Towards a Mathematical Model for the Viral Progression in the Pharynx
Abstract
1. Introduction
2. Theoretical Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
C | Species concentration, cells.m−3 |
D | Binary diffusion coefficient, m2.s−1 |
D0 | Scaling Factor, m2.s−1 |
k1 | Kinetic rate constant for infection, cells−1.m3s−1 |
k2 | Kinetic rate constant for virus propagation, s−1 |
k3 | Kinetic rate constant for virus clearance, s−1 |
k4 | Kinetic rate constant for cells accumulation, cells−1.m3s−1 |
L0 | Pharynx length, m |
t | Time, s |
u1 | Virus concentration, dimensionless |
ui0 | Initial virus concentration, dimensionless |
v0 | Convective flow velocity, m.s−1 |
X1 | Ratio of infected cells to initial cells |
X2 | Degree of conversion of uninfected cells to infected cells |
Y | Yield of virus per infected cell |
z | Axial coordinate, m |
Greek Letters | |
η | Dimensionless length |
τ | Dimensionless time |
Subscript | |
0 | Initial Conditions |
infc | Infected cells |
sub Substrate | |
unc | Uninfected cells |
vir | Virus |
References
- Murray, J.M.; Ribeiro, R.M. Special issue “mathematical modeling of viral infections”. Viruses 2018, 10, 303. [Google Scholar] [CrossRef]
- Ho, D.D.; Neumann, A.U.; Perelson, A.S.; Chen, W.; Leonard, J.M.; Markowitz, M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995, 373, 123–126. [Google Scholar] [CrossRef]
- Wei, X.; Ghosh, S.K.; Taylor, M.E.; Johnson, V.A.; Emini, E.A.; Deutsch, P.; Lifson, J.D.; Bonhoeffer, S.; Nowak, M.A.; Hahn, B.H.; et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995, 373, 117–122. [Google Scholar] [CrossRef]
- Murray, J.M.; Kelleher, A.D.; Cooper, D.A. Timing of the components of the HIV life cycle in productively infected CD4+ T cells in a population of HIV-infected individuals. J. Virol. 2011, 85, 10798–10805. [Google Scholar] [CrossRef] [PubMed]
- Neumann, A.U.; Lam, N.P.; Dahari, H.; Gretch, D.R.; Wiley, T.E.; Layden, T.J.; Perelson, A.S. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 1998, 282, 103–107. [Google Scholar] [CrossRef]
- Perelson, A.S.; Guedj, J. Modelling hepatitis C therapy--predicting effects of treatment. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Klatt, N.R.; Shudo, E.; Ortiz, A.M.; Engram, J.C.; Paiardini, M.; Lawson, B.; Miller, M.D.; Else, J.; Pandrea, I.; Estes, J.D.; et al. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells. PLoS Pathog. 2010, 6, e1000747. [Google Scholar] [CrossRef]
- Kumberger, P.; Frey, F.; Schwarz, U.S.; Graw, F. Multiscale modeling of virus replication and spread. FEBS Lett. 2016, 590, 1972–1986. [Google Scholar] [CrossRef]
- Boianelli, A.; Nguyen, V.K.; Ebensen, T.; Schulze, K.; Wilk, E.; Sharma, N.; Stegemann-Koniszewski, S.; Bruder, D.; Toapanta, F.R.; Guzmán, C.A.; et al. Modeling influenza virus infection: A roadmap for influenza research. Viruses 2015, 7, 5274–5304. [Google Scholar] [CrossRef]
- Canini, L.; Perelson, A.S. Viral kinetic modeling: State of the art. J. Pharmacokinet. Pharmacodyn. 2014, 41, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Perelson, A.S.; Ribeiro, R.M. Modeling the within-host dynamics of HIV infection. BMC Biol. 2013, 11, 96. [Google Scholar] [CrossRef]
- Wodarz, D. Computational modeling approaches to the dynamics of oncolytic viruses. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Ciupe, S.M.; Ribeiro, R.M.; Nelson, P.W.; Dusheiko, G.; Perelson, A.S. The role of cells refractory to productive infection in acute hepatitis B viral dynamics. Proc. Natl. Acad. Sci. USA 2007, 104, 5050–5055. [Google Scholar] [CrossRef]
- Snoeck, E.; Chanu, P.; Lavielle, M.; Jacqmin, P.; Jonsson, E.N.; Jorga, K.; Goggin, T.; Grippo, J.; Jumbe, N.L.; Frey, N. A comprehensive hepatitis C viral kinetic model explaining cure. Clin. Pharmacol. Ther. 2010, 87, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Guedj, J.; Yu, J.; Levi, M.; Li, B.; Kern, S.; Naoumov, N.V.; Perelson, A.S. Modeling viral kinetics and treatment outcome during alisporivir interferon-free treatment in hepatitis C virus genotype 2 and 3 patients. Hepatology 2014, 59, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Michor, F.; Iwasa, Y.; Nowak, M.A. Dynamics of cancer progression. Nat. Rev. Cancer 2004, 4, 197–205. [Google Scholar] [CrossRef]
- Perelson, A.S.; Neumann, A.U.; Markowitz, M.; Leonard, J.M.; Ho, D.D. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271, 1582–1586. [Google Scholar] [CrossRef]
- Perelson, A.S. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2002, 2, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Quirouette, C.; Younis, N.P.; Reddy, M.B.; Beauchemin, C.A.A. A mathematical model describing the localization and spread of influenza A virus infection within the human respiratory tract. PLoS Comput. Biol. 2020, 16, e1007705. [Google Scholar] [CrossRef]
- Möhler, L.; Flockerzi, D.; Sann, H.; Reichl, U. Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol. Bioeng. 2005, 90, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Randell, S.H.; Peretti, S.W.; Davis, C.W.; Boucher, R.C. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Investig. 1998, 102, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.E.; Moghadas, S.M.; Röst, G.; Wu, J. A delay differential model for pandemic influenza with antiviral treatment. Bull. Math. Biol. 2008, 70, 382–397. [Google Scholar] [CrossRef]
- Smith, A.M.; Ribeiro, R.M. Modeling the viral dynamics of influenza A virus infection. Crit. Rev. Immunol. 2010, 30, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.W.; Dominik, J.W.; Rowberg, A.H.; Higbee, G.A. Influenza virus population dynamics in the respiratory tract of experimentally infected mice. Infect. Immun. 1976, 13, 438–447. [Google Scholar] [CrossRef]
- Kanyiri, C.W.; Mark, K.; Luboobi, L. Mathematical analysis of influenza a dynamics in the emergence of drug resistance. Comput. Math. Methods Med. 2018, 2018, 2434560. [Google Scholar] [CrossRef]
- Drake, R.L.; Vogl, W.; Mitchell, A.W.M.; Gray, H. Gray’s Anatomy for Students, 4th ed.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Burrell, C.J.; Howard, C.R.; Murphy, F.A. Pathogenesis of virus infections. In Fenner and White’s Medical Virology; Academic Press: Amsterdam, The Netherlands, 2017; pp. 77–104. [Google Scholar] [CrossRef]
- Haseltine, E.L.; Rawlings, J.B.; Yin, J. Dynamics of viral infections: Incorporating both the intracellular and extracellular levels. Comput. Chem. Eng. 2005, 29, 675–686. [Google Scholar] [CrossRef]
- Haseltine, E.L.; Lam, V.; Yin, J.; Rawlings, J.B. Image-guided modeling of virus growth and spread. Bull. Math. Biol. 2008, 70, 1730–1748. [Google Scholar] [CrossRef][Green Version]
- Papanastasiou, T.C.; Malamataris, N.; Ellwood, K. A new outflow boundary condition. Int. J. Numer. Methods Fluids 1992, 14, 587–608. [Google Scholar] [CrossRef]
- Verros, G.D.; Malamataris, N.A. Estimation of diffusion coefficients in acetone−cellulose acetate solutions. Ind. Eng. Chem. Res. 1999, 38, 3572–3580. [Google Scholar] [CrossRef]
- Verros, G.; Malamataris, N. Finite element analysis of ferrite–austenite diffusion controlled phase transformation. Comput. Mater. Sci. 2002, 24, 380–392. [Google Scholar] [CrossRef]
- Arya, R.K. Finite element solution of coupled-partial differential and ordinary equations in multicomponent polymeric coatings. Comput. Chem. Eng. 2013, 50, 152–183. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef]
- Baccam, P.; Beauchemin, C.; Macken, C.A.; Hayden, F.G.; Perelson, A.S. Kinetics of influenza A virus infection in humans. J. Virol. 2006, 80, 7590–7599. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arya, R.K.; Verros, G.D.; Thapliyal, D. Towards a Mathematical Model for the Viral Progression in the Pharynx. Healthcare 2021, 9, 1766. https://doi.org/10.3390/healthcare9121766
Arya RK, Verros GD, Thapliyal D. Towards a Mathematical Model for the Viral Progression in the Pharynx. Healthcare. 2021; 9(12):1766. https://doi.org/10.3390/healthcare9121766
Chicago/Turabian StyleArya, Raj Kumar, George D. Verros, and Devyani Thapliyal. 2021. "Towards a Mathematical Model for the Viral Progression in the Pharynx" Healthcare 9, no. 12: 1766. https://doi.org/10.3390/healthcare9121766
APA StyleArya, R. K., Verros, G. D., & Thapliyal, D. (2021). Towards a Mathematical Model for the Viral Progression in the Pharynx. Healthcare, 9(12), 1766. https://doi.org/10.3390/healthcare9121766