Determinants of Severe Financial Distress in U.S. Acute Care Hospitals: A National Longitudinal Study
Highlights
- Nearly one in five U.S. short-term acute care hospitals are in severe financial distress, with rising debt and declining margins placing more than 566 facilities at heightened risk of closure or bankruptcy.
- Larger, urban hospitals with larger debt ratios were more likely to be distressed.
- Hospital financial distress at this scale signals a growing risk of service reductions and closures that could undermine regional healthcare capacity and limit access in many communities.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measures
2.2.1. Outcome Measure Primary Dependent Variable Severe Financial Distress
2.2.2. Hospital Organizational and Operational Characteristics
2.2.3. Community/Market Characteristics and Linkage
2.3. Study Sample Dataset Construction
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Policy and Practice Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALOS | Average length of stay |
| OR | Odds ratio |
| ROA | Return on assets |
References
- Maizel, S. The Financial Crisis Facing America’s Hospital Industry. Am. Bankruptcy Inst. J. 2008, 27, 56–58. [Google Scholar]
- Beauvais, B.; Ramamonjiarivelo, Z.; Betancourt, J.; Cruz, J.; Fulton, L. The Predictive Factors of Hospital Bankruptcy—An Exploratory Study. Healthcare 2023, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, H.; Huang, Q.; He, K. Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowl. Based Syst. 2014, 57, 41–56. [Google Scholar] [CrossRef]
- Carroll, C.; Euhus, R.; Beaulieu, N.; Chernew, M.E. Hospital Survival in Rural Markets: Closures, Mergers, And Profitability. Health Aff. 2023, 42, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Han, A.; Lee, K.H. Financial Sustainability of Hospitals and Equity in Healthcare Access: Using the Social Resource-Based View. Public Perform. Manag. Rev. 2023, 46, 1442–1468. [Google Scholar] [CrossRef]
- Saghafian, S. Drivers, adaptations, and public impacts of hospital closures: Implications for policy. Front. Public Health 2024, 12, 1415033. [Google Scholar] [CrossRef]
- Berardi, C.; Wechtler, H.; Hinwood, M.; Schut, F. Comparing the Evolving Dynamics of the Mandatory-Voluntary Financing Mix in OECD Countries: A Composite Measure. Soc. Indic. Res. 2025, 179, 593–616. [Google Scholar] [CrossRef]
- DiMaggio, P.J.; Powell, W.W. The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. Am. Sociol. Rev. 1983, 48, 147–160. [Google Scholar] [CrossRef]
- Scott, W.R. Institutions and Organizations: Ideas, Interests, and Identities, 4th ed.; SAGE Publications: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Barney, J. Firm resources and sustained competitive advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Burnett, S.; Mendel, P.; Nunes, F.; Wiig, S.; van den Bovenkamp, H.; Karltun, A.; Robert, G.; Anderson, J.; Vincent, C.; Fulop, N. Using institutional theory to analyse hospital responses to external demands for finance and quality in five European countries. J. Health Serv. Res. Policy 2016, 21, 109–117. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, G.; Anderson, G. COVID-19 and Hospital Financial Viability in the US. JAMA Health Forum 2022, 3, e221018. [Google Scholar] [CrossRef]
- Gidwani, R.; Damberg, C.L. Changes in US hospital financial performance during the COVID-19 public health emergency. JAMA Health Forum 2023, 4, e231928. [Google Scholar] [CrossRef]
- Rhodes, J.H.; Santos, T.; Young, G.J. Hospitals’ uneven recovery from the COVID-19 pandemic. Health Aff. Sch. 2023, 1, qxad034. [Google Scholar] [CrossRef] [PubMed]
- U.S. Census Bureau. American Community Survey. Available online: https://data.census.gov (accessed on 2 October 2025).
- Malone, T.L.; Pink, G.H.; Holmes, G.M. An updated model of rural hospital financial distress. J. Rural Health. 2025, 41, e12882. [Google Scholar] [CrossRef] [PubMed]
- Carroll, C.; Chang, J.Y. Rural Hospital Closures Led to Increased Prices at Nearby ‘Surviving’ Hospitals, 2012–22. Health Aff. 2025, 44, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Langabeer, J.R.; Lalani, K.H.; Champagne-Langabeer, T.; Helton, J.R. Predicting Financial Distress in Acute Care Hospitals. Hosp. Top. 2018, 96, 75–79. [Google Scholar] [CrossRef]
- Lalani, K.; Helton, J.; Vega, F.R.; Cardenas-Turanzas, M.; Champagne-Langabeer, T.; Langabeer, J. The Impact of COVID-19 on the Financial Performance of Largest Teaching Hospitals. Healthcare 2023, 11, 1996. [Google Scholar] [CrossRef]
- Porter, M.E. Competitive Advantage of Nations: Creating and Sustaining Superior Performance; First Free: New York, NY, USA, 1990. [Google Scholar]
- Wigren-Kristoferson, C.; Brundin, E.; Hellerstedt, K.; Stevenson, A.; Aggestam, M. Rethinking embeddedness: A review and research agenda. Entrep. Reg. Dev. 2022, 34, 32–56. [Google Scholar] [CrossRef]
- Huerta, T.R.; Ford, E.W.; Peterson, L.T.; Brigham, K.H. Testing the hospital value proposition: An empirical analysis of efficiency and quality. Health Care Manag. Rev. 2008, 33, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Douglas, T.J.; Ryman, J.A. Understanding Competitive Advantage in the General Hospital Industry: Evaluating Strategic Competencies. Strateg. Manag. J. 2003, 24, 333–347. [Google Scholar] [CrossRef]
- Sirmon, D.G.; Hitt, M.A.; Ireland, R.D.; Gilbert, B.A. Resource orchestration to create competitive advantage breadth, depth, and life cycle effects. J. Manag. 2011, 37, 1390–1412. [Google Scholar] [CrossRef]
- Carbonara, N.; Pellegrino, R.; De Luca, C. Resilience of hospitals in an age of disruptions: A systematic literature review on resources and capabilities. Health Syst. 2024, 13, 192–228. [Google Scholar] [CrossRef] [PubMed]
- Oner, N.; Zengul, F.; Ozaydin, B.; Pallotta, R.A.; Weech-Maldonado, R. Organizational and Environmental Factors Associated with Hospital Financial Performance: A Systematic Review. J. Health Care Financ. 2016, 42, 14–37. [Google Scholar]
- Lalani, K.; Revere, L.; Chan, W.; Champagne-Langabeer, T.; Tektiridis, J.; Langabeer, J. Impact of External Environmental Dimensions on Financial Performance of Major Teaching Hospitals in the U.S. Healthcare 2021, 9, 1069. [Google Scholar] [CrossRef]
- Lord, J.; Landry, A.; Savage, G.T.; Weech-Maldonado, R. Predicting Nursing Home Financial Distress Using the Altman Z-Score. Inq. A J. Med. Care Organ. Provis. Financ. 2020, 57, 46958020934946. [Google Scholar] [CrossRef]
- Upadhye, D.; Alzeen, M.; Aswani, M.; Cendoma, P.; Borkowski, N. Altman Z-score and its application to Federally Qualified Health Centers. J. Hosp. Manag. Health Policy 2025, 9, jhmhp-24-100. [Google Scholar] [CrossRef]
- Altman, E.I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. J. Financ. 1968, 23, 589–609. [Google Scholar] [CrossRef]
- Altman, E.I.; Hotchkiss, E. Corporate Financial Distress and Bankruptcy: Predict and Avoid Bankruptcy, Analyze and Invest in Distressed Debt; Wiley Press: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Long, E.F.; Mathews, K.S. The Boarding Patient: Effects of ICU and Hospital Occupancy Surges on Patient Flow. Prod. Oper. Manag. 2018, 27, 2122–2143. [Google Scholar] [CrossRef]
- Bosque-Mercader, L.; Siciliani, L. The association between bed occupancy rates and hospital quality in the English National Health Service. Eur. J. Health Econ. HEPAC Health Econ. Prev. Care 2023, 24, 209–236. [Google Scholar] [CrossRef]
- Talebpour, A.; Sadeghi-Bazargani, H.; Janati, A.; Pashazadeh, F.; Gholizadeh, M. Crucial key performance indicators for hospital evaluation: A scoping review. J. Educ. Health Promot. 2025, 14, 195. [Google Scholar] [CrossRef]
- Enumah, S.J.; Chang, D.C. Predictors of financial distress among private U.S. hospitals. J. Surg. Res. 2021, 267, 251–259. [Google Scholar] [CrossRef]
- Ellis Hilts, K.; Gibson, P.J.; Blackburn, J.; Yeager, V.A.; Halverson, P.K.; Menachemi, N. Institutional factors associated with hospital partnerships for population health: A pooled cross-sectional analysis. Health Care Manag. Rev. 2022, 47, 254–262. [Google Scholar] [CrossRef]
- Ozcan, Y.A.; Luke, R.D. A national study of the efficiency of hospitals in urban markets. Health Serv. Res. 1993, 27, 719–739. [Google Scholar]
- Zwanziger, J.; Khan, N.; Bamezai, A. The relationship between safety net activities and hospital financial performance. BMC Health Serv. Res. 2010, 10, 15. [Google Scholar] [CrossRef]
- HR1 119th Congress. One Big Beautiful Bill Act. U.S. House of Republicans, Statute 119–121. Available online: https://www.congress.gov/bill/119th-congress/house-bill/1/text (accessed on 1 November 2025).
- Basu, S.; Patel, S.Y.; Berkowitz, S.A. Projected Health System and Economic Impacts of 2025 Medicaid Policy Proposals. JAMA Health Forum 2025, 6, e253187. [Google Scholar] [CrossRef]
- Haught, R.; Coleman, A.; Dobson, A.; Richards, C.; McGuire, C. The Impact of Proposed Federal Medicaid Work Requirements on Hospital Revenues and Financial Margins; Commonwealth Fund: New York, NY, USA, 2025. [Google Scholar] [CrossRef]
| Characteristic | FY2021 (n = 2690) | FY2022 (n = 2642) | FY2023 (n = 2568) | Total (n = 7900) |
|---|---|---|---|---|
| Structural | ||||
| Size/Beds, mean (SD) | 237.562 (237.617) | 235.405 (240.218) | 234.390 (239.061) | 235.810 (238.932) |
| Control: Governmental, n (%) | 383 (14.2%) | 379 (14.3%) | 383 (14.9%) | 1145 (14.5) |
| Control: Non-Profit, n (%) | 1727 (64.2%) | 1690 (64.0%) | 1626 (63.3%) | 5043 (63.8) |
| Control: Proprietary, n (%) | 580 (21.6%) | 573 (21.7%) | 559 (21.8%) | 1712 (21.7) |
| Urban, n (%) | 1673 (62.2%) | 1615 (61.1%) | 1515 (59.0%) | 4803 (60.8) |
| Rural, n (%) | 1017 (37.8%) | 1027 (38.9%) | 1053 (41.0%) | 3097 (39.2) |
| Operational | ||||
| Average length of stay, mean (SD) | 4.748 (1.965) | 4.801 (2.052) | 5.620 (50.334) | 5.049 (28.747) |
| Occupancy Rate, mean (SD) | 0.497 (0.235) | 0.505 (0.233) | 0.491 (0.236) | 0.498 (0.234) |
| Debt/Equity ratio, mean (SD) | 4.807 (68.123) | 3.738 (24.981) | 6.106 (61.559) | 4.871 (54.962) |
| Environmental/Market | ||||
| Median Income, $ (SD) | 39,247 (14,196) | 39,484 (14,242) | 39,466 (14,238) | 39,397 (14,223) |
| Obesity % (SD) | 34.929 (6.512) | 34.866 (6.530) | 34.905 (6.532) | 34.899 (6.52) |
| Average Age, years (SD) | 39.110 (6.205) | 39.071 (6.149) | 39.069 (6.158) | 39.080 (6.170) |
| % Uninsured (SD) | 12.475 (9.374) | 12.398 (9.293) | 12.418 (9.412) | 12. 41 (9.41) |
| Population (per 100,000), mean (SD) | 0.301 (0.173) | 0.301 (0.174) | 0.303 (0.174) | 0.302 (0.174) |
| Measure | 2021 | 2022 | 2023 | p-Value |
|---|---|---|---|---|
| Z-score | 5.46 (4.786) | 5.33 (5.095) | 5.37 (5.232) | p = 0.886 |
| Operating Margin | −4.22 (66.755) | −7.76 (40.465) | −6.55 (29.650) | p < 0.05 |
| Return on Assets | 10.85 (20.662) | 3.00 (22.892) | 5.05 (21.378) | p < 0.001 |
| Variable | B | S.E. | Wald | OR | 95% C.I. for EXP(B) | |||
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | p-Value | Sig | |||||
| Beds (size) | 0.000 | 0.000 | 6.107 | 1.000 | 0.999 | 1.000 | 0.013 | * |
| Type (control) | 0.031 | 0.039 | 0.632 | 1.032 | 0.955 | 1.114 | 0.427 | |
| Urban | 0.237 | 0.052 | 21.084 | 1.268 | 1.146 | 1.402 | <0.001 | ** |
| ALOS | 0.063 | 0.014 | 21.062 | 1.065 | 1.037 | 1.094 | <0.001 | ** |
| Occupancy Rate | −1.157 | 0.118 | 96.245 | 0.314 | 0.249 | 0.396 | <0.001 | ** |
| Debt-Equity | 0.050 | 0.003 | 261.308 | 1.051 | 1.045 | 1.057 | <0.001 | ** |
| Median Income | −0.004 | 0.004 | 1.145 | 0.996 | 0.988 | 1.004 | 0.285 | |
| Obesity | −0.007 | 0.004 | 3.065 | 0.993 | 0.986 | 1.001 | 0.080 | |
| Age | 0.004 | 0.004 | 0.904 | 1.004 | 0.996 | 1.013 | 0.342 | |
| % Uninsured | −0.372 | 0.339 | 1.207 | 0.689 | 0.355 | 1.339 | 0.272 | |
| Population | 0.475 | 0.146 | 10.580 | 1.609 | 1.208 | 2.143 | 0.001 | ** |
| Constant | −1.439 | 0.289 | 24.793 | 0.237 | <0.001 | ** | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Langabeer, J.R.; Vega, F.R.; Cohen, A.S.; Champagne-Langabeer, T.; Yatsco, A.J.; Lalani, K. Determinants of Severe Financial Distress in U.S. Acute Care Hospitals: A National Longitudinal Study. Healthcare 2026, 14, 366. https://doi.org/10.3390/healthcare14030366
Langabeer JR, Vega FR, Cohen AS, Champagne-Langabeer T, Yatsco AJ, Lalani K. Determinants of Severe Financial Distress in U.S. Acute Care Hospitals: A National Longitudinal Study. Healthcare. 2026; 14(3):366. https://doi.org/10.3390/healthcare14030366
Chicago/Turabian StyleLangabeer, James R., Francine R. Vega, Audrey Sarah Cohen, Tiffany Champagne-Langabeer, Andrea J. Yatsco, and Karima Lalani. 2026. "Determinants of Severe Financial Distress in U.S. Acute Care Hospitals: A National Longitudinal Study" Healthcare 14, no. 3: 366. https://doi.org/10.3390/healthcare14030366
APA StyleLangabeer, J. R., Vega, F. R., Cohen, A. S., Champagne-Langabeer, T., Yatsco, A. J., & Lalani, K. (2026). Determinants of Severe Financial Distress in U.S. Acute Care Hospitals: A National Longitudinal Study. Healthcare, 14(3), 366. https://doi.org/10.3390/healthcare14030366

