Sociodemographic Factors Associated with Physical Functioning in Elderly Males and Females from Serbia: Population-Based Modeling Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Participants
2.2. Study Criteria Selection
2.3. Study Parameters
2.4. Wealth Index
2.5. Difficulty in Walking Modalities
- Model 1: inability to perform PF1;
- Model 2: some/a lot of difficulty in performing PF1;
- Model 3: inability to perform PF2;
- Model 4: some/a lot of difficulty in performing PF2.
2.6. Statistical Analysis
- Model 1: no difficulty in performing PF1 activity as referential value (0) versus unable to perform (1).
- Model 2: no difficulty in performing PF1 activity as referential value (0) versus some difficulty/a lot of difficulty (1).
- Model 3: no difficulty in performing PF2 activity as referential value (0) versus unable to perform (1).
- Model 4: no difficulty in performing PF2 activity as referential value (0) versus some difficulty/a lot of difficulty (1).
3. Results
4. Discussion
4.1. Study Limitations
4.2. Policy and Practice Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Institute of Aging. Global Aging. Available online: https://www.nia.nih.gov/research/dbsr/global-aging (accessed on 16 March 2025).
- Takele, M.D.; Eriku, G.A.; Merawie, D.M.; Zinabu, F.S.; Fentanew, M.; Belay, G.J.; Kibret, A.K. Functional disability and its associated factors among community-dweller older adults living in Gondar Town, Ethiopia: A community-based cross-sectional study. BMC Public Health 2024, 24, 647. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ageing: Global Population. Available online: https://www.who.int/news-room/questions-and-answers/item/population-ageing (accessed on 16 March 2025).
- World Health Organization. Aging and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 16 March 2025).
- United Nations. GLOBAL ISSUES Ageing. 2024. Available online: https://www.un.org/zh/global-issues/ageing (accessed on 16 March 2025).
- Sevo, G.; Davidovic, M.; Erceg, P.; Despotovic, N.; Milosevic, D.P.; Tasic, M. On aging and aged care in Serbia. J. Cross Cult. Gerontol. 2015, 30, 217–231. [Google Scholar] [CrossRef]
- Statistical Office of the Republic of Serbia. Population—Population Estimations. Estimated Population. 2022. Available online: https://www.stat.gov.rs/en-us/vesti/statisticalrelease/?p=13622 (accessed on 16 March 2025).
- Molton, I.R.; Jensen, M.P. Aging and disability: Biopsychosocial perspectives. Phys. Med. Rehabil. Clin. N. Am. 2010, 21, 253–265. [Google Scholar] [CrossRef]
- Corrêa, L.C.A.C.; Gomes, C.D.S.; Camara, S.M.A.D.; Barbosa, J.F.S.; Azevedo, I.G.; Vafaei, A.; Guerra, R.O. Gender-Specific Associations between Late-Life Disability and Socioeconomic Status: Findings from the International Mobility and Aging Study (IMIAS). Int. J. Environ. Res. Public Health 2023, 20, 2789. [Google Scholar] [CrossRef]
- Kostadinovic, M.; Nikolic, D.; Petronic, I.; Cirovic, D.; Grajic, M.; Santric Milicevic, M. Sociodemographic Predictors of Physical Functioning in the Elderly: A National Health Survey. Int. J. Environ. Res. Public Health 2018, 16, 37. [Google Scholar] [CrossRef]
- Chad, K.E.; Reeder, B.A.; Harrison, E.L.; Ashworth, N.L.; Sheppard, S.M.; Schultz, S.L.; Bruner, B.G.; Fisher, K.L.; Lawson, J.A. Profile of physical activity levels in community-dwelling older adults. Med. Sci. Sports Exerc. 2005, 37, 1774–1784. [Google Scholar] [CrossRef]
- Tsimbos, C.; Verropoulou, G. A multivariate analysis of factors associated with physical functioning limitations in the Greek elderly population. J. Stat. Manag. Syst. 2008, 11, 1161–1180. [Google Scholar] [CrossRef]
- Liu, H.; Wang, M. Socioeconomic status and ADL disability of the older adults: Cumulative health effects, social outcomes and impact mechanisms. PLoS ONE 2022, 17, e0262808. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, J.; Nicholas, S. Gender, childhood and adult socioeconomic inequalities in functional disability among Chinese older adults. Int. J. Equity Health 2017, 16, 165. [Google Scholar] [CrossRef]
- Abellán, A.; Rodríguez-Laso, Á.; Pujol, R.; Barrios, L. A higher level of education amplifies the inverse association between income and disability in the Spanish elderly. Aging Clin. Exp. Res. 2015, 27, 903–909. [Google Scholar] [CrossRef]
- Fong, J.H. Disability incidence and functional decline among older adults with major chronic diseases. BMC Geriatr. 2019, 19, 323. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, M.L.; Peterson, E.W. Falls, aging, and disability. Phys. Med. Rehabil. Clin. N. Am. 2010, 21, 357–373. [Google Scholar] [CrossRef]
- Matsuda, P.N.; Verrall, A.M.; Finlayson, M.L.; Molton, I.R.; Jensen, M.P. Falls among adults aging with disability. Arch. Phys. Med. Rehabil. 2015, 96, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Lu, D.; Zhu, Y.S.; Chu, X.F.; Wang, Y.; Shi, G.P.; Wang, Z.D.; Yu, L.; Jiang, X.Y.; Wang, X.F. ACTN3 genotype and physical function and frailty in an elderly Chinese population: The Rugao Longevity and Ageing Study. Age Ageing 2018, 47, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Delmonico, M.J.; Kostek, M.C.; Doldo, N.A.; Hand, B.D.; Walsh, S.; Conway, J.M.; Carignan, C.R.; Roth, S.M.; Hurley, B.F. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, N.; Yoshida, S.; Min, S.; Lee, K.; Sakamaki-Sunaga, M.; Okamoto, T.; Nakazato, K. The ACTN3 R577X genotype is associated with muscle function in a Japanese population. Appl. Physiol. Nutr. Metab. 2015, 40, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Results of Health Research in Serbia. Available online: http://www.batut.org.rs/download/publikacije/IstrazivanjeZdravljaStanovnistvaRS2013.pdf (accessed on 29 January 2025). (In Serbian).
- Radosavljevic, N.; Nikolic, D.; Lazovic, M.; Petronic, I.; Milicevic, V.; Radosavljevic, Z.; Potic, J.; Ilic-Stojanovic, O.; Jeremic, A. Estimation of functional recovery in patients after hip fracture by Berg Balance Scale regarding the sex, age and comorbidity of participants. Geriatr. Gerontol. Int. 2013, 13, 365–371. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO consultation (WHO Technical Report Series 894); World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Jankovic, J.; Simic, S.; Marinkovic, J. Inequalities that hurt: Demographic, socio-economic and health status inequalities in the utilization of health services in Serbia. Eur. J. Public Health 2010, 20, 389–396. [Google Scholar] [CrossRef]
- Rutstein, S.O.; Johnson, K. The DHS Wealth Index. In DHS Comparative Reports No. 6; ORC Macro: Calverton, MD, USA, 2004. [Google Scholar]
- Gudelj Rakic, J.M. Relationship between Obesity and Health Behaviours in the Serbian Adult Population. Ph.D. Thesis, Faculty of Medicine, University of Belgrade, Belgrade, Serbia, 2016. [Google Scholar]
- European Health Interview Survey (EHIS Wave 2) Methodological Manual. Available online: http://ec.europa.eu/eurostat/documents/3859598/5926729/KS-RA-13-018-EN.PDF/26c7ea80-01d8-420e-bdc6-e9d5f6578e7c (accessed on 16 March 2025).
- Sembiah, S.; Dasgupta, A.; Taklikar, C.S.; Paul, B.; Bandyopadhyay, L.; Burman, J.; Pawar, N.; Subbakrishna, N. Gender inequalities in prevalence, pattern and predictors of multimorbidity among geriatric population in rural West Bengal. J. Family Med. Prim. Care 2022, 11, 4555–4561. [Google Scholar] [CrossRef]
- Salive, M.E. Multimorbidity in older adults. Epidemiol. Rev. 2013, 35, 75–83. [Google Scholar] [CrossRef]
- Abad-Díez, J.M.; Calderón-Larrañaga, A.; Poncel-Falcó, A.; Poblador-Plou, B.; Calderón-Meza, J.M.; Sicras-Mainar, A.; Clerencia-Sierra, M.; Prados-Torres, A. Age and gender differences in the prevalence and patterns of multimorbidity in the older population. BMC Geriatr. 2014, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Le, D.D.; Leon-Gonzalez, R.; Giang, L.T. Decomposing gender inequality in functional disability among older people in Vietnam. Arch. Gerontol. Geriatr. 2020, 87, 103989. [Google Scholar] [CrossRef]
- Lima, A.L.B.; Espelt, A.; Bosque-Prous, M.; Lima, K.C. Gender differences in disability among older adults in the context of social gender and income inequalities: 2013 Brazilian Health Survey. Rev. Bras. Epidemiol. 2020, 23, e200002. [Google Scholar] [CrossRef]
- Carr, D.; Cornman, J.C.; Freedman, V.A. Do Family Relationships Buffer the Impact of Disability on Older Adults’ Daily Mood? An Exploration of Gender and Marital Status Differences. J. Marriage Fam. 2019, 81, 729–746. [Google Scholar] [CrossRef]
- Pang, J.; Xu, S.; Wu, Y. Effect of widowhood on the risk of disability among the elderly in China. Front. Psychiatry 2023, 14, 1169952. [Google Scholar] [CrossRef]
- Tareque, M.I.; Tiedt, A.D.; Islam, T.M.; Begum, S.; Saito, Y. Gender differences in functional disability and self-care among seniors in Bangladesh. BMC Geriatr. 2017, 17, 177. [Google Scholar] [CrossRef] [PubMed]
- Angrisani, M.; Lee, J.; Meijer, E. The gender gap in education and late-life cognition: Evidence from multiple countries and birth cohorts. J. Econ. Ageing 2020, 16, 100232. [Google Scholar] [CrossRef]
- Chen, H.; Li, M.; Zhang, Y. Educational attainment and male-female health-survival paradox among older adults in China: A nationally representative longitudinal study. BMC Geriatr. 2025, 25, 112. [Google Scholar] [CrossRef]
- Nunes, J.D.; Saes, M.O.; Nunes, B.P.; Siqueira, F.C.V.; Soares, D.C.; Fassa, M.E.G.; Thumé, E.; Facchini, L.A. Functional disability indicators and associated factors in the elderly: A population-based study in Bagé, Rio Grande do Sul, Brazil. Epidemiol. Serv. Saude 2017, 26, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Samper-Ternent, R.; Al Snih, S. Obesity in Older Adults: Epidemiology and Implications for Disability and Disease. Rev. Clin. Gerontol. 2012, 22, 10–34. [Google Scholar] [CrossRef] [PubMed]
- Fernandes de Souza Barbosa, J.; Dos Santos Gomes, C.; Vilton Costa, J.; Ahmed, T.; Zunzunegui, M.V.; Curcio, C.L.; Gomez, F.; Oliveira Guerra, R. Abdominal Obesity and Mobility Disability in Older Adults: A 4-Year Follow-Up the International Mobility in Aging Study. J. Nutr. Health Aging 2018, 22, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, F.; Rehman, T.; Krishnamoorthy, Y.; Kaur, A.; Debnath, A.; Ghosh, T. Underweight is an important predictor for functional impairment among the older adults in Urban West Bengal, India: A cross sectional analytical study. J. Family Med. Prim Care 2022, 11, 2008–2013. [Google Scholar] [CrossRef]
- Gjonça, E.; Tabassum, F.; Breeze, E. Socioeconomic differences in physical disability at older age. J. Epidemiol. Community Health 2009, 63, 928–935. [Google Scholar] [CrossRef] [PubMed]
Self-Perceived General Health n (%) | No Difficulty | Some Difficulty | A Lot of Difficulty | Unable To Do | Total | p |
---|---|---|---|---|---|---|
PF1 Activity | ||||||
Age | ||||||
65–74 years | 581 (64.8) | 151 (51.0) | 100 (43.5) | 43 (40.6) | 875 (57.3) | <0.01 |
75–84 years | 295 (32.9) | 133 (44.9) | 112 (48.7) | 49 (46.2) | 589 (38.5) | <0.01 |
≥85 years | 20 (2.2) | 12 (4.1) | 18 (7.8) | 14 (13.2) | 64 (4.2) | <0.01 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Marital status | ||||||
Single | 200 (22.3) | 81 (27.4) | 80 (34.8) | 34 (32.1) | 395 (25.9) | <0.05 |
Married | 696 (77.7) | 215 (72.6) | 150 (65.2) | 72 (67.9) | 1133 (74.1) | <0.05 |
p | <0.001 | <0.001 | <0.01 | <0.01 | <0.001 | |
Education level | ||||||
Elementary | 294 (32.8) | 137 (46.3) | 104 (45.2) | 53 (50.0) | 588 (38.5) | <0.05 |
High school | 396 (44.2) | 102 (34.5) | 94 (40.9) | 39 (36.8) | 631 (41.3) | <0.05 |
University | 206 (23.0) | 57 (19.3) | 32 (13.9) | 14 (13.2) | 309 (20.2) | <0.05 |
p | <0.05 | <0.05 | <0.01 | <0.01 | <0.05 | |
BMI | ||||||
Underweight | 3 (0.4) | 7 (2.8) | 6 (3.4) | 3 (5.0) | 19 (1.5) | <0.05 |
Normal weight | 302 (38.7) | 86 (34.8) | 62 (35.0) | 22 (36.7) | 472 (37.3) | >0.05 |
Overweight | 356 (45.6) | 112 (45.3) | 73 (41.2) | 15 (25.0) | 556 (44.0) | <0.05 |
Obese | 120 (15.4) | 42 (17.0) | 36 (20.3) | 20 (33.3) | 218 (17.2) | <0.05 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Wealth Index | ||||||
Lower | 443 (49.4) | 175 (59.1) | 149 (64.8) | 67 (63.2) | 834 (54.6) | <0.01 |
Middle | 163 (18.2) | 43 (14.5) | 43 (18.7) | 19 (17.9) | 268 (17.5) | >0.05 |
Upper | 290 (32.4) | 78 (26.4) | 38 (16.5) | 20 (18.9) | 426 (27.9) | <0.05 |
p | <0.01 | <0.001 | <0.001 | <0.001 | <0.001 | |
Place of residence | ||||||
City | 502 (56.0) | 160 (54.1) | 95 (41.3) | 45 (42.5) | 802 (52.5) | <0.05 |
Another place | 394 (44.0) | 136 (45.9) | 135 (58.7) | 61 (57.5) | 726 (47.5) | <0.05 |
p | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Self-Perceived General Health n (%) | No Difficulty | Some Difficulty | A Lot of Difficulty | Unable To Do | Total | p |
---|---|---|---|---|---|---|
PF2 Activity | ||||||
Age | ||||||
65–74 years | 542 (66.4) | 176 (50.9) | 119 (43.6) | 38 (40.9) | 875 (57.3) | <0.001 |
75–84 years | 256 (31.4) | 155 (44.8) | 131 (48.0) | 47 (50.5) | 589 (38.5) | <0.01 |
≥85 years | 18 (2.2) | 15 (4.3) | 23 (8.4) | 8 (8.6) | 64 (4.2) | <0.05 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Marital status | ||||||
Single | 172 (21.1) | 104 (30.1) | 94 (34.4) | 25 (26.9) | 395 (25.9) | <0.05 |
Married | 644 (78.9) | 242 (69.9) | 179 (65.6) | 68 (73.1) | 1133 (74.1) | <0.01 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Education level | ||||||
Elementary | 262 (32.1) | 143 (41.3) | 137 (50.2) | 46 (49.5) | 588 (38.5) | <0.05 |
High school | 352 (43.1) | 138 (39.9) | 104 (38.1) | 37 (39.8) | 631 (41.3) | > 0.05 |
University | 202 (24.8) | 65 (18.8) | 32 (11.7) | 10 (10.8) | 309 (20.2) | <0.01 |
p | <0.05 | <0.05 | <0.01 | <0.01 | <0.05 | |
BMI | ||||||
Underweight | 3 (0.4) | 8 (2.8) | 4 (2.0) | 4 (7.5) | 19 (1.5) | <0.01 |
Normal weight | 288 (40.2) | 91 (31.4) | 73 (35.6) | 20 (37.7) | 472 (37.3) | <0.05 |
Overweight | 320 (44.6) | 141 (48.6) | 79 (38.5) | 16 (30.2) | 556 (44.0) | <0.05 |
Obese | 106 (14.8) | 50 (17.2) | 49 (23.9) | 13 (24.5) | 218 (17.2) | <0.05 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Wealth index | ||||||
Lower | 386 (47.3) | 202 (58.4) | 186 (68.1) | 60 (64.5) | 834 (54.6) | <0.05 |
Middle | 155 (19.0) | 53 (15.3) | 41(15.0) | 19 (20.4) | 268 (17.5) | >0.05 |
Upper | 275 (33.7) | 91 (26.3) | 46 (16.8) | 14 (15.1) | 426 (27.9) | <0.05 |
p | <0.01 | <0.01 | <0.001 | <0.001 | <0.01 | |
Place of residence | ||||||
City | 461 (56.5) | 191 (55.2) | 112 (41.0) | 38 (40.9) | 802 (52.5) | <0.01 |
Another place | 355 (43.5) | 155 (44.8) | 161 (59.0) | 55 (59.1) | 726 (47.5) | <0.01 |
p | <0.05 | <0.05 | <0.01 | <0.01 | <0.05 |
Self-Perceived General Health n (%) | No Difficulty | Some Difficulty | A Lot of Difficulty | Unable To Do | Total | p |
---|---|---|---|---|---|---|
PF1 Activity | ||||||
Age | ||||||
65–74 years | 537 (71.9) | 280 (51.3) | 181 (42.3) | 82 (28.2) | 1080 (53.7) | <0.001 |
75–84 years | 195 (26.1) | 237 (43.4) | 208 (48.6) | 156 (53.6) | 796 (39.6) | <0.01 |
≥85 years | 15 (2.0) | 29 (5.3) | 39 (9.1) | 53 (18.2) | 136 (6.8) | <0.001 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Marital status | ||||||
Single | 371 (49.7) | 338 (61.9) | 281 (65.7) | 190 (65.3) | 1180 (58.6) | <0.01 |
Married | 376 (50.3) | 208 (38.1) | 147 (34.3) | 101 (34.7) | 832 (41.4) | <0.05 |
p | >0.05 | <0.01 | <0.01 | <0.01 | <0.05 | |
Education level | ||||||
Elementary | 395 (52.9) | 401 (73.4) | 337 (78.7) | 235 (80.8) | 1368 (68.0) | <0.001 |
High school | 246 (32.9) | 114 (20.9) | 71 (16.6) | 42 (14.4) | 473 (23.5) | <0.01 |
University | 106 (14.2) | 31 (5.7) | 20 (4.7) | 14 (4.8) | 171 (8.5) | <0.05 |
p | <0.01 | <0.001 | <0.001 | <0.001 | <0.001 | |
BMI | ||||||
Underweight | 16 (2.8) | 10 (2.9) | 5 (2.2) | 7 (5.4) | 38 (3.0) | <0.05 |
Normal weight | 192 (34.2) | 102 (29.7) | 62 (27.7) | 48 (37.2) | 404 (32.1) | <0.05 |
Overweight | 230 (40.9) | 140 (40.8) | 85 (37.9) | 41 (31.8) | 496 (39.4) | <0.05 |
Obese | 124 (22.1) | 91 (26.5) | 72 (32.1) | 33 (25.6) | 320 (25.4) | <0.05 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Wealth Index | ||||||
Lower | 339 (45.4) | 340 (62.3) | 279 (65.2) | 183 (62.9) | 1141 (56.7) | <0.01 |
Middle | 152 (20.3) | 95 (17.4) | 67 (15.7) | 49 (16.8) | 363 (18.0) | <0.05 |
Upper | 256 (34.3) | 111 (20.3) | 82 (19.2) | 59 (20.3) | 508 (25.2) | <0.05 |
p | <0.05 | <0.001 | <0.001 | <0.001 | <0.001 | |
Place of residence | ||||||
City | 472 (63.2) | 299 (54.8) | 202 (47.2) | 128 (44.0) | 1101 (54.7) | <0.01 |
Another place | 275 (36.8) | 247 (45.2) | 226 (52.8) | 163 (56.0) | 911 (45.3) | <0.01 |
p | <0.01 | <0.05 | <0.05 | <0.05 | <0.05 |
Self-Perceived General Health. n (%) | No Difficulty | Some Difficulty | A Lot of Difficulty | Unable To Do | Total | p |
---|---|---|---|---|---|---|
PF2 Activity | ||||||
Age | ||||||
65–74 years | 433 (73.5) | 335 (55.0) | 243 (43.0) | 69 (27.7) | 1080 (53.7) | <0.001 |
75–84 years | 146 (24.9) | 238 (39.1) | 277 (49.0) | 135 (54.2) | 796 (39.6) | <0.01 |
≥85 years | 10 (1.7) | 36 (5.9) | 45 (8.0) | 45 (18.1) | 136 (6.8) | <0.05 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Marital status | ||||||
Single | 289 (49.1) | 356 (58.5) | 366 (64.8) | 169 (67.9) | 1180 (58.6) | <0.05 |
Married | 300 (50.9) | 253 (41.5) | 199 (35.2) | 80 (32.1) | 832 (41.4) | <0.01 |
p | >0.05 | <0.05 | <0.05 | <0.05 | <0.05 | |
Education level | ||||||
Elementary | 304 (51.6) | 416 (68.3) | 442 (78.2) | 206 (82.7) | 1368 (68.0) | <0.001 |
High school | 184 (31.2) | 158 (25.9) | 99 (17.5) | 32 (12.9) | 473 (23.5) | <0.001 |
University | 101 (17.1) | 35 (5.7) | 24 (4.2) | 11 (4.4) | 171 (8.5) | <0.01 |
p | <0.01 | <0.001 | <0.001 | <0.001 | <0.001 | |
BMI | ||||||
Underweight | 10 (2.2) | 11 (2.8) | 7 (2.3) | 10 (8.9) | 38 (3.0) | <0.05 |
Normal weight | 158 (35.3) | 119 (30.7) | 84 (27.0) | 43 (38.4) | 404 (32.1) | <0.05 |
Overweight | 184 (41.2) | 164 (42.3) | 117 (37.6) | 31 (27.7) | 496 (39.4) | <0.05 |
Obese | 95 (21.3) | 94 (24.2) | 103 (33.1) | 28 (25.0) | 320 (25.4) | <0.05 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Wealth index | ||||||
Lower | 261 (44.3) | 343 (56.3) | 377 (66.7) | 160 (64.3) | 1141 (56.7) | <0.01 |
Middle | 116 (19.7) | 118 (19.4) | 86 (15.2) | 43 (17.3) | 363 (18.0) | >0.05 |
Upper | 212 (36.0) | 148 (24.3) | 102 (18.1) | 46 (18.5) | 508 (25.2) | <0.05 |
p | <0.01 | <0.01 | <0.001 | <0.001 | <0.01 | |
Place of residence | ||||||
City | 368 (62.5) | 354 (58.1) | 269 (47.6) | 110 (44.2) | 1101 (54.7) | <0.01 |
Another place | 221 (37.5) | 255 (41.9) | 296 (52.4) | 139 (55.8) | 911 (45.3) | <0.01 |
p | <0.01 | <0.05 | <0.05 | <0.05 | <0.05 |
Variables | Model 1 OR (95% CI) | Model 2 OR (95% CI) | Model 3 OR (95% CI) | Model 4 OR (95% CI) |
---|---|---|---|---|
Univariate logistic regression | ||||
Age | 2.667 *** (1.921–3.702) | 1.902 *** (1.569–2.305) | 2.530 *** (1.774–3.609) | 2.024 *** (1.676–2.444) |
BMI | 1.227 (0.859–1.753) | 1.027 (0.874–1.207) | 0.965 (0.656–1.421) | 1.165 (0.997–1.362) |
Marital status | 0.612 * (0.395–0.947) | 0.651 ** (0.511–0.831) | 0.731 (0.448–1.191) | 0.568 *** (0.447–0.721) |
Education level | 0.595 *** (0.444–0.796) | 0.704 *** (0.607–0.817) | 0.550 *** (0.403–0.751) | 0.666 *** (0.577–0.769) |
Wealth index | 0.686 ** (0.535–0.881) | 0.738 *** (0.650–0.839) | 0.601 *** (0.456–0.792) | 0.696 *** (0.616–0.788) |
Place of residence | 1.731 ** (1.152–2.600) | 1.354 ** (1.091–1.680) | 1.884 ** (1.218–2.913) | 1.354 ** (1.098–1.670) |
Multivariate (stepwise forward) logistic regression | ||||
Age | 2.591 *** (1.861–3.607) | 1.791 *** (1.472–2.180) | 2.386 *** (1.664–3.422) | 1.883 *** (1.552–2.285) |
BMI | - | - | - | - |
Marital status | - | - | - | 0.688 ** (0.536–0.882) |
Education level | 0.626 ** (0.469–0.836) | 0.811 * (0.685–0.960) | 0.697 * (0.491–0.990) | 0.784 ** (0.665–0.924) |
Wealth index | - | 0.823 ** (0.712–0.952) | 0.724 * (0.530–0.991) | 0.787 ** (0.683–0.906) |
Place of residence | - | - | - | - |
Variables | Model 1 OR (95% CI) | Model 2 OR (95% CI) | Model 3 OR (95% CI) | Model 4 OR (95% CI) |
---|---|---|---|---|
Univariate logistic regression | ||||
Age | 5.020 *** (3.906–6.451) | 2.541 *** (2.119–3.047) | 5.577 *** (4.199–7.406) | 2.592 *** (2.133–3.150) |
BMI | 0.933 (0.738–1.178) | 1.204 * (1.043–1.391) | 0.829 (0.643–1.068) | 1.212 * (1.046–1.404) |
Marital status | 0.525 *** (0.396–0.695) | 0.566 *** (0.466–0.687) | 0.456 *** (0.334–0.622) | 0.603 *** (0.494–0.736) |
Education level | 0.379 *** (0.294–0.490) | 0.466 *** (0.399–0.544) | 0.332 *** (0.250–0.442) | 0.468 *** (0.402–0.544) |
Wealth index | 0.648 *** (0.549–0.764) | 0.638 *** (0.570–0.715) | 0.596 *** (0.496–0.715) | 0.653 *** (0.582–0.732) |
Place of residence | 2.186 *** (1.660–2.878) | 1.620 *** (1.334–1.969) | 2.104 *** (1.558–2.842) | 1.473 *** (1.203–1.803) |
Multivariate (stepwise forward) logistic regression | ||||
Age | 4.708 *** (3.634–6.100) | 2.354 *** (1.839–3.012) | 4.985 *** (3.714–6.691) | 2.772 *** (2.150–3.574) |
BMI | - | 1.348 *** (1.150–1.579) | - | 1.329 ** (1.131–1.563) |
Marital status | - | 0.713 * (0.550–0.925) | - | - |
Education level | 0.537 *** (0.406–0.711) | 0.653 *** (0.535–0.798) | 0.494 *** (0.363–0.672) | 0.639 *** (0.526–0.777) |
Wealth index | - | 0.740 *** (0.633–0.864) | - | 0.731 *** (0.625–0.855) |
Place of residence | 1.704 *** (1.226–2.367) | - | 1.575 * (1.095–2.264) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostadinovic, M.; Nikolic, D.; Nurbakyt, A.; Sukenova, D.; Matejic, B.; Sotirovic, I.; Mujovic, N.; Milanovic, F.; Nikcevic, L.; Santric-Milicevic, M. Sociodemographic Factors Associated with Physical Functioning in Elderly Males and Females from Serbia: Population-Based Modeling Study. Healthcare 2025, 13, 1028. https://doi.org/10.3390/healthcare13091028
Kostadinovic M, Nikolic D, Nurbakyt A, Sukenova D, Matejic B, Sotirovic I, Mujovic N, Milanovic F, Nikcevic L, Santric-Milicevic M. Sociodemographic Factors Associated with Physical Functioning in Elderly Males and Females from Serbia: Population-Based Modeling Study. Healthcare. 2025; 13(9):1028. https://doi.org/10.3390/healthcare13091028
Chicago/Turabian StyleKostadinovic, Milena, Dejan Nikolic, Ardak Nurbakyt, Dinara Sukenova, Bojana Matejic, Ivana Sotirovic, Natasa Mujovic, Filip Milanovic, Ljubica Nikcevic, and Milena Santric-Milicevic. 2025. "Sociodemographic Factors Associated with Physical Functioning in Elderly Males and Females from Serbia: Population-Based Modeling Study" Healthcare 13, no. 9: 1028. https://doi.org/10.3390/healthcare13091028
APA StyleKostadinovic, M., Nikolic, D., Nurbakyt, A., Sukenova, D., Matejic, B., Sotirovic, I., Mujovic, N., Milanovic, F., Nikcevic, L., & Santric-Milicevic, M. (2025). Sociodemographic Factors Associated with Physical Functioning in Elderly Males and Females from Serbia: Population-Based Modeling Study. Healthcare, 13(9), 1028. https://doi.org/10.3390/healthcare13091028