Potentiometric Surfactant Sensor for Anionic Surfactants Based on 1,3-dioctadecyl-1H-imidazol-3-ium tetraphenylborate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Ionophore Synthesis and Characterization
2.3. Computational Details
2.4. Preparation of Surfactant SENSOR
2.5. Potentiometric Measurements
3. Results
3.1. Ionophore Synthesis and Characterization
3.2. Computational Analysis
3.3. Sensor Characterization
3.3.1. Sensor Response to Anionic Surfactants
3.3.2. Selectivity and pH
3.4. Potentiometric Titrations
3.4.1. Titration of DBS with Selected Cationic Surfactants
3.4.2. Titration of SDS with Selected Cationic Surfactants
3.4.3. Titrations of Commercial Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakač, N.; Marković, D.; Šarkanj, B.; Madunić-Čačić, D.; Hajdek, K.; Smoljan, B.; Jozanović, M. Direct Potentiometric Study of Cationic and Nonionic Surfactants in Disinfectants and Personal Care Products by New Surfactant Sensor Based on 1,3-Dihexadecyl−1H-Benzo[d]Imidazol−3-Ium. Molecules 2021, 26, 1366. [Google Scholar] [CrossRef] [PubMed]
- Fizer, O.; Filep, M.; Pantyo, V.; Elvira, D.; Fizer, M. Structural Study and Antibacterial Activity of Cetylpyridinium Dodecyl Sulfate Ion Pair. Biointerface Res. Appl. Chem. 2022, 12, 3501–3512. [Google Scholar] [CrossRef]
- Jozanović, M.; Sakač, N.; Karnaš, M.; Medvidović-Kosanović, M. Potentiometric Sensors for the Determination of Anionic Surfactants—A Review. Crit. Rev. Anal. Chem. 2019, 51, 115–137. [Google Scholar] [CrossRef] [PubMed]
- Research and Markets Global Surfactants Market (2019 to 2025)—Drivers, Restraints, Opportunities and Challenges. Available online: https://www.prnewswire.com/news-releases/global-surfactants-market-2019-to-2025---drivers-restraints-opportunities-and-challenges-301086922.html (accessed on 13 November 2022).
- Global Anionic Surfactants Market—Industry Trends and Forecast to 2027; Data Bridge Market Research: Pune, India, 2020.
- Effendy, I.; Maibach, H.I. Surfactants and Experimental Irritant Contact Dermatitis. Contact Dermat. 1995, 33, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Venhuis, S.H.; Mehrvar, M. Health Effects, Environmental Impacts, and Photochemical Degradation of Selected Surfactants in Water. Int. J. Photoenergy 2004, 6, 115–125. [Google Scholar] [CrossRef] [Green Version]
- ISO 2271; International Organization for Standardization Surface Active Agents, Detergents, Determination of Anionic-Active Matter by Manual or Mechanical Direct Two-Phase Titration Procedure. ISO: Geneva, Switzerland, 1989.
- Dimeski, G.; Badrick, T.; John, A.S. Ion Selective Electrodes (ISEs) and Interferences—A Review. Clin. Chim. Acta 2010, 411, 309–317. [Google Scholar] [CrossRef]
- Fizer, M.; Fizer, O.; Sidey, V.; Mariychuk, R.; Studenyak, Y. Experimental and Theoretical Study on Cetylpyridinium Dipicrylamide—A Promising Ion-Exchanger for Cetylpyridinium Selective Electrodes. J. Mol. Struct. 2019, 1187, 77–85. [Google Scholar] [CrossRef]
- Fizer, O.; Fizer, M.; Sidey, V.; Studenyak, Y. Predicting the End Point Potential Break Values: A Case of Potentiometric Titration of Lipophilic Anions with Cetylpyridinium Chloride. Microchem. J. 2021, 160, 105758. [Google Scholar] [CrossRef]
- Najafi, M.; Maleki, L.; Rafati, A.A. Novel Surfactant Selective Electrochemical Sensors Based on Single Walled Carbon Nanotubes. J. Mol. Liq. 2011, 159, 226–229. [Google Scholar] [CrossRef]
- Sakač, N.; Karnaš, M.; Jozanović, M.; Medvidović-Kosanović, M.; Martinez, S.; Macan, J.; Sak-Bosnar, M. Determination of Anionic Surfactants in Real Samples Using a Low-Cost and High Sensitive Solid Contact Surfactant Sensor with MWCNTs as the Ion-to-Electron Transducer. Anal. Methods 2017, 9, 2305–2314. [Google Scholar] [CrossRef]
- Seguí, M.J.; Lizondo-Sabater, J.; Martínez-Máñez, R.; Pardo, T.; Sancenón, F.; Soto, J. Ion-Selective Electrodes for Anionic Surfactants Using a New Aza-Oxa-Cycloalkane as Active Ionophore. Anal. Chim. Acta 2004, 525, 83–90. [Google Scholar] [CrossRef]
- Samardžić, M.; Budetić, M.; Széchenyi, A.; Marković, D.; Živković, P.; Šarkanj, B.; Jozanović, M. The Novel Anionic Surfactant Selective Sensors Based on Newly Synthesized Quaternary Ammonium Salts as Ionophores. Sens. Actuators B Chem. 2021, 343, 130103. [Google Scholar] [CrossRef]
- Kovács, B.; Csóka, B.; Nagy, G.; Ivaska, A. All-solid-state surfactant sensing electrode using conductive polymer as internal electric contact. Anal. Chim. Acta 2001, 437, 67–76. [Google Scholar] [CrossRef]
- Matysik, S.; Matysik, F.M.; Einicke, W.D. A disposable electrode based on zeolite-polymer membranes for potentiometric titrations of ionic surfactants. Sens. Actuators B Chem. 2002, 85, 104–108. [Google Scholar] [CrossRef]
- Madunič-Čačić, D.; Sak-Bosnar, M.; Matešić-Puač, R. A New Anionic Surfactant-Sensitive Potentiometric Sensor with a Highly Lipophilic Electroactive Material. Int. J. Electrochem. Sci. 2011, 6, 240–253. [Google Scholar]
- Sakač, N.; Madunić-Čačić, D.; Karnaš, M.; Ðurin, B.; Kovač, I.; Jozanović, M. The Influence of Plasticizers on the Response Characteristics of the Surfactant Sensor for Cationic Surfactant Determination in Disinfectants and Antiseptics. Sensors 2021, 21, 3535. [Google Scholar] [CrossRef]
- Olkowska, E.; Polkowska, Z.; Namieśnik, J. Analytical Procedures for the Determination of Surfactants in Environmental Samples. Talanta 2012, 88, 1–13. [Google Scholar] [CrossRef]
- Pires, A.R.; Araújo, A.N.; Montenegro, M.C.B.S.M.; Chocholous, P.; Solich, P. New Ionophores for Vitamin B1 and Vitamin B6 Potentiometric Sensors for Multivitaminic Control. J. Pharm. Biomed. Anal. 2008, 46, 683–691. [Google Scholar] [CrossRef]
- Mahajan, R.K.; Shaheen, A. Effect of Various Additives on the Performance of a Newly Developed PVC Based Potentiometric Sensor for Anionic Surfactants. J. Colloid Interface Sci. 2008, 326, 191–195. [Google Scholar] [CrossRef]
- Devi, S.; Chattopadhyaya, M.C. Determination of Sodium Dodecyl Sulfate in Toothpastes by a PVC Matrix Membrane Sensor. J. Surfactants Deterg. 2013, 16, 391–396. [Google Scholar] [CrossRef]
- Issa, Y.M.; Mohamed, S.H.; Baset, M.A. El Chemically Modified Carbon Paste and Membrane Sensors for the Determination of Benzethonium Chloride and Some Anionic Surfactants (SLES, SDS, and LABSA): Characterization Using SEM and AFM. Talanta 2016, 155, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Arooj, M.; Arrigan, D.W.M.; Mancera, R.L. Characterization of Protein-Facilitated Ion-Transfer Mechanism at a Polarized Aqueous/Organic Interface. J. Phys. Chem. B 2019, 123, 7436–7444. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Betz, R.M.; Cerutti, D.S.; Cheatham, T.E., III; Darden, T.A.; Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; Homeyer, N.; et al. AMBER 2016; University of California: San Francisco, CA, USA, 2016. [Google Scholar]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. Inf. Model. 2011, 51, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Sakač, N.; Madunić-Čačić, D.; Marković, D.; Hok, L.; Vianello, R.; Šarkanj, B.; Đurin, B.; Hajdek, K.; Smoljan, B.; Milardović, S.; et al. Potentiometric Surfactant Sensor Based on 1,3-Dihexadecyl-1H-Benzo[d]Imidazol-3-Ium for Anionic Surfactants in Detergents and Household Care Products. Molecules 2021, 26, 3627. [Google Scholar] [CrossRef]
- Hok, L.; Mavri, J.; Vianello, R. The Effect of Deuteration on the H2 Receptor Histamine Binding Profile: A Computational Insight into Modified Hydrogen Bonding Interactions. Molecules 2020, 25, 6017. [Google Scholar] [CrossRef]
- Hok, L.; Rimac, H.; Mavri, J.; Vianello, R. COVID-19 Infection and Neurodegeneration: Computational Evidence for Interactions between the SARS-CoV-2 Spike Protein and Monoamine Oxidase Enzymes. Comput. Struct. Biotechnol. J. 2022, 20, 1254–1263. [Google Scholar] [CrossRef]
- Galović, O.; Samardžić, M.; Petrušić, S.; Sak-Bosnar, M. A New Sensing Material for the Potentiometric Determination of Anionic Surfactants in Commercial Products. Int. J. Electrochem. Sci. 2014, 9, 3802–3818. [Google Scholar]
- Mao, C.; Robinson, K.J.; Yuan, D.; Bakker, E. Ion–ionophore interactions in polymeric membranes studied by thin layer voltammetry. Sens. Actuators B Chem. 2022, 358, 131428. [Google Scholar] [CrossRef]
- Buck, R.P.; Lindner, E. Recomendations for Nomenclature of Ion-Selective Electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 2527–2536. [Google Scholar] [CrossRef]
- Tshepelevitsh, S.; Kütt, A.; Lõkov, M.; Kaljurand, I.; Saame, J.; Heering, A.; Plieger, P.G.; Vianello, R.; Leito, I. On the Basicity of Organic Bases in Different Media. Eur. J. Org. Chem. 2019, 2019, 6735–6748. [Google Scholar] [CrossRef]
Cation Component | ||||
---|---|---|---|---|
ΔGBIND | −5.0 | −2.4 | −0.5 | −3.2 |
Parameters | Anionic Surfactants | |
---|---|---|
DBS | SDS | |
Slope (mV/decade) | 59.3 ± 0.5 | 58.3 ± 0.4 |
Correlation coefficient (R2) | 0.9997 | 0.9998 |
Limit of detection (M) | 7.1 ± 10−7 | 6.8 ± 10−7 |
Useful linear concentration range (M) | 6.3 × 10−7 to 3.2 × 10−4 | 5.9 × 10−7 to 4.1 × 10−3 |
Anion | |
---|---|
Acetate | −4.27 |
Borate | −4.75 |
Benzoate | −4.35 |
Bromide | −4.00 |
Chloride | −3.92 |
Carbonate | −3.92 |
Dihydrogenphophate | −3.92 |
EDTA | −3.92 |
Hydrogen sulfate | −3.30 |
Nitrate | −3.43 |
Sulfate | −3.48 |
Toluensulfonate | −3.93 |
Analyte | |||||||
---|---|---|---|---|---|---|---|
DBS | SDS | ||||||
Taken (mM) | Found (mM) | Recovery (%) | Taken (mM) | Found (mM) | Recovery (%) | ||
Titrant | CTAB | 0.1 | 0.0973 | 97.3 | 0.1 | 0.0989 | 98.9 |
0.01 | 0.00102 | 102.0 | 0.01 | 0.00981 | 98.1 | ||
Hyamine 1622 | 0.1 | 0.0972 | 97.2 | 0.1 | 0.0988 | 98.8 | |
0.01 | 0.00975 | 97.5 | 0.01 | 0.00989 | 98.9 | ||
CPC | 0.1 | 0.0993 | 99.3 | 0.1 | 0.0991 | 99.1 | |
0.01 | 0.00985 | 98.5 | 0.01 | 0.00987 | 98.9 | ||
DMIC | 0.1 | 0.0993 | 99.3 | 0.1 | 0.0998 | 99.7 | |
0.01 | 0.00997 | 99.7 | 0.01 | 0.00996 | 99.6 |
Detergent Sample | % Anionic Surfactant | |||
---|---|---|---|---|
DODI–TPB | DMI–TPB [13] | Two-Phase Titration [8] | ||
Solid/powder | Sample 1 | 4.25 ± 0.08 | 4.21 | 4.71 |
Sample 2 | 5.21 ± 0.09 | 5.22 | 5.01 | |
Sample 3 | 5.66 ± 0.07 | 5.61 | 5.51 | |
Sample 4 | 6.01 ± 0.09 | 6.09 | 6.11 | |
Liquid/gel | Sample 5 | 2.11 ± 0.07 | 2.15 | 2.27 |
Sample 6 | 2.45 ± 0.11 | 2.41 | 2.85 | |
Sample 7 | 2.25 ± 0.09 | 2.26 | 2.41 | |
Sample 8 | 3.21 ± 0.09 | 3.27 | 3.28 | |
Handwashing | Sample 9 | 15.22 ± 0.11 | 15.21 | 15.32 |
Sample 10 | 14.89 ± 0.09 | 14.85 | 15.07 | |
Sample 11 | 15.42 ± 0.08 | 15.48 | 15.55 | |
Sample 12 | 15.98 ± 0.12 | 15.99 | 16.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakač, N.; Madunić-Čačić, D.; Marković, D.; Hok, L.; Vianello, R.; Vrček, V.; Šarkanj, B.; Đurin, B.; Della Ventura, B.; Velotta, R.; et al. Potentiometric Surfactant Sensor for Anionic Surfactants Based on 1,3-dioctadecyl-1H-imidazol-3-ium tetraphenylborate. Chemosensors 2022, 10, 523. https://doi.org/10.3390/chemosensors10120523
Sakač N, Madunić-Čačić D, Marković D, Hok L, Vianello R, Vrček V, Šarkanj B, Đurin B, Della Ventura B, Velotta R, et al. Potentiometric Surfactant Sensor for Anionic Surfactants Based on 1,3-dioctadecyl-1H-imidazol-3-ium tetraphenylborate. Chemosensors. 2022; 10(12):523. https://doi.org/10.3390/chemosensors10120523
Chicago/Turabian StyleSakač, Nikola, Dubravka Madunić-Čačić, Dean Marković, Lucija Hok, Robert Vianello, Valerije Vrček, Bojan Šarkanj, Bojan Đurin, Bartolomeo Della Ventura, Raffaele Velotta, and et al. 2022. "Potentiometric Surfactant Sensor for Anionic Surfactants Based on 1,3-dioctadecyl-1H-imidazol-3-ium tetraphenylborate" Chemosensors 10, no. 12: 523. https://doi.org/10.3390/chemosensors10120523