Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence
Abstract
:1. Introduction
2. Methods
3. Results
Author | Design | Type of Wound | Type of ES | No. Patients | Parameters | Duration | LOE Outcome |
---|---|---|---|---|---|---|---|
Pulsed Current | |||||||
Feedar [50] | RCT | Chronic dermal ulcers | Monophasic pulsed v sham | 47 | 29.2 V, 29.2 mA, 132 μs, polarity reversed every 3 days then daily reversal with 64 pps | 30 min twice daily for 4 weeks | 1 Reduction in wound size. Wound area reduction ES 66% vs. sham 33% (p < 0.02) |
Gentzkow [51] | Prospective | Stage III + IV pressure ulcers | Monophasic pulsed | 61 | 128 pps, 35 mA | 30 min twice daily | 4 Complete healing achieved in 23% |
Baker [52] | Prospective | Open diabetic ulcers | Asymmetric biphasic vs. symmetric biphasic | 80 | Not stated | Until ulcers healed | 4 60% enhanced healing with asymmetric ES |
Franek [53] | RCT | Pressure ulcers | High-voltage pulsed v sham | 50 | 100 V, 100 μs, 100 Hz | 50 min, once daily 5 days a week for 6 weeks | 1 Improved healing rate |
Griffin [54] | RCT | Pressure ulcers | High-voltage pulsed v sham | 17 | 200 V, 100 pps, -ve cathode applied | 1 h daily for 20 days | 1 Significant increase in healing rate |
Houghton [55] | RCT | Pressure ulcers | High-voltage pulsed v sham | 34 | 50–100 V, 50 μs, 10–100 Hz, polarity alternated | 8 h daily for 3 months | 1 Improvement in wound appearance and stimulated healing with ES |
Peters [56] | RCT | Diabetic foot ulcers | High-voltage pulsed v sham | 40 | 50 V, 100 μs | 8 h daily for 12 weeks | 1 Enhanced wound healing when used with standard wound care |
Houghton [57] | RCT | Chronic leg ulcers | High-voltage pulsed v sham | 27 | 150 V, 100 μs, 100 Hz | 3 times weekly for 4 weeks | 1 Accelerated wound closure. Wound area reduction ES 44% vs. sham 16% |
Burdge [58] | Retrospective | Chronic diabetic wounds | High-voltage pulsed | 30 | <140 V, 90–100 μs, 55.19 Hz | 45 min sessions, 3 times weekly until healed approx. 16 weeks | 4 Improved healing |
Goldman [59] | RCT | Ischemic wounds | High-voltage pulsed v sham | 8 | 100 pps, 360 V, -ve polarity | 1 h daily for 14 weeks | 2 Increased vasodilation and dermal capillary formation |
Ahmad [60] | RCT | Pressure ulcers | High-voltage pulsed v sham | 60 | 100–175 V, 50 μs, 120 Hz | Group 1: 45 min, Group 2: 60 min, Group 3: 120 min; daily for 5 weeks | 1 Improved healing with ES |
Direct Current | |||||||
Gault [61] | RCT | Ischemic ulcers | LIDC v sham | 12 | Not stated | Until healed | 1 LIDC group healed twice as fast as control |
Adunsky [59] | RCT | Pressure ulcers | DC | 63 | Not stated | 8 weeks | 1 DC useful combined with standard wound care |
Carley [46] | Retrospective | Sacral/below knee ulcers | LIDC | 30 | 300–500 μA for normally innervated and 500–700 μA for denervated skin | 2 h, 5 days a week for 5 weeks | 3 LIDC improved healing. Wound are reduction ES 89% vs. control 37% (p < 0.01) |
Wirsing [42] | Controlled | Diabetic leg and foot ulcers | Wireless LIDC | 47 | 1.5 μA | 2–3 times weekly, 45–60 min sessions, for 8 weeks | 2 Significantly accelerated healing |
Wood [62] | Placebo controlled | Chronic decubitus ulcers | Pulsed LIDC | 74 | 300–600 μA | 8 weeks | 1 Fibroblast and keratinocytes growth enhanced. Increased healing rate |
Transcutaneous Electrical Nerve Stimulation | |||||||
Nolan [63] | Case study | Healthy skin | TENS | 1 | Not stated | 20 minutes | 5 Does not induce increased skin temperature |
Cramp [29] | RCT | Over median nerve | TENS | 30 | High frequency: 110 Hz, 200 μsLow frequency: 4 Hz, 200 μs | 15 minutes | 1 No difference in skin temperature and blood flow |
Simpson [64] | RCT | Limb ischemia | TSE | 8 | Not stated | 1 hour daily for one week, then a week off and repeated for third week | 1 No improvement in pain or microcirculation |
Cramp [28] | RCT | Health volunteers | TENS | 30 | High frequency: 110 Hz, 200 μsLow frequency: 4 Hz, 200 μs | 15 minutes | 1 Local increase in blood flow |
Wikstrom [65] | Controlled | Blister wound | TENS | 9 | High frequency: 100 Hz. Low frequency: 2 Hz | 45 minutes | 2 Stimulated perfusion |
Frequency Rhythmic Electrical Modulation System | |||||||
Jankovic [66] | RCT | Leg ulcers | FREMS v control | 35 | 300 V, 1000 Hz, 10–40 μs, 100–170 μA | 40 min daily, 5 days a week for 3 weeks | 1 Accelerated ulcer healing and reduced painWound area reduction ES 82% vs. control 46% |
Santamato [67] | RCT | Venous ulcers | FREMS v control | 20 | Not stated | 5 days a week for 3 weeks | 1 Reduced pain and area of ulcers |
Biofeedback Electrical Stimulation | |||||||
Ud-Din [68] | Case-series | Raised dermal scars | Biofeedback | 18 | 0.004 mA, 20–80 V, 60 Hz | Until resolved | 4 Improved scar symptoms |
Perry [48] | Case-series | Raised dermal scars | Biofeedback | 19 | 0.004 mA, 20–80 V, 60 Hz | Until resolved | 4 Improved scar symptoms |
Ud-Din [43] | Controlled | Acute biopsy wounds | Biofeedback | 20 | 0.004 mA, 20–80 V, 60 Hz | 2 weeks | 2 Increased blood flow and haemoglobin levels |
Bioelectric Dressings | |||||||
Blount [41] | Case-series | Skin graft donor sites | Bioelectric dressing | 13 | 2–10 mV, 0.6–0.7 V, 10 μA | 1 month | 4 Faster healing and improved scarring |
Hampton [69] | Case study | Leg ulcer | Bioelectric dressing | 1 | Not stated | Until healed | 5 Improved healing |
Hampton [70] | Case study | Pressure ulcer | Bioelectric dressing | 1 | Not stated | 12 weeks | 5 Complete healing achieved |
3.1. Pulsed Current
3.2. Direct Current
3.3. Transcutaneous Electrical Nerve Stimulation
3.4. Frequency Rhythmic Electrical Modulation System
3.5. Biofeedback ES
3.6. Bioelectric Dressings
4. Discussion
Author Contributions
Conflict of Interest
References
- Monaco, J.L.; Lawrence, W.T. Acute wound healing: An overview. Clin. Plast. Surg. 2003, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Greaves, N.S.; Iqbal, S.A.; Baguneid, M.; Bayat, A. The role of skin substitutes in the management of chronic cutaneous wounds. Wound Repair Regen. 2013, 21, 194–210. [Google Scholar] [CrossRef] [PubMed]
- Fonder, M.A.; Lazarus, G.S.; Cowan, D.A.; Aronson-Cook, B.; Kohli, A.R.; Mamelak, A.J. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J. Am. Acad. Dermatol. 2008, 58, 185–206. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Halder, S.; Chumber, S.; Misra, M.C.; Sharma, L.K.; Srivastava, A. Meta-analysis of randomized controlled trials on hydrocolloid occlusive dressing versus conventional gauze dressing in the healing of chronic wounds. Asian J. Surg. 2004, 27, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Posnett, J.; Franks, P.J. The burden of chronic wounds in the UK. Nurs. Times 2008, 104, 44–45. [Google Scholar] [PubMed]
- Mustoe, T.A.; O’Shaughnessy, K.; Kloeters, O. Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis. Plast. Reconstr. Surg. 2006, 117, 35S–41S. [Google Scholar] [CrossRef] [PubMed]
- Vileikyte, L. Diabetic foot ulcers: A quality of life issue. Diabetes Metab. Res. Rev. 2001, 17, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Amsler, F.; Willenberg, T.; Blättler, W. In search of optimal compression therapy for venous leg ulcers: A meta-anlysis of studies comparing divers bandages with specially designed stockings. J. Vasc. Surg. 2009, 50, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.M.; Tingley-Kelley, K.; Warriner, I.R.A. Silver treatments and silver-impregnated dressings for the healing of leg wounds and ulcers: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2010, 63, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Marston, W.A.; Reyzelman, A.M.; Kirsner, R.S. Comparison of negative pressure wound therapy with an ultraportable mechanically powered device vs. traditional electrically powered device for the treatment of chronic lower extremity ulcers: A multicenter randomized- controlled trial. Wound Repair Regen. 2011, 19, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Cullum, N.A.; Al-Kurdi, D.; Bell-Syer, S.E. Therapeutic ultrasound for venous leg ulcers. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef]
- Dumville, J.C.; Worthy, G.; Soares, M.O.; Bland, J.M.; Cullum, N.; Dowson, C.; Iglesias, C.; McCaughan, D.; Mitchell, J.L.; Nelson, E.A.; et al. VenUS II: A randomised controlled trial of larval therapy in the management of leg ulcers. Health Technol. Assess. 2009, 13, 1–206. [Google Scholar] [CrossRef] [PubMed]
- Greaves, N.S.; Benatar, B.; Baguneid, M.; Bayat, A. Single-stage application of a novel decellularized dermis for treatment-resistant lower limb ulcers: Positive outcomes assessed by SIAscopy, laser perfusion, and 3D imaging, with sequential timed histological analysis. Wound Repair Regen. 2013, 21, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Snyder, R.J.; Kirsner, R.S.; Warriner, R.A.; Lavery, L.A.; Hanft, J.R.; Sheehan, P. Consensus recommendations on advancing the standard of care for treating neuropathic foot ulcers in patients with diabetes. Ostomy Wound Manag. 2010, 56, S1–S24. [Google Scholar]
- Suh, H.; Petrofsky, J.; Fish, A.; Hernandez, V.; Mendoza, E.; Collins, K.; Yang, T.; Abdul, A.; Batt, J.; Lawson, D. A new electrode design to improve outcomes in the treatment of chronic non-healing wounds in diabetes. Diabetes Technol. Ther. 2009, 11, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Petrofsky, J.; Lawson, D.; Prowse, M.; Suh, H.J. Effects of a 2-, 3- and 4-electrode stimulator design on current dispersion on the surface and into the limb during electrical stimulation in controls and patients with wounds. J. Med. Eng. Technol. 2008, 32, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Jünger, M.; Arnold, A.; Zuder, D.; Stahl, H.W.; Heising, S. Local therapy and treatment costs of chronic, venous leg ulcers with electrical stimulation (Dermapulse): A prospective, placebo controlled, double blind trial. Wound Repair Regen. 2008, 16, 480–487. [Google Scholar] [CrossRef]
- Isseroff, R.R.; Dahle, S.E. Electrical stimulation therapy and wound healing: Where are we now? Adv. Wound Care 2012, 1, 238–243. [Google Scholar] [CrossRef]
- Reger, S.I.; Hyodo, A.; Negami, S.; Kambic, H.E.; Sahgal, V. Experimental wound healing with electrical stimulation. Artif. Organs 1999, 23, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Gagnier, K.A.; Manix, N.; Baker, L. The effects of electrical stimulation on cutaneous oxygen supply in paraplegics. Phys. Ther. 1988, 68, 835–839. [Google Scholar]
- Peters, E.J.; Armstrong, D.G.; Wunderlich, R.P.; Bosma, J.; Stacpoole-Shea, S.; Lavery, L.A. The benefit of electrical stimulation to enhance perfusion in persons with diabetes mellitus. J. Foot Ankle Surg. 1998, 37, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Rouabhia, M.; Park, H.; Meng, S.; Derbali, H.; Zhang, Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One 2013, 8, e71660. [Google Scholar] [CrossRef] [PubMed]
- Young, S.; Hampton, S.; Tadej, M. Study to evaluate the effect of low-intensity pulsed electrical currents on levels of oedema in chronic non-healing wounds. J. Wound Care 2011, 20, 370–373. [Google Scholar] [CrossRef]
- Daeschlein, G.; Assadian, O.; Kloth, L.C.; Meinl, C.; Ney, F.; Kramer, A. Antibacterial activity of positive and negative polarity low-voltage pulsed current (LVPC) on six typical gram-positive and gram-negative bacterial pathogens of chronic wounds. Wound Repair Regen. 2007, 15, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, O.M.; Mertz, P.M.; Smerbeck, R.V.; Eaglstein, W.H. The healing of superficial skin wounds is stimulated by external electrical current. J. Invest. Dermatol. 1983, 81, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Bourguignon, G.J.; Bourguignon, L.Y. Electric stimulation of protein and DNA synthesis in human fibroblasts. FASEB J. 1987, 1, 398–402. [Google Scholar] [PubMed]
- Bassett, C.A.L.; Herrmann, I. The effect of electrostatic fields on macromolecular synthesis by fibroblasts in vitro. J. Cell Biol. 1968, 9, 39. [Google Scholar]
- Cramp, A.F.L.; Gilsenan, C.; Lowe, A.S.; Walsh, D.M. The effect of high- and low-frequency transcutaneous electrical nerve stimulation upon cutaneous blood flow and skin temperature in healthy subjects. Clin. Physiol. 2000, 20, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Cramp, A.F.; Noble, J.G.; Lowe, A.S.; Walsh, D.M. Transcutaneous electrical nerve stimulation (TENS): The effect of electrode placement upon cutaneous blood flow and skin temperature. Acupunct. Electrother. Res. 2001, 26, 25–37. [Google Scholar] [PubMed]
- Cramp, F.L.; McCullough, G.R.; Lowe, A.S.; Walsh, D.M. Transcutaneous electric nerve stimulation: The effect of intensity on local and distal cutaneous blood flow and skin temperature in healthy subjects. Arch. Phys. Med. Rehabil. 2002, 83, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Kaada, B.; Olsen, E.; Eielsen, O. In search of mediators of skin vasodilation induced by transcutaneous nerve stimulation: III. Increase in plasma VIP in normal subjects and in Raynaud’s disease. Gen. Pharmacol. 1984, 15, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Kaada, B.; Helle, K.B. In search of mediators of skin vasodilation induced by transcutaneous nerve stimulation: IV. In vitro bioassay of the vasoinhibitory activity of sera from patients suffering from peripheral ischemia. Gen. Pharmacol. 1984, 15, 115–122. [Google Scholar]
- Abram, S.E.; Asiddao, C.B.; Reynolds, A.C. Increased skin temperature during transcutaneous electrical stimulation. Anesth. Analg. 1980, 59, 22–25. [Google Scholar] [PubMed]
- Sebastian, A.; Syed, F.; Perry, D.; Balamurugan, V.; Colthurst, J.; Chaudhry, I.H.; Bayat, A. Acceleration of cutaneous healing by electrical stimulation: Degenerate electrical waveform down-regulates inflammation, up-regulates angiogenesis and advances remodelling in temporal punch biopsies in a human volunteer study. Wound Repair Regen. 2011, 19, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Szuminky, N.J.; Albers, A.C.; Unger, P.; Eddy, J.G. Effect of narrow, pulsed high voltages on bacterial viability. Phys. Ther. 1994, 74, 660–667. [Google Scholar] [PubMed]
- Foulds, I.S.; Barker, A.T. Human skin battery potentials and their possible role in wound healing. Br. J. Dermatol. 1983, 109, 515–522. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, M.E.; Vanable, J.W., Jr. Voltage gradients in newt limb stumps. Prog. Clin. Biol. Res. 1986, 210, 213–238. [Google Scholar] [PubMed]
- Barker, A.T.; Jaffe, L.F.; Vanable, J.W., Jr. The glabrous epidermis of cavies contains a powerful battery. Am. J. Physiol. 1982, 242, R358–R366. [Google Scholar] [PubMed]
- Thakral, G.; Lafontaine, J.; Najafi, B.; Talal, T.K.; Kim, P.; Lavery, L.A. Electrical stimulation to accelerate wound healing. Diabet. Foot Ankle 2013. [Google Scholar] [CrossRef]
- Atalay, C.; Yilmaz, K.B. The effect of transcutaneous electrical nerve stimulation on postmastectomy skin flap necrosis. Breast Cancer Res. Treat. 2009, 117, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Blount, A.L.; Foster, S.; Rapp, D.A.; Wilcox, R. The use of bioelectric dressings in skin graft harvest sites: A prospective case series. J. Burn Care Res. 2012, 33, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Wirsing, P.G.; Habrom, A.D.; Zehnder, T.M.; Friedli, S.; Blatti, M. Wireless micro current stimulation—An innovative electrical stimulation method for the treatment of patients with leg and diabetic foot ulcers. Int. Wound J. 2013. [Google Scholar] [CrossRef]
- Ud-Din, S.; Perry, D.; Giddings, P.; Colthurst, J.; Zaman, K.; Cotton, S.; Whiteside, S.; Morris, J.; Bayat, A. Electrical stimulation increases blood flow and haemoglobin levels in acute cutaneous wounds without affecting wound closure time: Evidenced by non-invasive assessment of temporal biopsy wounds in human volunteers. Exp. Dermatol. 2012, 21, 758–764. [Google Scholar] [CrossRef]
- Stillings, D. A survey of the history of electrical stimulation for pain to 1900. Med. Instrum. 1975, 9, 255–259. [Google Scholar] [PubMed]
- Kloth, L.C.; Feedar, J.A. Acceleration of wound healing with high voltage, monophasic, pulsed current. Phys. Ther. 1988, 68, 503–508. [Google Scholar]
- Carley, P.J.; Wainapel, S.F. Electrotherapy for acceleration of wound healing: Low intensity direct current. Arch. Phys. Med. Rehabil. 1985, 66, 443–446. [Google Scholar] [PubMed]
- Sebastian, A.; Syed, F.; McGrouther, D.A.; Colthurst, J.; Paus, R.; Bayat, A. A novel in vitro assay for electrophysiological research on human skin fibroblasts: Degenerate electrical waves downregulate collagen I expression in keloid fibroblasts. Exp. Dermatol. 2011, 20, 64–68. [Google Scholar] [CrossRef]
- Perry, D.; Colthurst, J.; Giddings, P.; McGrouther, D.A.; Morris, J.; Bayat, A. Treatment of symptomatic abnormal skin scars with electrical stimulation. J. Wound Care 2010, 19, 447–453. [Google Scholar]
- Kloth, L.C. Electrical stimulation technologies for wound healing. Adv. Wound Care 2014, 3, 81–90. [Google Scholar] [CrossRef]
- Feedar, J.A.; Kloth, L.C.; Gentzkow, G.D. Chronic dermal ulcer healing enhanced with monophasic pulsed electrical stimulation. Phys. Ther. 1991, 71, 639–649. [Google Scholar] [PubMed]
- Gentzkow, G.D.; Alon, G.; Taler, G.A.; Eltorai, I.M.; Montroy, R.E. Healing of refactory stage III and IV pressure ulcers by a new electrical stimulation device. Wounds 1993, 5, 160–172. [Google Scholar]
- Baker, L.L.; Chanbers, R.; Demuth, S.K.; Villar, F. Effects of electrical stimulation on wound healing in patients with diabetic ulcers. Diabetes Care 1997, 20, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Franek, A.; Kostur, R.; Polak, A.; Taradaj, J.; Szlachta, Z.; Blaszczak, E.; Dolibog, P.; Dolibog, P.; Koczy, B.; Kucio, C. Using high voltage electrical stimulation in the treatment of recalcitrant pressure ulcers: Results of a randomised, controlled clinical study. Ostomy Wound Manag. 2012, 58, 30–44. [Google Scholar]
- Griffin, J.W.; Tooms, R.E.; Mendius, R.A.; Clifft, J.K.; Vander Zwaag, R.; el-Zeky, F. Efficacy of high voltage pulsed current for healing of pressure ulcers in patients with spinal cord injury. Phys. Ther. 1991, 71, 433–442. [Google Scholar] [PubMed]
- Houghton, P.E.; Campbell, K.E.; Fraser, C.H.; Harris, C.; Keast, D.H.; Potter, P.J.; Hayes, K.C.; Woodbury, M.G. Electrical stimulation therapy increases rate of healing of pressure ulcers in community-dwelling people with spinal cord injury. Arch. Phys. Med. Rehabil. 2010, 91, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.J.; Lavery, L.A.; Armstrong, D.G.; Fleischli, J.G. Electric stimulation as an adjunct to heal diabetic foot ulcers: A randomized clinical trial. Arch. Phys. Med. Rehabil. 2001, 82, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.E.; Kincaid, C.B.; Lovell, M.; Campbell, K.E.; Keast, D.H.; Woodbury, M.G.; Harris, K.A. Effect of electrical stimulation on chronic leg ulcer size and appearance. Phys. Ther. 2003, 83, 17–28. [Google Scholar] [PubMed]
- Burdge, J.J.; Hartman, J.F.; Wright, M.L. A study of HVPC as an adjunctive therapy in limb salvage for chronic diabetic wounds of the lower extremity. Ostomy Wound Manag. 2009, 55, 30–38. [Google Scholar]
- Goldman, R.; Rosen, M.; Brewley, B.; Golden, M. Electrotherapy promotes healing and microcirculation of infrapopliteal ischemic wounds: A prospective pilot study. Adv. Skin Wound Care 2004, 17, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.T. High-voltage pulsed galvanic stimulation: Effect of treatment duration on healing of chronic pressure ulcers. Mediterr. Counc. Burn. Fire Disasters 2008, 21, 124–128. [Google Scholar]
- Gault, W.R.; Gatens, P.F., Jr. Use of low intensity direct current in management of ischemic skin ulcers. Phys. Ther. 1976, 56, 265–269. [Google Scholar] [PubMed]
- Wood, J.M.; Evans, P.E., 3rd; Schallreuter, K.U.; Jacobson, W.E.; Sufit, R.; Newman, J.; White, C.; Jacobson, M. A multicenter study on the use of pulsed low-intensity direct current for healing chronic stage II and stage III decubitus ulcers. Arch. Dermatol. 1993, 129, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.F.; Hartsfield, J.K.; Witters, D.M.; Wason, P.J. Failure of transcutaneous electrical nerve stimulation in the conventional and burst modes to alter digital skin temperature. Arch. Phys. Med. Rehabil. 1993, 74, 182–187. [Google Scholar] [PubMed]
- Simpson, K.H.; Ward, J. A Randomized, double-blind, crossover study of the use of transcutaneous spinal electroanalgesia in patients with pain from chronic critical limb ischemia. J. Pain Symptom Manag. 2004, 28, 511–516. [Google Scholar]
- Wikstrom, S.O.; Svedman, P.; Svensson, H.; Tanweer, A.S. Effect of transcutaneous nerve stimulation on microcirculation in intact skin and blister wounds in healthy volunteers. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1999, 33, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Janković, A.; Binić, I. Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers. Arch. Dermatol. Res. 2008, 300, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Santamato, A.; Panza, F.; Fortunato, F.; Portincasa, A.; Frisardi, V.; Cassatella, G.; Valente, M.; Seripa, D.; Ranieri, M.; Fiore, P. Effectiveness of the frequency rhythmic electrical modulation system for the treatment of chronic and painful venous leg ulcers in older adults. Rejuvenation Res. 2012, 15, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Ud-Din, S.; Giddings, P.; Colthurst, J.; Whiteside, S.; Morris, J.; Bayat, A. Significant reduction of symptoms of scarring with electrical stimulation: Evaluated with subjective and objective assessment tools. Wounds 2013, 25, 212–224. [Google Scholar]
- Hampton, S.; King, L. Healing an intractable wound using bio-electric stimulation therapy. Br. J. Nurs. 2005, 14, S30–S32. [Google Scholar] [CrossRef] [PubMed]
- Hampton, S.; Collins, F. Treating a pressure ulcer with bio-electric stimulation therapy. Br. J. Nurs. 2006, 15, S14–S18. [Google Scholar] [CrossRef] [PubMed]
- Franek, A.; Taradaj, J.; Polak, A.; Cierpka, L.; Blaszczak, E. Efficacy of high voltage stimulation for healing of venous leg ulcers in surgically and conservatively treated patients. Phlebologie 2006, 35, 127–133. [Google Scholar]
- Kloth, L.C. Wound healing with conductive electrical stimulation—It’s the dosage that counts. J. Wound Technol. 2009, 6, 30. [Google Scholar]
- Ramadan, A.; Elsaidy, M.; Zyada, R. Effect of low-intensity direct current on the healing of chronic wounds: A literature review. J. Wound Care 2008, 17, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.A.; Karselis, T.C. Skin pH following high voltage pulsed galvanic stimulation. Phys. Ther. 1983, 63, 1593–1596. [Google Scholar] [PubMed]
- Ojingwa, J.C.; Isseroff, R.R. Electrical stimulation of wound healing. J. Investig. Dermatol. 2003, 121, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Adunsky, A.; Ohry, A. Decubitus direct current treatment (DDCT) of pressure ulcers: Results of a randomized double-blinded placebo controlled study. Arch. Gerontol. Geriatr. 2005, 41, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Johnson, M.I. A comparison of transcutaneous electrical nerve stimulation (TENS) at 3 and 80 pulses per second on cold-pressor pain in healthy human participants. Clin. Physiol. Funct. Imaging 2010, 30, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Liebano, R.E.; Rakel, B.; Vance, C.G.; Walsh, D.M.; Sluka, K.A. An investigation of the development of analgesic tolerance to TENS in humans. Pain 2011, 152, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Kjartansson, J.; Lundeberg, T.; Körlof, B. Transcutaneous electrical nerve stimulation (TENS) in ischemic tissue. Plast. Reconstr. Surg. 1988, 81, 813–815. [Google Scholar] [PubMed]
- Johnson, M.I. Transcutaneous Electrical Nerve Stimulation (TENS). In Electrotherapy: Evidence-Based Practice, 12th ed.; Watson, T., Ed.; Elsevier: Toronto, ON, Canada, 2008. [Google Scholar]
- Sherry, J.E.; Oehrlein, K.M.; Hegge, K.S.; Morgan, B.J. Effect of burst-mode transcutaneous electrical nerve stimulation on peripheral vascular resistance. Phys. Ther. 2001, 81, 1183–1191. [Google Scholar] [PubMed]
- Colthurst, J.; Giddings, P. A retrospective case note review of the Fenzian electrostimulation system: A novel non-invasive, non-pharmacological treatment. Pain Clin. 2007, 19, 7–14. [Google Scholar] [CrossRef]
- Guo, A.; Song, B.; Reid, B.; Gu, Y.; Forrester, J.V.; Jahoda, C.A.; Zhao, M. Effects of physiological electric fields on migration of human dermal fibroblasts. J. Investig. Dermatol. 2010, 130, 2320–2327. [Google Scholar] [CrossRef] [PubMed]
- Talebi, G.; Torkaman, G.; Firoozabadi, M.; Shariat, S. Effect of anodal and cathoda microamperage direct current electrical stimulation on injury potential and wound size in guinea pigs. J. Rehabil. Res. Dev. 2008, 45, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Koel, G.; Houghton, P.E. Electrostimulation: Current status, strength of evidence guidelines, and meta-analysis. Adv. Wound Care (New Rochelle) 2014, 3, 118–126. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ud-Din, S.; Bayat, A. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence. Healthcare 2014, 2, 445-467. https://doi.org/10.3390/healthcare2040445
Ud-Din S, Bayat A. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence. Healthcare. 2014; 2(4):445-467. https://doi.org/10.3390/healthcare2040445
Chicago/Turabian StyleUd-Din, Sara, and Ardeshir Bayat. 2014. "Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence" Healthcare 2, no. 4: 445-467. https://doi.org/10.3390/healthcare2040445