Predictive Analysis of Postpartum Depression Using Machine Learning
Abstract
:1. Introduction
2. Methods and Materials
Study Design
3. Materials
Sampling
4. Features
4.1. General Characteristics
4.2. Birth Related Characteristics
4.3. Conflict
4.4. Stress
4.5. Value of Children
4.6. Paternal Participation
5. Label
5.1. PPD
5.2. Ethical Considerations
6. Analysis
7. Results
7.1. Data Characteristics
7.2. Model Performance Comparison
7.3. Feature Importance from Logistic Regression
8. Discussion
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, L.; Greenfield, M.; Payne, E.; Burgess, K.; Oza, M.; Storey, C.; Davies, S.M.; De Backer, K.; Kent-Nye, F.E.; Pilav, S.; et al. A consensus statement on perinatal mental health during the COVID-19 pandemic and recommendations for post-pandemic recovery and re-build. Front. Glob. Women’s Health 2024, 5, 1347388. [Google Scholar] [CrossRef] [PubMed]
- Khadka, N.; Fassett, M.J.; Oyelese, Y.; Mensah, N.A.; Chiu, V.Y.; Yeh, M.; Peltier, M.R.; Getahun, D. Trends in Postpartum Depression by Race, Ethnicity, and Prepregnancy Body Mass Index. JAMA Netw. Open 2024, 7, e2446486. [Google Scholar] [CrossRef] [PubMed]
- Alshikh Ahmad, H.; Alkhatib, A.; Luo, J. Prevalence and risk factors of postpartum depression in the Middle East: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2021, 21, 542. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, S.; Wang, G. Prevalence and Risk Factors of Postpartum Depression in Women: A Systematic Review and Meta-analysis. J. Clin. Nurs. 2022, 31, 2665–2677. [Google Scholar] [CrossRef]
- Wildali, D.; Nazzal, S.; Hamshari, S.; Belkebir, S. Prevalence and risk factors of postpartum depression among women attending primary healthcare centers in northern of West Bank/ Palestine: A cross-sectional study, 2022. BMC Women’s Health 2024, 24, 43. [Google Scholar] [CrossRef]
- Low, S.R.; Bono, S.A.; Azmi, Z. The effect of emotional support on postpartum depression among postpartum mothers in Asia: A systematic review. Asia Pac. Psychiatry 2023, 15, e12528. [Google Scholar] [CrossRef]
- Agrawal, I.; Mehendale, A.M.; Malhotra, R. Risk Factors of Postpartum Depression. Cureus 2022, 14, e30898. [Google Scholar] [CrossRef]
- Amit, G.; Girshovitz, I.; Marcus, K.; Zhang, Y.; Pathak, J.; Bar, V.; Akiva, P. Estimation of postpartum depression risk from electronic health records using machine learning. BMC Pregnancy Childbirth 2021, 21, 630. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Hermann, A.; Joly, R.; Pathak, J. Development and validation of a machine learning algorithm for predicting the risk of postpartum depression among pregnant women. J. Affect. Disord. 2021, 279, 1–8. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Silenzio, V.M.B.; Qiu, P.; Gong, W. Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study. JMIR Med. Inform. 2020, 8, e15516. [Google Scholar] [CrossRef]
- Jiménez-Serrano, S.; Tortajada, S.; García-Gómez, J.M. A Mobile Health Application to Predict Postpartum Depression Based on Machine Learning. Telemed. J. E Health 2015, 21, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Joly, R.; Beecy, A.N.; Principe, S.; Satpathy, S.; Gore, A.; Reilly, T.; Lang, M.; Sathi, N.; Uy, C.; et al. Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records. AMIA Jt. Summits Transl. Sci. Proc. 2024, 2024, 1057–1066. [Google Scholar] [PubMed]
- Wang, S.; Pathak, J.; Zhang, Y. Using Electronic Health Records and Machine Learning to Predict Postpartum Depression. Stud. Health Technol. Inform. 2019, 264, 888–892. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, P.; Wang, G.; Liu, Y.; Xiang, J.; Song, Y.; Wei, L.; Chen, P.; Ren, J. Trajectory on postpartum depression of Chinese women and the risk prediction models: A machine-learning based three-wave follow-up research. J. Affect. Disord. 2024, 365, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, C.; Frasch, M.G. Predicting Patients Requiring Treatment for Depression in the Postpartum Period Using Common Electronic Medical Record Data Available Antepartum. AJPM Focus 2023, 2, 100100. [Google Scholar] [CrossRef]
- Wong, E.F.; Saini, A.K.; Accortt, E.E.; Wong, M.S.; Moore, J.H.; Bright, T.J. Evaluating Bias-Mitigated Predictive Models of Perinatal Mood and Anxiety Disorders. JAMA Netw. Open 2024, 7, e2438152. [Google Scholar] [CrossRef]
- Huang, Y.; Alvernaz, S.; Kim, S.J.; Maki, P.; Dai, Y.; Peñalver Bernabé, B. Predicting Prenatal Depression and Assessing Model Bias Using Machine Learning Models. Biol. Psychiatry Glob. Open Sci. 2024, 4, 100376. [Google Scholar] [CrossRef]
- Ojeda, F.M.; Jansen, M.L.; Thiéry, A.; Blankenberg, S.; Weimar, C.; Schmid, M.; Ziegler, A. Calibrating machine learning approaches for probability estimation: A comprehensive comparison. Stat. Med. 2023, 42, 5451–5478. [Google Scholar] [CrossRef]
- Korea Institute of Child Care and Education. Korean Early Childhood Education & Care Panel. (Online). Seoul: Korea Institute of Child Care and Education. 2022. Available online: https://panel.kicce.re.kr/kececp/module/rawDataManage/index.do?menu_idx=52 (accessed on 2 December 2024).
- Bronfenbrenner, U. The ecological model of human development in International Encyclopedia of Education. In Reading on the Development of Children, 2nd ed.; Reprinted from Gauvain, M.; Cole, M., Ed.; Elsevier: Oxford, UK; Freeman: New York, NY, USA, 1993; Volume 3, pp. 37–43. [Google Scholar]
- Elder, G.H., Jr. The life course as developmental theory. Child Dev. 1998, 69, 1–12. [Google Scholar] [CrossRef]
- Chung, H.S. A basic study for developing “the marriage preparation program”. J. Fam. Better Life 2004, 22, 91–101. [Google Scholar]
- Markman, H.; Stanley, S.; Blumberg, S. Fighting for Your Marriage: Positive Steps for Preventing Divorce and Preserving a Lasting Love, New & Revised; Jossey-Bass Publishers: San Francisco, CA, USA, 2001. [Google Scholar]
- Kim, K.H.; Kang, H.K. Development of the Parenting Stress Scale. Hum. Ecol. Res. 1997, 35, 141–150. [Google Scholar]
- Lee, S.S.; Jung, Y.S.; Kim, H.K.; Choi, E.Y.; Park, S.K.; Jo, N.H.; Shin, I.C.; Do, S.R.; Cho, S.K.; Kang, J.H. 2005 National Survey on Dynamics of Marriage and Fertility. Korea Inst. Health Soc. Aff. 2005, 30, 1–612. [Google Scholar]
- Hong, S.R.; Yoo, Y.J. The married men’s family and work role salience perceptions and role performances. Life Sci. Res. 2000, 4, 1–17. [Google Scholar]
- Han, K.; Kim, M.; Park, J.M. The Edinburgh Postnatal Depression Scale, Korean version: Reliability and validity. J. Korean Soc. Biol. Ther. Psychiatry 2004, 10, 201–207. [Google Scholar]
- Cox, J.L.; Holden, J.M.; Sagovsky, R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br. J. Psychiatry 1987, 150, 782–786. [Google Scholar] [CrossRef]
- Opitz, J. A closer look at classification evaluation metrics and a critical reflection of common evaluation practice. Trans Assoc Comput. Linguist. 2024, 12, 820–836. [Google Scholar] [CrossRef]
- Matsuo, S.; Ushida, T.; Emoto, R.; Moriyama, Y.; Iitani, Y.; Nakamura, N.; Imai, K.; Nakano-Kobayashi, T.; Yoshida, S.; Yamashita, M.; et al. Machine learning prediction models for postpartum depression: A multicenter study in Japan. J. Obstet. Gynaecol. Res. 2022, 48, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Cellini, P.; Pigoni, A.; Delvecchio, G.; Moltrasio, C.; Brambilla, P. Machine learning in the prediction of postpartum depression: A review. J. Affect. Disord. 2022, 309, 350–357. [Google Scholar] [CrossRef]
- Saharoy, R.; Potdukhe, A.; Wanjari, M.; Taksande, A.B. Postpartum Depression and Maternal Care: Exploring the Complex Effects on Mothers and Infants. Cureus 2023, 15, e41381. [Google Scholar] [CrossRef]
- Xu, W.; Sampson, M. Prenatal and Childbirth Risk Factors of Postpartum Pain and Depression: A Machine Learning Approach. Matern. Child Health J. 2023, 27, 286–296. [Google Scholar] [CrossRef]
- Hochman, E.; Feldman, B.; Weizman, A.; Krivoy, A.; Gur, S.; Barzilay, E.; Gabay, H.; Levy, J.; Levinkron, O.; Lawrence, G. Development and validation of a machine learning-based postpartum depression prediction model: A nationwide cohort study. Depress. Anxiety 2021, 38, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Lee, K.J.; Adeluwa, T.; Hur, J. Machine learning-based predictive modeling of postpartum depression. J. Clin. Med. 2020, 9, 2899. [Google Scholar] [CrossRef] [PubMed]
- Tennenhouse, L.G.; Marrie, R.A.; Bernstein, C.N.; Lix, L.M. Machine-learning models for depression and anxiety in individuals with immune-mediated inflammatory disease. J. Psychosom. Res. 2020, 134, 110126. [Google Scholar] [CrossRef]
- Gill, N.; Sagu, A. Machine learning decision tree classifier and logistic regression model. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 163–166. [Google Scholar] [CrossRef]
- Wang, R. AdaBoost for feature selection, classification and its relation with SVM: A review. Phys. Procedia 2012, 25, 800–807. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
Variables | Categories | n (%) | M ± SD | Min–Max |
---|---|---|---|---|
Age (year) | 33.52 ± 4.29 | 17–49 | ||
Maternal body weight (kg) | 68.05 ± 12.16 | 37–125 | ||
Marriage period (months) | 49.20 ± 32.57 | 6–245 | ||
Feeding | Bottle feeding | 1980 (77.0) | ||
Breastfeeding | 590 (39.2) | |||
First feeding time from birth (hours) | 6.02 ± 1.92 | 1–9 | ||
Number of children | 3.26 ± 1.12 | 1–7 | ||
Type of birth | Vaginal birth | 992 (38.6) | ||
Cesarean section | 1049 (40.8) | |||
Emergency section | 529 (20.6) | |||
Use of nursery | Yes | 2215 (86.2) | ||
No | 355 (13.8) | |||
Education | Elementary school | 2 (0.1) | ||
Middle school | 263 (10.2) | |||
High school | 1796 (69.9) | |||
College | 294 (11.4) | |||
Master or doctor | 19 (0.7) | |||
Not reported | 166 (6.5) | |||
Conflict with partner | 15.45 ± 7.24 | 8–72 | ||
Stress | 25.67 ± 7.38 | 10–49 | ||
Paternal participation in rearing | 3.87 ± 3.12 | 4–20 | ||
Value of children | 25.84 ± 4.68 | 9–40 | ||
Postpartum depression (EPDS) | 15.17 ± 4.51 | 1–30 | ||
EPDS | Non-PPD (0–9) | 2164 (75.95) | ||
PPD (10–30) | 473 (24.05) |
Model | Accuracy | Precision | Recall | F1-Score | AUC-ROC |
---|---|---|---|---|---|
Decision Tree | 66.54% | 79.95% | 74.62% | 77.19% | 0.58 |
Random Forest | 77.04% | 77.87% | 97.44% | 86.56% | 0.73 |
AdaBoost | 76.85% | 78.17% | 96.41% | 86.34% | 0.73 |
Logistic Regression | 75.49% | 76.72% | 97.18% | 85.75% | 0.74 |
Feature | Coefficient | Absolute Influence | OR | p |
---|---|---|---|---|
Conflict | 0.50 | 0.50 | 1.68 | <0.001 |
Stress | 0.39 | 0.39 | 1.61 | <0.001 |
Value of children | −0.14 | 0.14 | 0.87 | 0.018 |
Age | 0.10 | 0.10 | 1.10 | 0.126 |
Education | 0.09 | 0.09 | 1.10 | 0.116 |
Number of children | −0.09 | 0.09 | 1.09 | 0.113 |
Feeding | −0.09 | 0.09 | 0.92 | 0.135 |
Use of nursery | 0.07 | 0.07 | 1.08 | 0.185 |
Marriage | −0.06 | 0.06 | 0.95 | 0.367 |
Paternal participation | −0.03 | 0.03 | 0.97 | 0.556 |
Cesarean section | −0.03 | 0.03 | 0.97 | 0.607 |
First feeding | 0.03 | 0.03 | 1.03 | 0.626 |
Maternal weight | 0.01 | 0.01 | 1.01 | 0.830 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H. Predictive Analysis of Postpartum Depression Using Machine Learning. Healthcare 2025, 13, 897. https://doi.org/10.3390/healthcare13080897
Kim H. Predictive Analysis of Postpartum Depression Using Machine Learning. Healthcare. 2025; 13(8):897. https://doi.org/10.3390/healthcare13080897
Chicago/Turabian StyleKim, Hyunkyoung. 2025. "Predictive Analysis of Postpartum Depression Using Machine Learning" Healthcare 13, no. 8: 897. https://doi.org/10.3390/healthcare13080897
APA StyleKim, H. (2025). Predictive Analysis of Postpartum Depression Using Machine Learning. Healthcare, 13(8), 897. https://doi.org/10.3390/healthcare13080897