholar] [CrossRef]
- Metcalfe, C.D.; Koenig, B.G.; Bennie, D.T.; Servos, M.; Ternes, T.A.; Hirsch, R. Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environ. Toxicol. Chem. Int. J. 2003, 22, 2872–2880. [Google Scholar] [CrossRef]
- Kajjumba, G.W.; Emik, S.; Öngen, A.; Özcan, H.K.; Aydın, S. Modelling of Adsorption Kinetic Processes-Errors, Theory and Application, Advanced Sorption Process Applications; Edebali, S., Ed.; IntechOpen: Istanbul, Turkey, 2018. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, T.R.; Prelot, B. Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Zahra, B.A.A.A. Water crisis in Palestine. Desalination 2001, 136, 93–99. [Google Scholar] [CrossRef]
- Massad, Y.; Hanbali, G.; Jodeh, S.; Hamed, O.; Bzour, M.; Dagdag, O.; Samhan, S. The efficiency of removal of organophosphorus malathion pesticide using functionalized multi-walled carbon nanotube: Impact of dissolved organic matter (DOM). Sep. Sci. Technol. 2022, 57, 1–12. [Google Scholar] [CrossRef]
- Chakraborty, D.; Chattaraj, P.K. Conceptual density functional theory based electronic structure principles. Chem. Sci. 2021, 12, 6264–6279. [Google Scholar] [CrossRef]
- Islam, N.; Kaya, S. (Eds.) Conceptual Density Functional Theory and Its Application in the Chemical Domain; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Serdaroğlu, G.; Kaya, S.; Touir, R. Eco-friendly sodium gluconate and trisodium citrate inhibitors for low carbon steel in simulated cooling water system: Theoretical study and molecular dynamic simulations. J. Mol. Liq. 2020, 319, 114108. [Google Scholar] [CrossRef]
- Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; People, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Dołęga, A.; Juszyńska-Gałązka, E.; Deptuch, F.; Zieliński, P.M. Thermoanalytical studies of a cytotoxic derivative of carbamazepine: Iminostilbene. J. Therm. Anal. Calorim. 2021, 146, 2151–2160. [Google Scholar] [CrossRef]
- Wang, L.; Lu, W.; Ni, D.; Xu, T.; Li, N.; Zhu, Z.; Chen, H.; Chen, W. Solar-initiated photocatalytic degradation of carbamazepine on excited-state hexadecachlorophthalocyanine in the presence of peroxymonosulfate. Chem. Eng. J. 2017, 330, 625–634. [Google Scholar] [CrossRef]
- Katin, K.P.; Grishakov, K.S.; Gimaldinova, M.A.; Maslov, M.M. Silicon rebirth: Ab initio prediction of metallic sp3-hybridized silicon allotropes. Comput. Mater. Sci. 2020, 174, 109480. [Google Scholar] [CrossRef]
- Xu, H.; Gao, Y.; Liu, Z.; Bei, Y. Theoretical investigation of the hydrolytic mechanism of α-functionalized alkoxysilanes as effective crosslinkers and the difficulty of deep vulcanization in RTV silicone rubber. Materials 2018, 11, 1526. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.K.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Pereira da Silva, P.S.; Martín-Ramos, P.; Domingos, S.R.; Bota de Sousa, M.C.; Arranja, C.T.; Sobral, A.J.F.N.; Ramos Silva, M. On the Performance of Hybrid Functionals for Non-linear Optical Properties and Electronic Excitations in Chiral Molecular Crystals: The Case of Butterfly-Shaped Dicinnamalacetone. ChemPhysChem 2018, 19, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Dada, A.; Olalekan, A.; Olatunya, A.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 2012, 3, 38–45. [Google Scholar]
- Kaya, S.; Kaya, C.A. A new method for calculation of molecular hardness: A theoretical study. Comput. Theor. Chem. 2015, 1060, 66–70. [Google Scholar] [CrossRef]
- Kaya, S.; Kaya, C.A. A simple method for the calculation of lattice energies of inorganic ionic crystals based on the chemical hardness. Inorg. Chem. 2015, 54, 8207–8213. [Google Scholar] [CrossRef] [PubMed]
- Ghanty, T.K.; Ghosh, S.K. Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. J. Phys. Chem. 1993, 97, 4951–4953. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids, and bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Louleb, M.; Latrous, L.; Ríos, A.; Zougagh, M.; Rodríguez-Castelloń, E.; Algarra, M.; Soto, J. Detection of Dopamine in Human Fluids Using N-Doped Carbon Dots, ACS Appl. Nano Mater. 2020, 2, 8004–8011. [Google Scholar] [CrossRef]
- Kaya, S.; Kaya, C.; Islam, C. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds. Phys. B Condens. Matter 2016, 485, 60–66. [Google Scholar] [CrossRef]
Adsorbents | Adsorption Kinetic Models | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pseudo-First-Order | Pseudo-Second-Order | IPD | ||||||||
qe EXP. | qe (mg/g) | K1 (mg·g−1min−0.5) | R2 | qe (mg/g) | K2 (mg·g−1min−1) | R2 | Z (mg/g) | Kid (mg·g−1min−0.5) | R2 | |
SiBN | 148 | 78 | 0.14 | 0.70 | 148 | 1.86 | 0.99 | −16.29 | 28.81 | 0.95 |
SiBCON | 141 | 98 | 0.12 | 0.69 | 143 | 1.52 | 0.099 | −11.065 | 26.58 | 0.93 |
Adsorbents | Equilibrium Isotherm Models | |||||||
---|---|---|---|---|---|---|---|---|
Langmuir Isotherm | Freundlich Isotherm | |||||||
Qo (mg/g) | KL (L/mg) | R2 | RL | KF (mg/g) | 1/n (Lg−1) | n (g/L) | R2 | |
SiBN | 12.78 | 12.22 | 0.983 | 0.45 | 8.414 | 0.34 | 2.93 | 0.52 |
SiBCON | 18.45 | 4.9 | 0.996 | 0.67 | 8.302 | 0.33 | 2.952 | 0.52 |
Adsorbents | Adsorption Thermodynamic | ||
---|---|---|---|
ΔH (KJ) | ΔS (J/K) | ΔG (25 °C) (KJ) | |
SiBN | 82.85 | 217.46 | −18.18 |
SiBCON | 169.10 | 511.24 | −16.82 |
System | HOMO (eV) | LUMO (eV) | Gap (eV) | χ (eV) | η (eV) | w (eV) | D (Debye) |
---|---|---|---|---|---|---|---|
SIBN | −5.12 | −1.39 | 3.73 | 3.25 | 1.86 | 2.84 | 8.01/0.35 |
SiBCON | −6.11 | −1.43 | 4.68 | 3.77 | 2.34 | 3.03 | 8.25/0.47 |
CBZ | −6.10 | −1.60 | 4.50 | 3.85 | 2.25 | 3.29 | 5.33/0.18 |
SiBN + CBZ | 0.41 | −4.81 | −1.49 | 3.15 | 1.66 | 2.98 | 5.92/0.19 |
SiBCON + CBZ | 0.59 | −5.80 | −1.48 | 3.64 | 2.16 | 3.06 | 8.55/0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algarra, M.; Jodeh, S.; Aqel, I.; Hanbali, G.; Radi, S.; Tighadouini, S.; Alkowni, R.; Soto, J.; Samhan, S.; Kaya, S.; et al. Phenylamine/Amide Grafted in Silica as Sensing Nanocomposites for the Removal of Carbamazepine: A DFT Approach. Chemosensors 2022, 10, 76. https://doi.org/10.3390/chemosensors10020076
Algarra M, Jodeh S, Aqel I, Hanbali G, Radi S, Tighadouini S, Alkowni R, Soto J, Samhan S, Kaya S, et al. Phenylamine/Amide Grafted in Silica as Sensing Nanocomposites for the Removal of Carbamazepine: A DFT Approach. Chemosensors. 2022; 10(2):76. https://doi.org/10.3390/chemosensors10020076
Chicago/Turabian StyleAlgarra, Manuel, Shehdeh Jodeh, Israa Aqel, Ghadir Hanbali, Smaail Radi, Said Tighadouini, Raed Alkowni, Juan Soto, Subhi Samhan, Savaş Kaya, and et al. 2022. "Phenylamine/Amide Grafted in Silica as Sensing Nanocomposites for the Removal of Carbamazepine: A DFT Approach" Chemosensors 10, no. 2: 76. https://doi.org/10.3390/chemosensors10020076
APA StyleAlgarra, M., Jodeh, S., Aqel, I., Hanbali, G., Radi, S., Tighadouini, S., Alkowni, R., Soto, J., Samhan, S., Kaya, S., & Katin, K. P. (2022). Phenylamine/Amide Grafted in Silica as Sensing Nanocomposites for the Removal of Carbamazepine: A DFT Approach. Chemosensors, 10(2), 76. https://doi.org/10.3390/chemosensors10020076