Integrating Digital Health Innovations to Achieve Universal Health Coverage: Promoting Health Outcomes and Quality Through Global Public Health Equity
Abstract
:1. Background
2. Digital Health Applications in Rare Diseases
3. Digital Health Applications in Managing Communicable Diseases (CDs)
4. Digital Health Applications in Managing Non-Communicable Diseases (NCDs)
5. Challenges in Leveraging Digital Health for UHC and Global Public Health
6. Strategies for Bridging UHC and Global Public Health Equity Gaps Through Digital Health
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization Universal Health Coverage (UHC). 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/universal-health-coverage-(uhc) (accessed on 27 March 2025).
- Ranabhat, C.L.; Acharya, S.P.; Adhikari, C.; Kim, C.-B. Universal health coverage evolution, ongoing trend, and future challenge: A conceptual and historical policy review. Front. Public Health 2023, 11, 1041459. [Google Scholar] [CrossRef] [PubMed]
- Kodali, P.B. Achieving Universal Health Coverage in Low- and Middle-Income Countries: Challenges for Policy Post-Pandemic and Beyond. Risk Manag. Healthc. Policy 2023, 16, 607–621. [Google Scholar] [CrossRef] [PubMed]
- WHO Africa UHC Day: High Health-Care Costs in Africa Continue to Push over 150 Million into Poverty: New WHO Report 2024. Available online: https://www.afro.who.int/news/uhc-day-high-health-care-costs-africa-continue-push-over-150-million-poverty-new-who-report (accessed on 25 March 2025).
- Ngepah, N.; Ndzignat Mouteyica, A.E. Trends in household out-of-pocket health expenditures and their underlying determinants: Explaining variations within African regional economic communities from countries panel data. Global. Health 2024, 20, 27. [Google Scholar] [CrossRef]
- Jakovljevic, M.B.; Milovanovic, O. Growing Burden of Non-Communicable Diseases in the Emerging Health Markets: The Case of BRICS. Front. Public Health 2015, 3, 65. [Google Scholar] [CrossRef]
- Alawiye, T.R. The Impact of Digital Technology on Healthcare Delivery and Patient Outcomes. E-Health Telecommun. Syst. Networks 2024, 13, 13–22. [Google Scholar] [CrossRef]
- Maita, K.C.; Maniaci, M.J.; Haider, C.R.; Avila, F.R.; Torres-Guzman, R.A.; Borna, S.; Lunde, J.J.; Coffey, J.D.; Demaerschalk, B.M.; Forte, A.J. The Impact of Digital Health Solutions on Bridging the Health Care Gap in Rural Areas: A Scoping Review. Perm. J. 2024, 28, 130–143. [Google Scholar] [CrossRef]
- Informa What Is Digital Health (Digital Healthcare) and Why Is It Important? Available online: https://www.techtarget.com/searchhealthit/definition/digital-health-digital-healthcare (accessed on 25 March 2025).
- Ronquillo, Y.; Meyers, A.; Korvek, S.J. Digital Health. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470260/ (accessed on 25 March 2025).
- Stoumpos, A.I.; Kitsios, F.; Talias, M.A. Digital Transformation in Healthcare: Technology Acceptance and Its Applications. Int. J. Environ. Res. Public Health 2023, 20, 3407. [Google Scholar] [CrossRef]
- Pennestrì, F.; Banfi, G. Primary Care of the (Near) Future: Exploring the Contribution of Digitalization and Remote Care Technologies through a Case Study. Healthcare 2023, 11, 2147. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sensors Int. 2021, 2, 100117. [Google Scholar] [CrossRef]
- Nwankwo, E.I.; Emeihe, E.V.; Ajegbile, M.D.; Olaboye, J.A.; Maha, C.C. Integrating Telemedicine and AI to Improve Healthcare Access in Rural Settings. Int. J. Life Sci. Res. Arch. 2024, 7, 059–077. [Google Scholar] [CrossRef]
- Maleki Varnosfaderani, S.; Forouzanfar, M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering 2024, 11, 337. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Elhaddad, M.; Hamam, S. AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential. Cureus 2024, 16, e57728. [Google Scholar] [CrossRef]
- Getzmann, J.M.; Zantonelli, G.; Messina, C.; Albano, D.; Serpi, F.; Gitto, S.; Sconfienza, L.M. The use of artificial intelligence in musculoskeletal ultrasound: A systematic review of the literature. Radiol. Med. 2024, 129, 1405–1411. [Google Scholar] [CrossRef]
- Qoseem, I.O.; Ahmed, M.; Abdulraheem, H.; Hamzah, M.O.; Ahmed, M.M.; Ukoaka, B.M.; Okesanya, O.J.; Ogaya, J.B.; Adigun, O.A.; Ekpenyong, A.M.; et al. Unlocking the potentials of digital twins for optimal healthcare delivery in Africa. Oxford Open Digit. Health 2024, 2, oqae039. [Google Scholar] [CrossRef]
- Fan, K.; Zhao, Y. Mobile health technology: A novel tool in chronic disease management. Intell. Med. 2022, 2, 41–47. [Google Scholar] [CrossRef]
- Masoumian Hosseini, M.; Masoumian Hosseini, S.T.; Qayumi, K.; Hosseinzadeh, S.; Sajadi Tabar, S.S. Smartwatches in healthcare medicine: Assistance and monitoring; a scoping review. BMC Med. Inform. Decis. Mak. 2023, 23, 248. [Google Scholar] [CrossRef]
- Bhatia, D.; Paul, S.; Acharjee, T.; Ramachairy, S.S. Biosensors and their widespread impact on human health. Sens. Int. 2024, 5, 100257. [Google Scholar] [CrossRef]
- Vo, D.-K.; Trinh, K.T.L. Advances in Wearable Biosensors for Healthcare: Current Trends, Applications, and Future Perspectives. Biosensors 2024, 14, 560. [Google Scholar] [CrossRef]
- Akter, M.S.; Islam, R.; Khan, M.A.R.; Juthi, S. Big Data Analytics In Healthcare: Tools, Techniques, And Applications—A Systematic Review. Innov. Eng. J. 2025, 2, 29–47. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Blockchain technology applications in healthcare: An overview. Int. J. Intell. Netw. 2021, 2, 130–139. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Torkamani, A.; Butte, A.J.; Glicksberg, B.S.; Schuller, B.; Rodriguez, B.; Ting, D.S.W.; Bates, D.; Schaden, E.; Peng, H.; et al. The promise of digital healthcare technologies. Front. Public Health 2023, 11, 1196596. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, A.; Kipping, S. Challenges in Promoting Health Equity and Reducing Disparities in Access Across New and Established Technologies. Can. J. Cardiol. 2024, 40, 1154–1167. [Google Scholar] [CrossRef]
- Saeed, S.A.; Masters, R.M. Disparities in Health Care and the Digital Divide. Curr. Psychiatry Rep. 2021, 23, 61. [Google Scholar] [CrossRef] [PubMed]
- Biga, R.; Nottebaum, S.; Kozlakidis, Z.; Psomiadis, S. Digitalization of Healthcare in LMICs: Digital Health and the Digital Divide Based on Technological Availability and Development. In Digitalization of Medicine in Low- and Middle-Income Countries; Springer: Berlin/Heidelberg, Germany, 2024; pp. 185–193. [Google Scholar] [CrossRef]
- McCool, J.; Dobson, R.; Whittaker, R.; Paton, C. Mobile Health (mHealth) in Low- and Middle-Income Countries. Annu. Rev. Public Health 2022, 43, 525–539. [Google Scholar] [CrossRef]
- Mennella, C.; Maniscalco, U.; De Pietro, G.; Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024, 10, e26297. [Google Scholar] [CrossRef]
- Dankwa-Mullan, I. Health Equity and Ethical Considerations in Using Artificial Intelligence in Public Health and Medicine. Prev. Chronic Dis. 2024, 21, 240245. [Google Scholar] [CrossRef]
- Chung, C.C.Y.; Chu, A.T.W.; Chung, B.H.Y. Rare disease emerging as a global public health priority. Front. Public Health 2022, 10, 1028545. [Google Scholar] [CrossRef]
- Edu, E.; Okesanya, O.J.; Lucero-Prisno, D.E. Burden of rare diseases in Africa: Recommendations for improving access to medications and healthcare. J. Med. Surgery, Public Health 2024, 2, 100032. [Google Scholar] [CrossRef]
- Adams, D.R.; van Karnebeek, C.D.M.; Agulló, S.B.; Faùndes, V.; Jamuar, S.S.; Lynch, S.A.; Pintos-Morell, G.; Puri, R.D.; Shai, R.; Steward, C.A.; et al. Addressing diagnostic gaps and priorities of the global rare diseases community: Recommendations from the IRDiRC diagnostics scientific committee. Eur. J. Med. Genet. 2024, 70, 104951. [Google Scholar] [CrossRef]
- Zanello, G.; Chan, C.-H.; Pearce, D.A. Recommendations from the IRDiRC Working Group on methodologies to assess the impact of diagnoses and therapies on rare disease patients. Orphanet J. Rare Dis. 2022, 17, 181. [Google Scholar] [CrossRef]
- Kováč, P.; Jackuliak, P.; Bražinová, A.; Varga, I.; Aláč, M.; Smatana, M.; Lovich, D.; Thurzo, A. Artificial Intelligence-Driven Facial Image Analysis for the Early Detection of Rare Diseases: Legal, Ethical, Forensic, and Cybersecurity Considerations. AI 2024, 5, 990–1010. [Google Scholar] [CrossRef]
- Frishammar, J.; Essén, A.; Bergström, F.; Ekman, T. Digital health platforms for the elderly? Key adoption and usage barriers and ways to address them. Technol. Forecast. Soc. Change 2023, 189, 122319. [Google Scholar] [CrossRef]
- Linh, V.T.N.; Han, S.; Koh, E.; Kim, S.; Jung, H.S.; Koo, J. Advances in wearable electronics for monitoring human organs: Bridging external and internal health assessments. Biomaterials 2025, 314, 122865. [Google Scholar] [CrossRef] [PubMed]
- Gigantesco, A.; Giuliani, M. Quality of life in mental health services with a focus on psychiatric rehabilitation practice. Annali dell’Istituto Superiore di Sanita 2011, 47, 363–372. [Google Scholar] [PubMed]
- Long, J.C.; Best, S.; Nic Giolla Easpaig, B.; Hatem, S.; Fehlberg, Z.; Christodoulou, J.; Braithwaite, J. Needs of people with rare diseases that can be supported by electronic resources: A scoping review. BMJ Open 2022, 12, e060394. [Google Scholar] [CrossRef]
- Ashtari, S.; Taylor, A. Patients With Rare Diseases and the Power of Online Support Groups: Implications for the Medical Community. JMIR Form. Res. 2023, 7, e41610. [Google Scholar] [CrossRef] [PubMed]
- Sertkaya, A.; Birkenbach, A. Examination of Clinical Trial Costs and Barriers for Drug Development. Erg 2011; pp. 679–715. Available online: https://aspe.hhs.gov/reports/examination-clinical-trial-costs-barriers-drug-development-0 (accessed on 26 March 2025).
- WYSS INSTITUTE From Data to Drugs: The Role of Artificial Intelligence in Drug Discovery. 2025. Available online: https://wyss.harvard.edu/news/from-data-to-drugs-the-role-of-artificial-intelligence-in-drug-discovery/ (accessed on 26 March 2025).
- Huang, D.; Yang, M.; Wen, X.; Xia, S.; Yuan, B. AI-Driven drug discovery: Accelerating the development of novel therapeutics in biopharmaceuticals. Int. Med. Sci. Res. J. 2024, 4, 882–899. [Google Scholar] [CrossRef]
- Desai, D.; Kantliwala, S.V.; Vybhavi, J.; Ravi, R.; Patel, H.; Patel, J. Review of AlphaFold 3: Transformative Advances in Drug Design and Therapeutics. Cureus 2024, 16, e63646. [Google Scholar] [CrossRef]
- Pennestrì, F.; Banfi, G.; Tomaiuolo, R. Remote decentralized clinical trials: A new opportunity for laboratory medicine. Clin. Chem. Lab. Med. 2023, 61, 1388–1394. [Google Scholar] [CrossRef]
- Kushwaha, P.; Srivastava, N.; Kushwaha, S.P. Enhancing clinical drug trial monitoring with blockchain technology. Contemp. Clin. Trials 2024, 146, 107684. [Google Scholar] [CrossRef] [PubMed]
- Swan, M. Crowdsourced Health Research Studies: An Important Emerging Complement to Clinical Trials in the Public Health Research Ecosystem. J. Med. Internet Res. 2012, 14, e46. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Han, L.; Stein, G.; Day, S.; Bien-Gund, C.; Mathews, A.; Ong, J.J.; Zhao, P.-Z.; Wei, S.-F.; Walker, J.; et al. Crowdsourcing in health and medical research: A systematic review. Infect. Dis. Poverty 2020, 9, 8. [Google Scholar] [CrossRef]
- Qoseem, I.O.; Okesanya, O.J.; Olaleke, N.O.; Ukoaka, B.M.; Amisu, B.O.; Ogaya, J.B.; Lucero-Prisno, D.E., III. Digital health and health equity: How digital health can address healthcare disparities and improve access to quality care in Africa. Health Promot. Perspect. 2024, 14, 3–8. [Google Scholar] [CrossRef] [PubMed]
- WHO Regulatory Considerations on Artificial Intelligence for Health. World Heal Organ. 2023. Available online: https://www.who.int/publications/i/item/9789240078871 (accessed on 26 March 2025).
- Harishbhai Tilala, M.; Kumar Chenchala, P.; Choppadandi, A.; Kaur, J.; Naguri, S.; Saoji, R.; Devaguptapu, B. Ethical Considerations in the Use of Artificial Intelligence and Machine Learning in Health Care: A Comprehensive Review. Cureus 2024, 16, e62443. [Google Scholar] [CrossRef]
- Olaboye, J.A.; Maha, C.C.; Kolawole, T.O.; Abdul, S. Innovations in real-time infectious disease surveillance using AI and mobile data. Int. Med. Sci. Res. J. 2024, 4, 647–667. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Ahmed, M.M.; Musa, S.S.; Haruna, U.A.; Hamid, M.R.; Okesanya, O.J.; Saleh, A.M.; Lucero-Prisno, D.E. Leveraging AI for early cholera detection and response: Transforming public health surveillance in Nigeria. Explor. Digit. Health Technol. 2025, 3, 101140. [Google Scholar] [CrossRef]
- Maxwell, S.; Grupac, M. Virtual Care Technologies, Wearable Health Monitoring Sensors, and Internet of Medical Things-based Smart Disease Surveillance Systems in the Diagnosis and Treatment of COVID-19 Patients. Am. J. Med. Res. 2021, 8, 118. [Google Scholar] [CrossRef]
- Alavi, A.; Bogu, G.K.; Wang, M.; Rangan, E.S.; Brooks, A.W.; Wang, Q.; Higgs, E.; Celli, A.; Mishra, T.; Metwally, A.A.; et al. Real-time Alerting System for COVID-19 Using Wearable Data. Nat Med 2022, 28, 175–184. [Google Scholar] [CrossRef]
- Kassab, M.; Graciano Neto, V.V. Digital Surveillance Technologies to Combat COVID-19: A Contemporary View. Procedia Comput. Sci. 2021, 185, 37–44. [Google Scholar] [CrossRef]
- Singh, R.; Ranjan, K. Satellite Imaging and Surveillance of Infectious Diseases. J. Trop. Dis. 2015, s1, 2. [Google Scholar] [CrossRef]
- Chen, D.; Cunningham, J.; Moore, K.; Tian, J. Spatial and temporal aberration detection methods for disease outbreaks in syndromic surveillance systems. Ann. GIS 2011, 17, 211–220. [Google Scholar] [CrossRef]
- Osei, E.; Nkambule, S.J.; Vezi, P.N.; Mashamba-Thompson, T.P. Systematic Review and Meta-Analysis of the Diagnostic Accuracy of Mobile-Linked Point-of-Care Diagnostics in Sub-Saharan Africa. Diagnostics 2021, 11, 1081. [Google Scholar] [CrossRef] [PubMed]
- Loubiere, S.; Moatti, J.-P. Economic evaluation of point-of-care diagnostic technologies for infectious diseases. Clin. Microbiol. Infect. 2010, 16, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.; Zumla, A. Rapid infectious diseases diagnostics using Smartphones. Ann. Transl. Med. 2015, 3, 215. [Google Scholar] [CrossRef]
- Adepoju, V.; Udah, D.; Adnani, Q.E.S.; Ahmed, M.; Okesanya, O. Uptake and Acceptability of HIV Self-Testing Among Pregnant and Postpartum Women and Their Male Partners in Sub-Saharan Africa: Benefits, Challenges, and Delivery Strategies. HIV/AIDS-Res. Palliat. Care 2024, 16, 467–476. [Google Scholar] [CrossRef]
- Coulibaly, J.T.; Ouattara, M.; D’Ambrosio, M.V.; Fletcher, D.A.; Keiser, J.; Utzinger, J.; N’Goran, E.K.; Andrews, J.R.; Bogoch, I.I. Accuracy of Mobile Phone and Handheld Light Microscopy for the Diagnosis of Schistosomiasis and Intestinal Protozoa Infections in Côte d’Ivoire. PLoS Negl. Trop. Dis. 2016, 10, e0004768. [Google Scholar] [CrossRef]
- Bogoch, I.I.; Coulibaly, J.T.; Andrews, J.R.; Speich, B.; Keiser, J.; Stothard, J.R.; N’Goran, E.K.; Utzinger, J. Evaluation of portable microscopic devices for the diagnosis of Schistosoma and soil-transmitted helminth infection. Parasitology 2014, 141, 1811–1818. [Google Scholar] [CrossRef]
- Bogoch, I.I.; Andrews, J.R.; Speich, B.; Utzinger, J.; Ame, S.M.; Ali, S.M.; Keiser, J. Mobile phone microscopy for the diagnosis of soil-transmitted helminth infections: A proof-of-concept study. Am. J. Trop. Med. Hyg. 2013, 88, 626–629. [Google Scholar] [CrossRef]
- Bogoch, I.I.; Koydemir, H.C.; Tseng, D.; Ephraim, R.K.D.; Duah, E.; Tee, J.; Andrews, J.R.; Ozcan, A. Evaluation of a Mobile Phone-Based Microscope for Screening of Schistosoma haematobium Infection in Rural Ghana. Am. Soc. Trop. Med. Hyg. 2017, 96, 1468–1471. [Google Scholar] [CrossRef]
- Coulibaly, J.T.; Ouattara, M.; Keiser, J.; Bonfoh, B.; N’Goran, E.K.; Andrews, J.R.; Bogoch, I.I. Evaluation of Malaria Diagnoses Using a Handheld Light Microscope in a Community-Based Setting in Rural Côte d’Ivoire. Am. Soc. Trop. Med. Hyg. 2016, 95, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Figueiredo, J.C.; Oguttu, D.; Adriko, M.; Besigye, F.; Nankasi, A.; Arinaitwe, M.; Namukuta, A.; Betson, M.; Kabatereine, N.B.; Stothard, J.R. Investigating portable fluorescent microscopy (CyScope®) as an alternative rapid diagnostic test for malaria in children and women of child-bearing age. Malar. J. 2010, 9, 245. [Google Scholar] [CrossRef] [PubMed]
- Yagnik, K.J.; Saad, H.A.; King, H.L.; Bedimo, R.J.; Lehmann, C.U.; Medford, R.J. Characteristics and Outcomes of Infectious Diseases Electronic COVID-19 Consultations at a Multisite Academic Health System. Cureus 2021, 13, e19203. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Raina, R. Virtual Health Care in India in the Era of COVID-19 Pandemic. J. Adv. Med. Med. Res. 2021, 33, 142–147. [Google Scholar] [CrossRef]
- Anthony, B. Use of Telemedicine and Virtual Care for Remote Treatment in Response to COVID-19 Pandemic. J. Med. Syst. 2020, 44, 132. [Google Scholar] [CrossRef]
- Gupta, L.; Sharma, S.; Kharbanda, R.; Aggarwal, S.; Misra, D.; Agarwal, V. Virtual consulting in the times of COVID-19. Indian J. Rheumatol. 2022, 17, 418. [Google Scholar] [CrossRef]
- Argyris, Y.A.; Nelson, V.R.; Wiseley, K.; Shen, R.; Roscizewski, A. Do social media campaigns foster vaccination adherence? A systematic review of prior intervention-based campaigns on social media. Telemat. Inform. 2023, 76, 101918. [Google Scholar] [CrossRef]
- Muhtar, S.M.; Amir, A.S.; Arya, N. Utilizing social media for public health advocacy and awareness in digital health communication. Major. Sci. J. 2024, 2, 270–278. [Google Scholar] [CrossRef]
- Cabada García, M.J.; Quezada Ramírez, S.I.; Negrete Gómez, G.A.; Villarreal Serrano, E.; Colín García, D.L.; Villar Cantón, C.; Baca Luna, A.; Díaz Villanueva, P.D.; de los Ángeles Segura-Azuara, N. Social Media Campaign as a Tool for Patient Education of Disease Prevention and Health Promotion. In Advancing Health Education With Telemedicine; IGI Global Scientific Publishing: New York, NY, USA, 2021; pp. 183–208. [Google Scholar] [CrossRef]
- Shurayyan, S.M.A. Effectiveness of the Use of Social Media Platforms in Public Health Campaigns. Open J. Soc. Sci. 2023, 11, 165–184. [Google Scholar] [CrossRef]
- Catozzi, D.; Gualano, M.R.; Voglino, G.; Corradi, A.; Bert, F.; Siliquini, R. Mobile Apps for Vaccination: An in-depth scan of Apple App Store. Eur. J. Public Health 2020, 30, ckaa165.1034. [Google Scholar] [CrossRef]
- Catozzi, D.; Gualano, M.R.; Kakaa, O.; Voglino, G.; Bert, F.; Siliquini, R. Vaccination apps: A missing opportunity from various perspectives? Eur. J. Public Health 2019, 29, ckz185.631. [Google Scholar] [CrossRef]
- Yilmazer Demırel, D.; Can, Ö. ProvVacT: A Provenance Based mHealth Application for Tracking Vaccine History. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16 July 2021; IEEE: New York, NY, USA, 2021; pp. 1837–1842. [Google Scholar] [CrossRef]
- Oliver-Williams, C.; Brown, E.; Devereux, S.; Fairhead, C.; Holeman, I. Using Mobile Phones to Improve Vaccination Uptake in 21 Low- and Middle-Income Countries: Systematic Review. JMIR mHealth uHealth 2017, 5, e148. [Google Scholar] [CrossRef]
- Pastorino, R.; De Vito, C.; Migliara, G.; Glocker, K.; Binenbaum, I.; Ricciardi, W.; Boccia, S. Benefits and challenges of Big Data in healthcare: An overview of the European initiatives. Eur. J. Public Health 2019, 29, 23–27. [Google Scholar] [CrossRef]
- Kostkova, P. A roadmap to integrated digital public health surveillance. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; ACM: New York, NY, USA, 2013; pp. 687–694. [Google Scholar] [CrossRef]
- Shrivastva, S.; Chakma, T.; Das, A.; Verma, A.K. Digitisation and realtime sharing of unified surveillance tool and clinicopathological data for efficient management of disease outbreaks. Int. J. Health Plann. Manag. 2021, 36, 1352–1354. [Google Scholar] [CrossRef] [PubMed]
- Pérez Sust, P.; Solans, O.; Fajardo, J.C.; Medina Peralta, M.; Rodenas, P.; Gabaldà, J.; Garcia Eroles, L.; Comella, A.; Velasco Muñoz, C.; Sallent Ribes, J.; et al. Turning the Crisis Into an Opportunity: Digital Health Strategies Deployed During the COVID-19 Outbreak. JMIR Public Health Surveill. 2020, 6, e19106. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Su, M.; Zhang, M.; Li, R. Integrating Digital Technologies and Public Health to Fight COVID-19 Pandemic: Key Technologies, Applications, Challenges and Outlook of Digital Healthcare. Int. J. Environ. Res. Public Health 2021, 18, 6053. [Google Scholar] [CrossRef]
- Sieniawska, J.; Proszowska, P.; Madoń, M.; Kotowicz, Z.; Orzeł, A.; Pich-Czekierda, A.; Sieniawska, D. Measuring Health: Wearables in Fitness Tracking, Stress Relief, and Sleep Management. J. Educ. Health Sport 2024, 67, 50673. [Google Scholar] [CrossRef]
- Mizuno, A.; Changolkar, S.; Patel, M.S. Wearable Devices to Monitor and Reduce the Risk of Cardiovascular Disease: Evidence and Opportunities. Annu. Rev. Med. 2021, 72, 459–471. [Google Scholar] [CrossRef]
- McConnell, M.V.; Turakhia, M.P.; Harrington, R.A.; King, A.C.; Ashley, E.A. Mobile Health Advances in Physical Activity, Fitness, and Atrial Fibrillation. J. Am. Coll. Cardiol. 2018, 71, 2691–2701. [Google Scholar] [CrossRef]
- Hines, A.L.; Jones, L.; Pizzetta, C.; Berhie, G.; Cecchetti, A.A.; Ikem, F.; Azevedo, M.; Davidson, E.; White, M.; Malone, S. The Use of Wearable Devices as a Self-Help Approach to Wellness Promotion, Overcoming Health Disparities and Reducing Medical Distrust Among African Americans. J. Public Health Issues Pract. 2023, 7, 220. [Google Scholar] [CrossRef]
- Tu, J.; Gao, W. Ethical Considerations of Wearable Technologies in Human Research. Adv. Healthc. Mater. 2021, 10, 202100127. [Google Scholar] [CrossRef]
- Kyaw, T.L.; Ng, N.; Theocharaki, M.; Wennberg, P.; Sahlen, K.-G. Cost-effectiveness of Digital Tools for Behavior Change Interventions Among People With Chronic Diseases: Systematic Review. Interact. J. Med. Res. 2023, 12, e42396. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Perez-Cueto, F.J.A.; Giboreau, A.; Mavridis, I.; Hartwell, H. The Promotion of Eating Behaviour Change through Digital Interventions. Int. J. Environ. Res. Public Health 2020, 17, 7488. [Google Scholar] [CrossRef] [PubMed]
- Van Rhoon, L.; Byrne, M.; Morrissey, E.; Murphy, J.; McSharry, J. A systematic review of the behaviour change techniques and digital features in technology-driven type 2 diabetes prevention interventions. Digit. Health 2020, 6, 2055207620914427. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.D.; Abroms, L.C.; Broniatowski, D.; Napolitano, M.A.; Arnold, J.; Ichimiya, M.; Agha, S. Digital Media for Behavior Change: Review of an Emerging Field of Study. Int. J. Environ. Res. Public Health 2022, 19, 9129. [Google Scholar] [CrossRef]
- Shiyko, M.; Hallinan, S.; Seif El-Nasr, M.; Subramanian, S.; Castaneda-Sceppa, C. Effects of Playing a Serious Computer Game on Body Mass Index and Nutrition Knowledge in Women. JMIR Serious Games 2016, 4, e8. [Google Scholar] [CrossRef]
- Zurita-Ortega, F.; Chacón-Cuberos, R.; Castro-Sánchez, M.; Gutiérrez-Vela, F.L.; González-Valero, G. Effect of an Intervention Program Based on Active Video Games and Motor Games on Health Indicators in University Students: A Pilot Study. Int. J. Environ. Res. Public Health 2018, 15, 1329. [Google Scholar] [CrossRef] [PubMed]
- Kattelmann, K.K.; Bredbenner, C.B.; White, A.A.; Greene, G.W.; Hoerr, S.L.; Kidd, T.; Colby, S.; Horacek, T.M.; Phillips, B.W.; Koenings, M.M.; et al. The Effects of Young Adults Eating and Active for Health (YEAH): A Theory-Based Web-Delivered Intervention. J. Nutr. Educ. Behav. 2014, 46, S27–S41. [Google Scholar] [CrossRef]
- O’Donnell, S.; Greene, G.W.; Blissmer, B. The Effect of Goal Setting on Fruit and Vegetable Consumption and Physical Activity Level in a Web-Based Intervention. J. Nutr. Educ. Behav. 2014, 46, 570–575. [Google Scholar] [CrossRef]
- Schwarzer, R.; Fleig, L.; Warner, L.M.; Gholami, M.; Serra-Majem, L.; Ngo, J.; Roman-Viñas, B.; Ribas-Barba, L.; Distante, A.; Ntzani, E.; et al. Who benefits from a dietary online intervention? Evidence from Italy, Spain and Greece. Public Health Nutr. 2017, 20, 938–947. [Google Scholar] [CrossRef]
- Agarwal, S.; Lau, C.T. Remote Health Monitoring Using Mobile Phones and Web Services. Telemed. e-Health 2010, 16, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Lopes de Souza, P.; Lopes de Souza, W.; Ferreira Pires, L.; Moreira, J.; Rodrigues, R.; Ciferri, R. Ontology-Driven IoT System for Monitoring Hypertension. In Proceedings of the 25th International Conference on Enterprise Information Systems; SCITEPRESS-Science and Technology Publications, Prague, Czech Republic, 24–26 April 2023; pp. 757–767. [Google Scholar] [CrossRef]
- AlShorman, O.; AlShorman, B.; Al-khassaweneh, M.; Alkahtani, F. A review of internet of medical things (IoMT)-based remote health monitoring through wearable sensors: A case study for diabetic patients. Indones. J. Electr. Eng. Comput. Sci. 2020, 20, 414. [Google Scholar] [CrossRef]
- Rahaman, A.; Islam, M.; Islam, M.; Sadi, M.; Nooruddin, S. Developing IoT Based Smart Health Monitoring Systems: A Review. Rev. d’Intelligence Artif. 2019, 33, 435–440. [Google Scholar] [CrossRef]
- Mikulski, B.S.; Bellei, E.A.; Biduski, D.; De Marchi, A.C.B. Mobile Health Applications and Medication Adherence of Patients With Hypertension: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2022, 62, 626–634. [Google Scholar] [CrossRef]
- Park, J.Y.E.; Li, J.; Howren, A.; Tsao, N.W.; De Vera, M. Mobile Phone Apps Targeting Medication Adherence: Quality Assessment and Content Analysis of User Reviews. JMIR mHealth uHealth 2019, 7, e11919. [Google Scholar] [CrossRef]
- Haase, J.; Farris, K.B.; Dorsch, M.P. Mobile Applications to Improve Medication Adherence. Telemed. e-Health 2017, 23, 75–79. [Google Scholar] [CrossRef]
- Qudah, I.; Leijdekkers, P.; Gay, V. Using mobile phones to improve medication compliance and awareness for cardiac patients. In Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive Environments, Samos, Greece, 23–25 June 2010; ACM: New York, NY, USA, 2010; pp. 1–7. [Google Scholar] [CrossRef]
- Kumar, D.; Pawar, P.P.; Gonaygunta, H.; Nadella, G.S.; Meduri, K.; Singh, S. Machine learning’s role in personalized medicine & treatment optimization. World J. Adv. Res. Rev. 2024, 21, 1675–1686. [Google Scholar] [CrossRef]
- Agarwal, S. Machine Learning Based Personalized Treatment Plans for Chronic Conditions. In Proceedings of the 2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), Bengaluru, India, 4–6 January 2024; IEEE: New York, NY, USA, 2024; pp. 1127–1132. [Google Scholar] [CrossRef]
- Verma, P.; Mishra, N.; Srivastava, V. Machine learning for personalized medicine: Tailoring treatment strategies through data analysis. Pharma Innov. 2019, 8, 11–14. [Google Scholar] [CrossRef]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef]
- Buttigieg, S. Complementing traditional care with digital therapeutics for chronic non-communicable disease management. Eur. J. Public Health 2023, 33, ckad160.102. [Google Scholar] [CrossRef]
- Sasseville, M.; LeBlanc, A.; Boucher, M.; Dugas, M.; Mbemba, G.; Tchuente, J.; Chouinard, M.-C.; Beaulieu, M.; Beaudet, N.; Skidmore, B.; et al. Digital health interventions for the management of mental health in people with chronic diseases: A rapid review. BMJ Open 2021, 11, e044437. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.; Kamath, P.; Godinho, M.A.; Gudi, N.; Jacob, A.; John, O. Digital health innovations for non-communicable disease management during the COVID-19 pandemic: A rapid scoping review. BMJ Innov. 2023, 9, 3–18. [Google Scholar] [CrossRef]
- Lehtimaki, S.; Martic, J.; Wahl, B.; Foster, K.T.; Schwalbe, N. Evidence on Digital Mental Health Interventions for Adolescents and Young People: Systematic Overview. JMIR Ment. Health 2021, 8, e25847. [Google Scholar] [CrossRef] [PubMed]
- Altaf Dar, M.; Maqbool, M.; Ara, I.; Zehravi, M. The intersection of technology and mental health: Enhancing access and care. Int. J. Adolesc. Med. Health 2023, 35, 423–428. [Google Scholar] [CrossRef]
- Philippe, T.J.; Sikder, N.; Jackson, A.; Koblanski, M.E.; Liow, E.; Pilarinos, A.; Vasarhelyi, K. Digital Health Interventions for Delivery of Mental Health Care: Systematic and Comprehensive Meta-Review. JMIR Ment. Health 2022, 9, e35159. [Google Scholar] [CrossRef]
- Simon, P.D. A quick review of recommendations and evidences on telepsychotherapy and digital psychiatry for researchers and mental health professionals in the time of COVID-19. Int. J. Soc. Psychiatry 2021, 67, 604–605. [Google Scholar] [CrossRef]
- Lopes, R.M.; Silva, A.F.; Rodrigues, A.C.A.; Melo, V. Chatbots for Well-Being: Exploring the Impact of Artificial Intelligence on Mood Enhancement and Mental Health. Eur. Psychiatry 2024, 67, S550–S551. [Google Scholar] [CrossRef]
- Casu, M.; Triscari, S.; Battiato, S.; Guarnera, L.; Caponnetto, P. AI Chatbots for Mental Health: A Scoping Review of Effectiveness, Feasibility, and Applications. Appl. Sci. 2024, 14, 5889. [Google Scholar] [CrossRef]
- Mavila, R.; Jaiswal, S.; Naswa, R.; Yuwen, W.; Erdly, B.; Si, D. iCare—An AI—Powered Virtual Assistant for Mental Health. In Proceedings of the 2024 IEEE 12th International Conference on Healthcare Informatics (ICHI), Orlando, FL, USA, 3–6 June 2024; IEEE: New York, NY, USA, 2024; pp. 466–471. [Google Scholar] [CrossRef]
- Shegekar, G.R.; Gajbhiye, S.R.; Bhosale, G.S.; Adikane, S.S. Review Paper on AI Chatbot for Mental Health Support. Int. J. Res. Appl. Sci. Eng. Technol. 2024, 12, 252–254. [Google Scholar] [CrossRef]
- Langat, E.C.; Ward, P.; Gesesew, H.; Mwanri, L. Challenges and Opportunities of Universal Health Coverage in Africa: A Scoping Review. Int. J. Environ. Res. Public Health 2025, 22, 86. [Google Scholar] [CrossRef]
- UN General Assembly Transforming Our World: The 2030 Agenda for Sustainable Development 2015. Available online: https://www.refworld.org/legal/resolution/unga/2015/en/111816 (accessed on 25 March 2025).
- Group, W.B. Universal Health Coverage 2025. Available online: https://www.worldbank.org/en/topic/universalhealthcoverage (accessed on 25 March 2025).
- Walker, M. David Digital Health: How Modern Technology Is Changing Medicine and Health; Sicklebrook Publishing: Sheffield, UK, 2023; ISBN 9781446755969 2024. [Google Scholar]
- Bhavnani, S.P.; Narula, J.; Sengupta, P.P. Mobile technology and the digitization of healthcare. Eur. Heart J. 2016, 37, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Mogessie, Y.G.; Ntacyabukura, B.; Mengesha, D.T.; Musa, M.B.; Wangari, M.-C.; Claude, N.; Buntongyi, N.; Lucero-Prisno, D.E., III. Digital health and COVID-19: Challenges of use and implementation in sub-Saharan Africa. Pan Afr. Med. J. 2021, 38, 240. [Google Scholar] [CrossRef] [PubMed]
- Nittas, V.; Daniore, P.; Chavez, S.J.; Wray, T.B. Challenges in implementing cultural adaptations of digital health interventions. Commun. Med. 2024, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.; Wilbur, K.; Metzger, S.; Garcia, S.F.; Cahue, S.; Webster, K.; Lylerohr, M.; Himelhoch, H.L.; Bilimoria, K.; Cella, D. Symptom and needs assessment screening in oncology patients: Alternate outreach methods during COVID-19. J. Psychosoc. Oncol. 2021, 39, 452–460. [Google Scholar] [CrossRef]
- Musa, S.M.; Haruna, U.A.; Manirambona, E.; Eshun, G.; Ahmad, D.M.; Dada, D.A.; Gololo, A.A.; Musa, S.S.; Abdulkadir, A.K.; Lucero-Prisno, D.E., III. Paucity of Health Data in Africa: An Obstacle to Digital Health Implementation and Evidence-Based Practice. Public Health Rev. 2023, 44, 1605821. [Google Scholar] [CrossRef]
- Heaslip, V.; Holley, D. Ensuring digital inclusion. Clin. Integr. Care 2023, 17, 100141. [Google Scholar] [CrossRef]
- Whitehead, L.; Talevski, J.; Fatehi, F.; Beauchamp, A. Barriers to and Facilitators of Digital Health Among Culturally and Linguistically Diverse Populations: Qualitative Systematic Review. J. Med. Internet Res. 2023, 25, e42719. [Google Scholar] [CrossRef]
- Al Zmanan, A.H.M.; Al Monif, A.H.H.; Al Zmanan, S.Y.S.; Alshehri, F.M.J.; Alshehri, M.A.A.; Alakkasi, F.I.A.; Asiri, A.A.M.; Alzubaidi, A.H.A.; Alshehri, M.G.G.; Atiah, H.I.M. Critical Analysis of Healthcare Policy Reform: Addressing Systemic Inequities and Advancing Universal Health Coverage. J. Ecohumanism 2024, 3, 6720–6728. [Google Scholar] [CrossRef]
- Suleiman, M.S. Bridging the digital Gender divide for Peace and development in nigeria: Challenges, Policies, and Collaborative Solutions for Sustainable Peace. Int. J. Peace, Educ. Dev. 2023, 11, 53–57. [Google Scholar] [CrossRef]
- Wilson, D.; Sheikh, A.; Görgens, M.; Ward, K. Technology and Universal Health Coverage: Examining the role of digital health. J. Glob. Health 2021, 11, 16006. [Google Scholar] [CrossRef]
- Erku, D.; Khatri, R.; Endalamaw, A.; Wolka, E.; Nigatu, F.; Zewdie, A.; Assefa, Y. Digital Health Interventions to Improve Access to and Quality of Primary Health Care Services: A Scoping Review. Int. J. Environ. Res. Public Health 2023, 20, 6854. [Google Scholar] [CrossRef] [PubMed]
- Dow, A.; Thibault, G. Interprofessional Education—A Foundation for a New Approach to Health Care. N. Engl. J. Med. 2017, 377, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Ibeneme, S.; Karamagi, H.; Muneene, D.; Goswami, K.; Chisaka, N.; Okeibunor, J. Strengthening Health Systems Using Innovative Digital Health Technologies in Africa. Front. Digit. Health 2022, 4, 854339. [Google Scholar] [CrossRef]
- Digital health: Meeting the ethical and policy challenges. Swiss Med. Wkly. 2018, 148, 14571. [CrossRef]
- Beutel, M.E.; Brähler, E.; Ernst, M.; Klein, E.; Reiner, I.; Wiltink, J.; Michal, M.; Wild, P.S.; Schulz, A.; Münzel, T.; et al. Noise annoyance predicts symptoms of depression, anxiety and sleep disturbance 5 years later. Findings from the Gutenberg Health Study. Eur. J. Public Health 2020, 30, 487–492. [Google Scholar] [CrossRef]
- Dopp, A.R.; Parisi, K.E.; Munson, S.A.; Lyon, A.R. Integrating implementation and user-centred design strategies to enhance the impact of health services: Protocol from a concept mapping study. Health Res. Policy Syst. 2019, 17, 1. [Google Scholar] [CrossRef]
- Gizaw, Z.; Astale, T.; Kassie, G.M. What improves access to primary healthcare services in rural communities? A systematic review. BMC Prim. Care 2022, 23, 313. [Google Scholar] [CrossRef]
Digital Health Innovation | Application in Rare Diseases | Benefits | Examples |
---|---|---|---|
AI-Powered Tools | Early detection of genetic and metabolic disorders | Reduced diagnostic delays, improved accuracy | Face2Gene, DeepGestalt |
Telemedicine Platforms | Remote consultations with specialists | Improved access to care, reduced travel burden | Rare Disease Clinical Research Network (RDCRN) |
Wearable Devices | Continuous health monitoring and tracking biomarkers | Early identification of complications, real-time alerts | Smartwatches, fitness trackers with rare disease modules |
mHealth Apps | Education, symptom tracking, and medication management | Enhanced patient self-management and adherence | MyRareTrack, RareGuru |
Digital Patient Registries | Data collection for research and clinical trials | Accelerated therapy development, better patient outcomes | Global Rare Disease Patient Registry |
Genomic Technologies | Identification of genetic mutations and therapeutic targets | Personalized medicine, precision drug development | CRISPR, whole genome sequencing |
Crowdsourced Data Platforms | Patient-reported outcomes and real-world evidence | Enriched research data, faster drug discovery | PatientsLikeMe, RareShare |
Virtual Reality (VR) Training | Simulated training for healthcare providers | Improved diagnostic and therapeutic skills | VR diagnostic modules for rare diseases |
Blockchain in Health Records | Securing patient data and ensuring interoperability | Enhanced data privacy, seamless collaboration | MediLedger, HealthChain |
Digital Biomarkers | Identification of digital patterns for early diagnosis | Non-invasive diagnosis and monitoring | Voice biomarkers for neurological rare diseases |
3D Printing | Creation of personalized medical devices or prosthetics | Customized treatments, improved quality of life | 3D-printed implants for skeletal dysplasias |
Category | Details |
---|---|
Sample Size | 3318 participants |
Wearable Data Collected | 2155 participants |
Devices Used | Fitbit (1031), Apple Watch (970), Garmin watches (98), others (56) |
COVID-19-Positive Cases | 278 participants (84 confirmed via documentation (62 individuals) or verbal confirmation (22 individuals)) |
COVID-19 Positive with Wearable Data | 84 participants (49 Fitbit, 35 Apple Watch) |
Detection Performance | 80% of COVID-19 cases identified at or before symptom onset |
Asymptomatic COVID-19 Cases | 18 participants, 8 had alert signals near test date |
Real-Time Alerts | 2117 participants received daily alerts |
Pre-Symptomatic Detection | Median of 3 days before symptom onset |
Diagnostic Methods | Real-time wearable data analysis with NightSignal, RHRAD, and CuSum algorithms |
Key Symptoms Detected | Fatigue, aches and pain, headache, cough, fever |
Vaccination Response | Alerts triggered post-vaccination; symptoms included fatigue, headache, and fever |
Disease | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | TP | FP | TN | FN | References |
---|---|---|---|---|---|---|---|---|---|
Schistosoma mansoni | 50.0 (25.4–74.6) | 99.5 (97.0–100) | 85.7 (42.0–99.2) | 97.3 (93.9–98.9) | 51.0 | 0.5 | 0.51 | 50 | [65] |
Schistosoma haematobium | 35.6 (25.9–46.4) | 100 (96.6–100) | 100 (86.7–100) | 70.1 (63.1–76.3) | 66.2 | 0.0 | 0.0 | 64.4 | [65] |
Schistosoma mansoni | 68.2 (60.1–75.5) | 64.3 (35.1–87.2) | 95.4 (89.5–98.5) | 15.8 (7.5–27.9) | 32.2 | 35.7 | 36.2 | 31.8 | [66] |
Trichuris trichiura | 30.8 (19.9–43.4) | 71.0 (61.1–79.6) | 40.8 (27.0–55.8) | 61.2 (51.7–70.1) | 71.5 | 29.0 | 29.0 | 69.2 | [66] |
Trichuris trichiura | 54.4 (46.3–62.3) | 63.4 (46.9–77.4) | 85.1 (76.4–91.2) | 26.5 (18.4–36.6) | 46.4 | 36.6 | 37.2 | 45.6 | [67] |
Schistosoma haematobium | 72.1 (56.1–84.2) | 100.0 (75.9–100.0) | 100.0 (86.3–100.0) | 57.1 (37.4–75.0) | 28.3 | 0.0 | 0.0 | 27.9 | [68] |
Malaria | 80.2 (73.1–85.9) | 100 (92.6–100.0) | 100 (96.4–100.0) | 65.6 (54.9–74.9) | 20.0 | 0.0 | 0.0 | 19.8 | [69] |
Malaria | 86.7 (79.3–92.2) | 38.8 (33.6–44.1) | 32.8 (27.7–38.3) | 89.4 (83.4–93.8) | 13.3 | 61.2 | 62.8 | 13.3 | [70] |
Summary of Results | Limitations | Strengths | References |
---|---|---|---|
Nutritional knowledge increased significantly; participants in the action stage of behavior showed superior effects; need for individualized games; shorter activities were preferred to ones with a longer commitment | Small exclusive groups already motivated to lose weight, self-report, and lack of follow-up and a control group | One of a few studies to investigate the effects of video games on BMI and nutritional knowledge | [97] |
A decrease in fat mass and a shift toward a Mediterranean diet were observed post-intervention; the problematic effect of video games was not improved | Lack of control group, study limited to university students | Demonstrated the potential of video games in weight management | [98] |
The experimental group reported a small increase in fruit and vegetable intake but the increase was not maintained at follow-up; there was no decrease in weight, but greater planning was observed in the intervention group | Self-selected attrition rates, self-reported eating measures and physical activity | Intervention content was individually tailored to increase adherence, satisfaction, and confidence in the intervention | [99] |
Goal setting using online intervention increased intake of fruits and vegetables; goal setting was effective for behavior change but not for maintenance | Goal-setting functions were not assessed, options for goal-setting were limited, self-reporting and choice of a healthy population | One of the few studies where goal achievement was linked to dietary behavior change | [100] |
Significant change to the Mediterranean diet; individual psychological preferences and readiness should be considered for an intervention | Lack of control group and randomization, self-reported dietary intake, self-selected participants, no attempt to compare cultural eating habits of different countries | First study to examine effects of online education on 4 social-cognitive constructs and study person-specific effects of interventions | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.M.; Okesanya, O.J.; Olaleke, N.O.; Adigun, O.A.; Adebayo, U.O.; Oso, T.A.; Eshun, G.; Lucero-Prisno, D.E., III. Integrating Digital Health Innovations to Achieve Universal Health Coverage: Promoting Health Outcomes and Quality Through Global Public Health Equity. Healthcare 2025, 13, 1060. https://doi.org/10.3390/healthcare13091060
Ahmed MM, Okesanya OJ, Olaleke NO, Adigun OA, Adebayo UO, Oso TA, Eshun G, Lucero-Prisno DE III. Integrating Digital Health Innovations to Achieve Universal Health Coverage: Promoting Health Outcomes and Quality Through Global Public Health Equity. Healthcare. 2025; 13(9):1060. https://doi.org/10.3390/healthcare13091060
Chicago/Turabian StyleAhmed, Mohamed Mustaf, Olalekan John Okesanya, Noah Olabode Olaleke, Olaniyi Abideen Adigun, Uthman Okikiola Adebayo, Tolutope Adebimpe Oso, Gilbert Eshun, and Don Eliseo Lucero-Prisno, III. 2025. "Integrating Digital Health Innovations to Achieve Universal Health Coverage: Promoting Health Outcomes and Quality Through Global Public Health Equity" Healthcare 13, no. 9: 1060. https://doi.org/10.3390/healthcare13091060
APA StyleAhmed, M. M., Okesanya, O. J., Olaleke, N. O., Adigun, O. A., Adebayo, U. O., Oso, T. A., Eshun, G., & Lucero-Prisno, D. E., III. (2025). Integrating Digital Health Innovations to Achieve Universal Health Coverage: Promoting Health Outcomes and Quality Through Global Public Health Equity. Healthcare, 13(9), 1060. https://doi.org/10.3390/healthcare13091060