Global Research Trends, Hotspots, Impacts, and Emergence of Artificial Intelligence and Machine Learning in Health and Medicine: A 25-Year Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Database Used for Literature Retrieval
2.3. Search Strategy and Inclusion and Exclusion Criteria
2.4. Validation of Data
2.5. Study Selection and Bias
2.6. Scientific Literature Bibliometric Indicators
2.7. Data Analysis and Mapping
3. Results
3.1. Bibliometric Analysis of All Articles Output
3.2. Annual Publication and Citation Trends
3.3. Most Prolific Countries and Global Research Collaboration
3.4. Most Prolific and Impactful Institutions and Journals
3.5. Authors’ Publication and Collaboration Analysis
3.6. Most Impactful and Visible Research Topics
3.7. Emerging Research Topics
3.8. Keyword Analysis
3.8.1. Most Investigated Topics (Research Hotspots)
- Machine learning and deep learning (8978 Occurrences, TLS: 13,113);
- Artificial intelligence (2745 Occurrences, TLS: 3784);
- Convolutional neural network (1540 Occurrences, TLS: 2393);
- Classification (857 Occurrences, TLS: 1906);
- Artificial neural network (775 Occurrences, TLS: 881);
- Prediction and modeling (754 Occurrences, TLS: 1502);
- Support vector machine (745 Occurrences, TLS: 1537);
- Healthcare AND clinical decision support (706 Occurrences, TLS: 880);
- Natural language processing (470 Occurrences, TLS: 672);
- Electronic health record (384 Occurrences, TLS: 685);
- Specific diseases (Ailments): Several specific diseases were explored in the dataset:
- -
- Alzheimer’s disease (823 Occurrences, TLS: 1552);
- -
- Parkinson’s disease (502 Occurrences, TLS: 804);
- -
- COVID-19 (479 Occurrences, TLS: 840);
- -
- Cardiovascular diseases (287 Occurrences, TLS: 603);
- -
- Heart diseases (275 Occurrences, TLS: 697);
- -
- Chronic kidney diseases (191 Occurrences, TLS: 360);
- -
- Coronary artery diseases (183 Occurrences, TLS: 324);
- -
- Breast cancer (125 Occurrences, TLS: 225);
- -
- Diabetes mellitus (123 Occurrences, TLS: 284);
- -
- Dementia (101 Occurrences, TLS: 245);
- -
- Depression (92 Occurrences, TLS: 165);
- -
- Crohn’s disease (79 Occurrences, TLS: 96);
- -
- Stroke (73 Occurrences, TLS: 94).
3.8.2. Conceptual Structural Map of a Field: Thematic Map and Thematic Evolution
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
ML | machine learning |
LD | linear dichroism |
TP | total publications |
TC | total citations |
AC | average citations |
SA | sole-authored publications |
CA | co-authored publications |
NCA | number of contributing authors |
ACI | annual collaboration index |
NCP | number of cited publications |
CCP | citations per cited publication |
CI | collaboration index |
CC | collaboration coefficient |
NAY | number of active years of publication |
PAY | productivity per active year of publication |
AC/Y | average citation per year |
PY-start | publication year |
EHR | electronic health record |
NLP | natural language processing |
IoT | Internet of Things |
CNN | convolution neural network |
MRI | magnetic resonance imaging |
SVM | support vector machine |
ANN | artificial neural network |
References
- Kaul, V.; Enslin, S.; Gross, S.A. History of artificial intelligence in medicine. Gastrointest. Endosc. 2020, 92, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Greenhill, A.T.; Edmunds, B.R. A primer of artificial intelligence in medicine. Tech. Innov. Gastrointest. Endosc. 2020, 22, 85–89. [Google Scholar] [CrossRef]
- Hoogenboom, S.A.; Bagci, U.; Wallace, M.B. Artificial intelligence in gastroenterology. The current state of play and the potential. How will it affect our practice and when? Tech. Innov. Gastrointest. Endosc. 2020, 22, 42–47. [Google Scholar] [CrossRef]
- Le Berre, C.; Sandborn, W.J.; Aridhi, S.; Devignes, M.-D.; Fournier, L.; Smaïl-Tabbone, M.; Danese, S.; Peyrin-Biroulet, L. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology 2020, 158, 76–94. [Google Scholar] [CrossRef]
- Ruffle, J.K.; Farmer, A.D.; Aziz, Q. Artificial Intelligence-Assisted Gastroenterology—Promises and Pitfalls. Off. J. Am. Coll. Gastroenterol. ACG 2019, 114, 422–428. [Google Scholar] [CrossRef]
- Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020, 471, 61–71. [Google Scholar] [CrossRef]
- Mitsala, A.; Tsalikidis, C.; Pitiakoudis, M.; Simopoulos, C.; Tsaroucha, A.K. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Curr. Oncol. 2021, 28, 1581–1607. [Google Scholar] [CrossRef]
- Guo, Y.; Hao, Z.; Zhao, S.; Gong, J.; Yang, F. Artificial Intelligence in Health Care: Bibliometric Analysis. J. Med. Internet Res. 2020, 22, e18228. [Google Scholar] [CrossRef]
- Park, C.W.; Seo, S.W.; Kang, N.; Ko, B.; Choi, B.W.; Park, C.M.; Chang, D.K.; Kim, H.; Kim, H.; Lee, H.; et al. Artificial Intelligence in Health Care: Current Applications and Issues. J. Korean Med. Sci. 2020, 35, e379. [Google Scholar] [CrossRef]
- Salwei, M.E.; Carayon, P. A Sociotechnical Systems Framework for the Application of Artificial Intelligence in Health Care Delivery. J. Cogn. Eng. Decis. Mak. 2022, 16, 194–206. [Google Scholar] [CrossRef]
- Bellazzi, R.; Abu-Hanna, A. Artificial intelligence in medicine AIME’07. Artif. Intell. Med. 2009, 46, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.L.; Shortliffe, E.H.; Stefanelli, M.; Szolovits, P.; Berthold, M.R.; Bellazzi, R.; Abu-Hanna, A. The coming of age of artificial intelligence in medicine. Artif. Intell. Med. 2009, 46, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Guler, A.T.; Waaijer, C.J.F.; Palmblad, M. Scientific workflows for bibliometrics. Scientometrics 2016, 107, 385–398. [Google Scholar] [CrossRef]
- Al-Dekah, A.M.; Alrawashdeh, A.; Bellizzi, S.; Al-Mistarehi, A.-H.; Kheirallah, K.A. The status quo of psychology research on refugees, asylum-seekers and displaced people: A global bibliometric analysis. Int. J. Migr. Health Soc. Care 2024, 21, 84–110. [Google Scholar] [CrossRef]
- Alsulaiman, J.W.; Alzoubi, A.; Alrawashdeh, A.; Al-Dekah, A.M.; Abubaker, S.; Amayreh, W.; Sweileh, W.M.; Alzoubi, H.M.; Kheirallah, K.A. Mapping trends and hotspots of research on COVID-19 vaccine effectiveness: A comprehensive bibliometric analysis of global research. J. Infect. Public. Health 2025, 18, 102597. [Google Scholar] [CrossRef]
- Albadayneh, B.A.; Alrawashdeh, A.; Obeidat, N.; Al-Dekah, A.M.; Zghool, A.W.; Abdelrahman, M. Medical magnetic resonance imaging publications in Arab countries: A 25-year bibliometric analysis. Heliyon 2024, 10, e28512. [Google Scholar] [CrossRef]
- Andrade-Arenas, L.; Yactayo-Arias, C. A bibliometric analysis of the advance of artificial intelligence in medicine. Int. J. Electr. Comput. Eng. IJECE 2024, 14, 3350–3361. [Google Scholar] [CrossRef]
- Tran, B.X.; Vu, G.T.; Ha, G.H.; Vuong, Q.-H.; Ho, M.-T.; Vuong, T.-T.; La, V.-P.; Ho, M.-T.; Nghiem, K.-C.P.; Nguyen, H.L.T. Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. J. Clin. Med. 2019, 8, 360. [Google Scholar] [CrossRef]
- Jimma, B.L. Artificial intelligence in healthcare: A bibliometric analysis. Telemat. Inform. Rep. 2023, 9, 100041. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, R.; Wang, S.; Hang, R.; Wang, S.; Zhao, Y.; Sun, Y.; Huang, Z. Bibliometric analysis of medical and health research collaboration between China and ASEAN countries. Digit. Health 2023, 9, 20552076231184993. [Google Scholar] [CrossRef]
- Elsevier. Scopus. 2024. Available online: https://www.elsevier.com/products/scopus (accessed on 18 February 2025).
- Musa, I.H.; Afolabi, L.O.; Zamit, I.; Musa, T.H.; Musa, H.H.; Tassang, A.; Akintunde, T.Y.; Li, W. Artificial intelligence and machine learning in cancer research: A systematic and thematic analysis of the top 100 cited articles indexed in Scopus database. Cancer Control 2022, 29, 10732748221095946. [Google Scholar] [CrossRef] [PubMed]
- Wenwen, W.U.; Yaofei, X.I.E.; Xiangxiang, L.I.U.; Yaohua, G.U.; Zhang, Y.; Xinlong, T.U.; Xiaodong, T.A.N. Analysis of scientific collaboration networks among authors, institutions, and countries studying adolescent myopia prevention and control: A review article. Iran. J. Public. Health 2019, 48, 621. [Google Scholar]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.-P.; Turner, W.A.; Bauin, S. From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. 1983, 22, 191–235. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Senthil, R.; Anand, T.; Somala, C.S.; Saravanan, K.M. Bibliometric analysis of artificial intelligence in healthcare research: Trends and future directions. Future Healthc. J. 2024, 11, 100182. [Google Scholar] [CrossRef]
- Lin, M.; Lin, L.; Lin, L.; Lin, Z.; Yan, X. A bibliometric analysis of the advance of artificial intelligence in medicine. Front. Med. 2025, 12, 1504428. [Google Scholar] [CrossRef]
- UK Collaborative on Development Research. The UK Collaborative on Development Research Research Capacity Strengthening: Lessons from UK-Funded Initiatives in Low-and Middle-Income Countries; UK Collaborative on Development Research: London, UK, 2022. [Google Scholar]
- The UK Collaborative on Development Sciences. Rapid Mapping of International Funders’ Research Capacity Strengthening Priorities; UK Collaborative on Development Sciences: London, UK, 2015. [Google Scholar]
- Maher, D.; Aseffa, A.; Kay, S.; Bayona, M.T. External funding to strengthen capacity for research in low-income and middle-income countries: Exigence, excellence and equity. BMJ Glob. Health 2020, 5, e002212. [Google Scholar] [CrossRef]
- Dipietro, L.; Ferraro, M.; Palazzolo, J.J.; Krebs, H.I.; Volpe, B.T.; Hogan, N. Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 325–334. [Google Scholar] [CrossRef]
- Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Hao, Y.; Hwang, K.; Wang, L.; Wang, L. Disease prediction by machine learning over big data from healthcare communities. IEEE Access 2017, 5, 8869–8879. [Google Scholar] [CrossRef]
- Solomiichuk, V.; Fleischhammer, J.; Molliqaj, G.; Warda, J.; Alaid, A.; von Eckardstein, K.; Schaller, K.; Tessitore, E.; Rohde, V.; Schatlo, B. Robotic versus fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: A matched-cohort comparison. Neurosurg. Focus 2017, 42, E13. [Google Scholar] [CrossRef]
- D’Annibale, A.; Morpurgo, E.; Fiscon, V.; Trevisan, P.; Sovernigo, G.; Orsini, C.; Guidolin, D. Robotic and laparoscopic surgery for treatment of colorectal diseases. Dis. Colon. Rectum 2004, 47, 2162–2168. [Google Scholar] [CrossRef]
- Ma, X.; Niu, Y.; Gu, L.; Wang, Y.; Zhao, Y.; Bailey, J.; Lu, F. Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognit. 2021, 110, 107332. [Google Scholar] [CrossRef]
- Gray, K.R.; Aljabar, P.; Heckemann, R.A.; Hammers, A.; Rueckert, D.; Alzheimer’s Disease Neuroimaging, I. Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage 2013, 65, 167–175. [Google Scholar] [CrossRef]
- Prasad, M.L.; Kiran, A.; Shaker Reddy, P.C. Chronic Kidney Disease Risk Prediction Using Machine Learning Techniques. J. Inf. Technol. Manag. 2024, 16, 118–134. [Google Scholar]
- Vineetha, K.R.; Maharajan, M.S.; Bhagyashree, K.; Sivakumar, N. Classification of adaptive back propagation neural network along with fuzzy logic in chronic kidney disease. e-Prime-Adv. Electr. Eng. Electron. Energy 2024, 7, 100463. [Google Scholar]
- Kim, H.-J.; Kwak, N.; Yoon, S.H.; Park, N.; Kim, Y.R.; Lee, J.H.; Lee, J.Y.; Park, Y.; Kang, Y.A.; Kim, S. Artificial intelligence-based radiographic extent analysis to predict tuberculosis treatment outcomes: A multicenter cohort study. Sci. Rep. 2024, 14, 13162. [Google Scholar] [CrossRef]
- Mohan, G.; Subashini, M.M.; Balan, S.; Singh, S. A multiclass deep learning algorithm for healthy lung, Covid-19 and pneumonia disease detection from chest X-ray images. Discov. Artif. Intell. 2024, 4, 20. [Google Scholar] [CrossRef]
- Kumar, R.; Maheshwari, S.; Sharma, A.; Linda, S.; Kumar, S.; Chatterjee, I. Ensemble learning-based early detection of influenza disease. Multimed. Tools Appl. 2024, 83, 5723–5743. [Google Scholar] [CrossRef] [PubMed]
- Jhang, J.-F.; Yu, W.-R.; Huang, W.-T.; Kuo, H.-C. Combination of urinary biomarkers and machine-learning models provided a higher predictive accuracy to predict long-term treatment outcomes of patients with interstitial cystitis/bladder pain syndrome. World J. Urol. 2024, 42, 173. [Google Scholar] [CrossRef]
- Breuer, S.; Müller, R. Digitalization, AI, and robotics for good care and work? German policy imaginaries of healthcare technologies. Sci. Public. Policy 2024, 51, 951–962. [Google Scholar] [CrossRef]
- Mello-Thoms, C.; Mello, C.A.B. Clinical applications of artificial intelligence in radiology. Br. J. Radiol. 2023, 96, 20221031. [Google Scholar] [CrossRef]
- Khalifa, M.; Albadawy, M. AI in diagnostic imaging: Revolutionising accuracy and efficiency. Comput. Methods Programs Biomed. Update 2024, 5, 100146. [Google Scholar] [CrossRef]
- Killock, D. AI outperforms radiologists in mammographic screening. Nat. Rev. Clin. Oncol. 2020, 17, 134. [Google Scholar] [CrossRef]
- Ha, S.M.; Jang, M.-j.; Youn, I.; Yoen, H.; Ji, H.; Lee, S.H.; Yi, A.; Chang, J.M. Screening outcomes of mammography with AI in dense breasts: A comparative study with supplemental screening US. Radiology 2024, 312, e233391. [Google Scholar] [CrossRef]
- Sinha, S.; Vegesna, R.; Mukherjee, S.; Kammula, A.V.; Dhruba, S.R.; Wu, W.; Kerr, D.L.; Nair, N.U.; Jones, M.G.; Yosef, N. PERCEPTION predicts patient response and resistance to treatment using single-cell transcriptomics of their tumors. Nat. Cancer 2024, 5, 938–952. [Google Scholar] [CrossRef]
- Shaik, T.; Tao, X.; Higgins, N.; Li, L.; Gururajan, R.; Zhou, X.; Acharya, U.R. Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2023, 13, e1485. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Rab, S. Significance of machine learning in healthcare: Features, pillars and applications. Int. J. Intell. Netw. 2022, 3, 58–73. [Google Scholar] [CrossRef]
- Wieland-Jorna, Y.; van Kooten, D.; Verheij, R.A.; de Man, Y.; Francke, A.L.; Oosterveld-Vlug, M.G. Natural language processing systems for extracting information from electronic health records about activities of daily living. A systematic review. JAMIA Open 2024, 7, ooae044. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R.; Kumar, L. Utilization of robotics for healthcare: A scoping review. J. Ind. Integr. Manag. 2022, 7, 2250015. [Google Scholar] [CrossRef]
- Amiri, Z.; Heidari, A.; Navimipour, N.J.; Esmaeilpour, M.; Yazdani, Y. The deep learning applications in IoT-based bio-and medical informatics: A systematic literature review. Neural Comput. Appl. 2024, 36, 5757–5797. [Google Scholar] [CrossRef]
Indicator | Total |
---|---|
Productivity | |
Number of total publications (all years) | 22,113 |
Number of active years of publication (NAY) | 25 |
Productivity per active year (PAY) | 884.5 |
Annual growth rate % | 24.8 |
Impact | |
Total citations | 546,819 |
Average citations per publication, % | 24.7 |
Number of cited publications | 18,817 |
Citations per cited publication | 29.1 |
h-index | 253 |
g-index | 410 |
Authorship | |
Co-authored publications | 76,167 |
Sole-authored publications | 962 |
Co-authors per publication | 5.79 |
Collaboration | |
Annual collaboration index | 2.4 |
Collaboration index | 5.9 |
Collaboration coefficient | 0.8 |
International co-authorships % | 26.4 |
Year | TP | TC | AC | SA | CA | NCA | ACI | NCP | CCP | CI | CC | h-Index | g-Index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 26 | 694 | 26.7 | 3 | 23 | 85 | 2.3 | 24 | 29.0 | 3.3 | 0.7 | 12 | 26 |
2001 | 47 | 3935 | 83.7 | 10 | 37 | 160 | 2.4 | 45 | 87.4 | 3.4 | 0.7 | 25 | 47 |
2002 | 33 | 1720 | 52.1 | 5 | 28 | 131 | 3.0 | 30 | 57.3 | 4.0 | 0.7 | 18 | 33 |
2003 | 34 | 1171 | 34.4 | 4 | 30 | 178 | 4.2 | 34 | 34.4 | 5.2 | 0.8 | 20 | 34 |
2004 | 38 | 1883 | 49.6 | 2 | 36 | 160 | 3.2 | 38 | 49.6 | 4.2 | 0.8 | 21 | 38 |
2005 | 43 | 1714 | 39.9 | 5 | 38 | 189 | 3.4 | 40 | 42.9 | 4.4 | 0.8 | 24 | 41 |
2006 | 66 | 3245 | 49.2 | 6 | 60 | 259 | 2.9 | 60 | 54.1 | 3.9 | 0.7 | 30 | 56 |
2007 | 74 | 3156 | 42.6 | 3 | 71 | 350 | 3.7 | 70 | 45.1 | 4.7 | 0.8 | 29 | 55 |
2008 | 64 | 3814 | 59.6 | 5 | 59 | 266 | 3.2 | 62 | 61.5 | 4.2 | 0.8 | 33 | 61 |
2009 | 99 | 5425 | 54.8 | 6 | 93 | 493 | 4.0 | 97 | 55.9 | 5.0 | 0.8 | 35 | 72 |
2010 | 107 | 7018 | 65.6 | 9 | 98 | 474 | 3.4 | 104 | 67.5 | 4.4 | 0.8 | 44 | 83 |
2011 | 139 | 6631 | 47.7 | 8 | 131 | 615 | 3.4 | 135 | 49.1 | 4.4 | 0.8 | 45 | 78 |
2012 | 159 | 6488 | 40.8 | 16 | 143 | 714 | 3.5 | 150 | 43.3 | 4.5 | 0.8 | 45 | 75 |
2013 | 196 | 7999 | 40.8 | 12 | 184 | 919 | 3.7 | 185 | 43.2 | 4.7 | 0.8 | 49 | 83 |
2014 | 172 | 6523 | 37.9 | 13 | 159 | 816 | 3.7 | 161 | 40.5 | 4.7 | 0.8 | 44 | 75 |
2015 | 229 | 11,085 | 48.4 | 17 | 212 | 1028 | 3.5 | 202 | 54.9 | 4.5 | 0.8 | 52 | 100 |
2016 | 297 | 19,979 | 67.3 | 10 | 287 | 1449 | 3.9 | 279 | 71.6 | 4.9 | 0.8 | 60 | 136 |
2017 | 370 | 32,073 | 86.7 | 16 | 354 | 1961 | 4.3 | 354 | 90.6 | 5.3 | 0.8 | 81 | 173 |
2018 | 603 | 51,591 | 85.6 | 31 | 572 | 3459 | 4.7 | 586 | 88.0 | 5.7 | 0.8 | 107 | 212 |
2019 | 1259 | 72,853 | 57.9 | 65 | 1194 | 7027 | 4.6 | 1185 | 61.5 | 5.6 | 0.8 | 134 | 222 |
2020 | 1800 | 85,379 | 47.4 | 69 | 1731 | 10,078 | 4.6 | 1741 | 49.0 | 5.6 | 0.8 | 136 | 210 |
2021 | 2689 | 86,284 | 32.1 | 87 | 2602 | 16,809 | 5.3 | 2634 | 32.8 | 6.3 | 0.8 | 120 | 182 |
2022 | 3860 | 68,541 | 17.8 | 163 | 3697 | 22,627 | 4.9 | 3680 | 18.6 | 5.9 | 0.8 | 85 | 123 |
2023 | 4409 | 44,917 | 10.2 | 172 | 4237 | 26,406 | 5.0 | 3974 | 11.3 | 6.0 | 0.8 | 69 | 96 |
2024 | 5300 | 12,701 | 2.4 | 225 | 5075 | 31,242 | 4.9 | 2948 | 4.3 | 5.9 | 0.8 | 29 | 40 |
Total | 22,113 | 546,819 | 24.7 | 962 | 21,151 | 76,167 | 2.4 | 18,817 | 29.1 | 3.4 | 0.7 | 253 | 410 |
Productivity and Impact | International Collaboration | ||||||
---|---|---|---|---|---|---|---|
Rank | Country | TP | TC | AC | Rank | Country | TLS |
1st | United States | 4752 | 167,308 | 35.21 | 1st | United States | 3342 |
2nd | China | 4637 | 118,208 | 25.49 | 2nd | United Kingdom | 2125 |
3rd | India | 4000 | 70,248 | 17.56 | 3rd | China | 1841 |
4th | United Kingdom | 1402 | 58,447 | 41.69 | 4th | India | 1730 |
5th | Saudi Arabia | 1128 | 25,171 | 22.31 | 5th | Saudi Arabia | 1706 |
6th | South Korea | 1054 | 29,684 | 28.16 | 6th | Germany | 1167 |
7th | Canada | 914 | 32,812 | 35.90 | 7th | Canada | 1084 |
8th | Italy | 869 | 25,438 | 29.27 | 8th | Italy | 1065 |
9th | Germany | 782 | 32,191 | 41.17 | 9th | Australia | 946 |
10th | Australia | 708 | 24,762 | 34.97 | 10th | Pakistan | 931 |
11th | Turkey | 607 | 17,932 | 29.54 | 11th | South Korea | 787 |
12th | Taiwan | 553 | 13,485 | 24.39 | 12th | Spain | 744 |
13th | Japan | 547 | 11,144 | 20.37 | 13th | Netherlands | 691 |
14th | Spain | 538 | 14,808 | 27.52 | 14th | Switzerland | 670 |
15th | Pakistan | 518 | 15,773 | 30.45 | 15th | France | 640 |
16th | Iran | 486 | 12,668 | 26.07 | 16th | Malaysia | 605 |
17th | France | 478 | 14,624 | 30.59 | 17th | Egypt | 599 |
18th | Malaysia | 440 | 10,748 | 24.43 | 17th | Taiwan | 429 |
19th | Egypt | 412 | 11,414 | 27.70 | 19th | Sweden | 423 |
20th | Netherlands | 385 | 12,095 | 31.42 | 20th | Singapore | 409 |
Rank | Institution | TP (%) | Country |
---|---|---|---|
1st | Harvard Medical School | 292 (1.32) | United States |
2nd | Ministry of Education of the People’s Republic of China | 274 (1.24) | China |
3rd | Chinese Academy of Sciences | 219 (0.99) | China |
4th | King Saud University | 205 (0.93) | Saudi Arabia |
5th | University of Toronto | 201 (0.91) | Canada |
6th | K L Deemed to be University | 191 (0.86) | India |
7th | Vellore Institute of Technology | 185 (0.84) | India |
8th | Massachusetts General Hospital | 172 (0.78) | United States |
9th | Stanford University | 168 (0.76) | United States |
10th | SRM Institute of Science and Technology | 152 (0.69) | India |
11th | Princess Nourah Bint Abdulrahman University | 151 (0.68) | Saudi Arabia |
12th | Brigham and Women’s Hospital | 141 (0.64) | United States |
13th | University College London | 139 (0.63) | United Kingdom |
14th | University of Pennsylvania | 132 (0.60) | United States |
15th | University of California, San Francisco | 131 (0.59) | United States |
16th | Sichuan University | 128 (0.58) | China |
17th | Prince Sattam Bin Abdulaziz University | 127 (0.57) | Saudi Arabia |
18th | Chinese Academy of Medical Sciences & Peking Union Medical College | 126 (0.57) | China |
19th | King Abdulaziz University | 125 (0.57) | Saudi Arabia |
19th | Sun Yat-sen University | 125 (0.57) | China |
SCR | Journal | TP | TC | AC | SA | CA | NCA | ACI | NCP | CCP | CI | CC | h -Index | g -Index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | Scientific Reports | 521 | 13,257 | 25.4 | 3 | 518 | 4634 | 7.9 | 442 | 30.0 | 8.9 | 0.9 | 56 | 94 |
2nd | IEEE Access | 491 | 21,536 | 43.9 | 15 | 476 | 2351 | 3.8 | 440 | 48.9 | 4.8 | 0.8 | 76 | 132 |
3rd | PLOS ONE | 289 | 6591 | 22.8 | 1 | 288 | 1998 | 5.9 | 248 | 26.6 | 6.9 | 0.9 | 44 | 67 |
4th | Multimedia Tools and Applications | 212 | 3798 | 17.9 | 12 | 200 | 702 | 2.3 | 199 | 19.1 | 3.3 | 0.7 | 34 | 54 |
5th | Applied Sciences (Switzerland) | 203 | 3060 | 15.1 | 3 | 200 | 1022 | 4.0 | 175 | 17.5 | 5.0 | 0.8 | 29 | 46 |
6th | Diagnostics | 188 | 2810 | 14.9 | 6 | 182 | 1146 | 5.1 | 166 | 16.9 | 6.1 | 0.8 | 27 | 42 |
7th | Sensors | 168 | 4216 | 25.1 | 4 | 164 | 933 | 4.6 | 152 | 27.7 | 5.6 | 0.8 | 34 | 59 |
8th | International Journal of Intelligent Systems and Applications in Engineering | 162 | 614 | 3.8 | 5 | 157 | 612 | 2.8 | 110 | 5.6 | 3.8 | 0.7 | 11 | 19 |
9th | Computers in Biology and Medicine | 159 | 5059 | 31.8 | 4 | 155 | 905 | 4.7 | 145 | 34.9 | 5.7 | 0.8 | 39 | 65 |
10th | International Journal of Advanced Computer Science and Applications | 158 | 1497 | 9.5 | 10 | 148 | 584 | 2.7 | 121 | 12.4 | 3.7 | 0.7 | 19 | 33 |
11th | Expert Systems with Applications | 152 | 8117 | 53.4 | 6 | 146 | 627 | 3.1 | 148 | 54.8 | 4.1 | 0.8 | 49 | 86 |
12th | Biomedical Signal Processing and Control | 149 | 3715 | 24.9 | 5 | 144 | 612 | 3.1 | 144 | 25.8 | 4.1 | 0.8 | 34 | 54 |
13th | BMC Medical Informatics and Decision Making | 145 | 5757 | 39.7 | 1 | 144 | 1003 | 5.9 | 122 | 47.2 | 6.9 | 0.9 | 31 | 74 |
14th | Journal of Medical Internet Research | 125 | 2756 | 22.0 | 2 | 123 | 943 | 6.5 | 116 | 23.8 | 7.5 | 0.9 | 25 | 48 |
15th | Computational Intelligence and Neuroscience | 118 | 4203 | 35.6 | 12 | 106 | 595 | 4.0 | 116 | 36.2 | 5.0 | 0.8 | 27 | 63 |
16th | JMIR Medical Informatics | 117 | 2078 | 17.8 | 1 | 116 | 1096 | 8.4 | 107 | 19.4 | 9.4 | 0.9 | 23 | 41 |
17th | Neural Computing and Applications | 109 | 3779 | 34.7 | 7 | 102 | 420 | 2.9 | 102 | 37.0 | 3.9 | 0.7 | 32 | 59 |
18th | Computer Methods and Programs in Biomedicine | 108 | 6701 | 62.0 | 1 | 107 | 607 | 4.6 | 101 | 66.3 | 5.6 | 0.8 | 41 | 81 |
18th | Computers, Materials and Continua | 108 | 1550 | 14.4 | 3 | 105 | 619 | 4.7 | 96 | 16.1 | 5.7 | 0.8 | 23 | 34 |
20th | Heliyon | 103 | 454 | 4.4 | 3 | 100 | 598 | 4.8 | 74 | 6.1 | 5.8 | 0.8 | 11 | 16 |
Rank | Author | TP | TC | AC | h-Index | g-Index | m-Index | PY-Start |
---|---|---|---|---|---|---|---|---|
1st | WANG Y | 347 | 6907 | 0.05 | 42 | 72 | 2.1 | 2006 |
2nd | ZHANG Y | 294 | 9839 | 0.03 | 38 | 95 | 2 | 2007 |
3rd | LI Y | 274 | 6906 | 0.04 | 39 | 76 | 2.6 | 2011 |
4th | LIU Y | 256 | 7853 | 0.03 | 39 | 84 | 3 | 2013 |
5th | LI J | 233 | 4567 | 0.05 | 34 | 61 | 1.417 | 2002 |
6th | WANG J | 221 | 4500 | 0.05 | 34 | 61 | 1.889 | 2008 |
7th | ZHANG X | 219 | 4665 | 0.05 | 33 | 62 | 1.32 | 2001 |
8th | WANG X | 217 | 7994 | 0.03 | 33 | 86 | 1.65 | 2006 |
9th | LI X | 211 | 4037 | 0.05 | 30 | 58 | 1.579 | 2007 |
10th | ZHANG J | 197 | 4217 | 0.05 | 34 | 59 | 2.125 | 2010 |
11th | CHEN Y | 185 | 5212 | 0.04 | 29 | 69 | 1.813 | 2010 |
12th | WANG H | 176 | 4051 | 0.04 | 33 | 59 | 2.063 | 2010 |
13th | WANG Z | 169 | 3030 | 0.06 | 28 | 49 | 2.333 | 2014 |
14th | WANG L | 166 | 5710 | 0.03 | 29 | 73 | 1.381 | 2005 |
15th | LIU X | 158 | 6821 | 0.02 | 32 | 81 | 2.133 | 2011 |
16th | LIU J | 152 | 4177 | 0.04 | 29 | 62 | 1.381 | 2005 |
17th | LI H | 147 | 4812 | 0.03 | 37 | 67 | 1.947 | 2007 |
18th | CHEN X | 143 | 3096 | 0.05 | 29 | 52 | 1.813 | 2010 |
19th | CHEN J | 139 | 2597 | 0.05 | 27 | 45 | 2.25 | 2014 |
20th | LIU Z | 117 | 2177 | 0.05 | 27 | 43 | 2.455 | 2015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalky, A.; Altawalbih, M.; Alshanik, F.; Khasawneh, R.A.; Tawalbeh, R.; Al-Dekah, A.M.; Alrawashdeh, A.; Quran, T.O.; ALBashtawy, M. Global Research Trends, Hotspots, Impacts, and Emergence of Artificial Intelligence and Machine Learning in Health and Medicine: A 25-Year Bibliometric Analysis. Healthcare 2025, 13, 892. https://doi.org/10.3390/healthcare13080892
Dalky A, Altawalbih M, Alshanik F, Khasawneh RA, Tawalbeh R, Al-Dekah AM, Alrawashdeh A, Quran TO, ALBashtawy M. Global Research Trends, Hotspots, Impacts, and Emergence of Artificial Intelligence and Machine Learning in Health and Medicine: A 25-Year Bibliometric Analysis. Healthcare. 2025; 13(8):892. https://doi.org/10.3390/healthcare13080892
Chicago/Turabian StyleDalky, Alaa, Mahmoud Altawalbih, Farah Alshanik, Rawand A. Khasawneh, Rawan Tawalbeh, Arwa M. Al-Dekah, Ahmad Alrawashdeh, Tamara O. Quran, and Mohammed ALBashtawy. 2025. "Global Research Trends, Hotspots, Impacts, and Emergence of Artificial Intelligence and Machine Learning in Health and Medicine: A 25-Year Bibliometric Analysis" Healthcare 13, no. 8: 892. https://doi.org/10.3390/healthcare13080892
APA StyleDalky, A., Altawalbih, M., Alshanik, F., Khasawneh, R. A., Tawalbeh, R., Al-Dekah, A. M., Alrawashdeh, A., Quran, T. O., & ALBashtawy, M. (2025). Global Research Trends, Hotspots, Impacts, and Emergence of Artificial Intelligence and Machine Learning in Health and Medicine: A 25-Year Bibliometric Analysis. Healthcare, 13(8), 892. https://doi.org/10.3390/healthcare13080892