The Role of Gender in the Relationship Between Waist-to-Hip Ratio, Triglyceride–Glucose Index, and Insulin Resistance in Korean Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Measurement of Anthropometrics and Physical Activity
2.3. Definition of Whole-Body Insulin Resistance
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TyG | triglyceride–glucose |
IR | insulin resistance |
HOMA-IR | homeostatic model assessment of insulin resistance |
WHtR | wasit-to-hip ratio |
CI | confidence interval |
MetS | metabolic syndrome |
T2D | type-2 diabetes |
CVD | cardiovascular disease |
BMI | body mass index |
WC | waist circumference |
FBG | fasting blood glucose |
TC | total cholesterol |
TG | triglycerides |
HDLC | high-density lipoprotein cholesterol |
BP | blood pressure |
References
- Tagi, V.M.; Chiarelli, F. Obesity and insulin resistance in children. Curr. Opin. Pediatr. 2020, 32, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; An, X.; Yang, C.; Sun, W.; Ji, H.; Lian, F. The crucial role and mechanism of insulin resistance in metabolic disease. Front. Endocrinol. 2023, 14, 1149239. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 2013, 3, 1–58. [Google Scholar] [CrossRef]
- Guo, S. Insulin signaling, resistance, and the metabolic syndrome: Insights from mouse models into disease mechanisms. J. Endocrinol. 2014, 220, T1–T23. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Sourlas, A.; Oikonomakis, K.; Zoumi, E.-A.; Papadimitriou, A.; Kostara, C.E. Biomarkers of insulin sensitivity/resistance. J. Int. Med. Res. 2024, 52, 1–40. [Google Scholar] [CrossRef]
- Yan, W.; Wu, S.; Liu, Q.; Zheng, Q.; Gu, W.; Li, X. The link between obesity and insulin resistance among children: Effects of key metabolites. J. Diabetes 2023, 15, 1020–1028. [Google Scholar] [CrossRef]
- González-Domínguez, Á.; Savolainen, O.; Domínguez-Riscart, J.; Landberg, R.; Lechuga-Sancho, A.; González-Domínguez, R. Probing erythrocytes as sensitive and reliable sensors of metabolic disturbances in the crosstalk between childhood obesity and insulin resistance: Findings from an observational study, in vivo challenge tests, and ex vivo incubation assays. Cardiovasc. Diabetol. 2024, 23, 336. [Google Scholar] [CrossRef]
- Kim, J.W.; Park, S.H.; Kim, Y.; Im, M.; Han, H.S. The cutoff values of indirect indices for measuring insulin resistance for metabolic syndrome in Korean children and adolescents. Ann. Pediatr. Endocrinol. Metab. 2016, 21, 143–148. [Google Scholar] [CrossRef]
- Yin, J.; Li, M.; Xu, L.; Wang, Y.; Cheng, H.; Zhao, X.; Jie, M. Insulin resistance determined by Homeostasis Model Assessment (HOMA) and associations with metabolic syndrome among Chinese children and teenagers. Diabetol. Metab. Syndr. 2013, 5, 71. [Google Scholar] [CrossRef]
- Newbern, D.; Gumus Balikcioglu, P.; Balikcioglu, M.; Bain, J.; Muehlbauer, M.; Stevens, R.; Ilkayeva, O.; Dolinsky, D.; Armstrong, S.; Irizarry, K.; et al. Sex differences in biomarkers associated with insulin resistance in obese adolescents: Metabolomic profiling and principal components analysis. J. Clin. Endocrinol. Metab. 2014, 99, 4730–4739, Erratum in J. Clin. Endocrinol. Metab. 2015, 100, 1709.. [Google Scholar] [CrossRef]
- Adams-Huet, B.; Zubirán, R.; Remaley, A.T.; Jialal, I. The triglyceride-glucose index is superior to homeostasis model assessment of insulin resistance in predicting metabolic syndrome in an adult population in the United States. J. Clin. Lipidol. 2024, 18, e518–e524. [Google Scholar] [PubMed]
- Jiang, M.; Li, X.; Wu, H.; Su, F.; Cao, L.; Ren, X.; Hu, J.; Tatenda, G.; Cheng, M.; Wen, Y. Triglyceride-Glucose Index for the Diagnosis of Metabolic Syndrome: A Cross-Sectional Study of 298,652 Individuals Receiving a Health Check-Up in China. Int. J. Endocrinol. 2022, 2022, 3583603. [Google Scholar] [PubMed]
- Wei, X.; Min, Y.; Song, G.; Ye, X.; Liu, L. Association between triglyceride-glucose related indices with the all-cause and cause-specific mortality among the population with metabolic syndrome. Cardiovasc. Diabetol. 2024, 23, 134. [Google Scholar]
- Miao, Y.; Wang, Y.; Wan, Q. Association between TyG index with obesity indicators and coronary heart disease: A cohort study. Sci. Rep. 2025, 15, 8920. [Google Scholar]
- Nabipoorashrafi, S.A.; Seyedi, S.A.; Rabizadeh, S.; Ebrahimi, M.; Ranjbar, S.A.; Reyhan, S.K.; Meysamie, A.; Nakhjavani, M.; Esteghamati, A. The accuracy of triglyceride-glucose (TyG) index for the screening of metabolic syndrome in adults: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2677–2688. [Google Scholar]
- Sun, Y.; Ji, H.; Sun, W.; An, X.; Lian, F. Triglyceride glucose (TyG) index: A promising biomarker for diagnosis and treatment of different diseases. Eur. J. Intern. Med. 2025, 131, 3–14. [Google Scholar]
- Sanchez, B.N.; Volek, J.S.; Kraemer, W.J.; Saenz, C.; Maresh, C.M. Sex differences in energy metabolism: A female-oriented discussion. Sports Med. 2024, 54, 2033–2057. [Google Scholar]
- Mauvais-Jarvis, F. Sex differences in energy metabolism: Natural selection, mechanisms and consequences. Nat. Rev. Nephrol. 2024, 20, 56–69. [Google Scholar]
- Ciarambino, T.; Crispino, P.; Guarisco, G.; Giordano, M. Gender differences in insulin resistance: New knowledge and perspectives. Curr. Issues Mol. Biol. 2023, 45, 7845–7861. [Google Scholar] [CrossRef]
- Gado, M.; Tsaousidou, E.; Bornstein, S.R.; Perakakis, N. Sex-based differences in insulin resistance. J. Endocrinol. 2024, 261, e230245. [Google Scholar]
- Wang, C.; Liu, D.; Lu, J.; Huang, B.; Feng, B.; Yin, J.; Qiu, J.; Zhang, Z. Gender differences in the relationship between the triglyceride-glucose index and serum Klotho concentrations among the middle-aged and elderly: A cross-sectional analysis. BMC Endocr. Disord. 2024, 24, 185. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.W.; Chang, C.C.; Chou, R.H.; Tsai, Y.L.; Liu, L.K.; Chen, L.K.; Huang, P.H.; Lin, S.J. Gender difference in the association between TyG index and subclinical atherosclerosis: Results from the I-Lan Longitudinal Aging Study. Cardiovasc. Diabetol. 2021, 20, 206. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.W.; Tsai, C.T.; Chou, R.H.; Tsai, Y.L.; Kuo, C.S.; Huang, P.H.; Lin, S.J. Sex difference in the association of the triglyceride glucose index with obstructive coronary artery disease. Sci. Rep. 2023, 13, 9652. [Google Scholar] [CrossRef]
- Guo, R.; Tong, J.; Wang, R.; Ma, S.; Wei, L.; Zhao, W. Gender differences in triglyceride glucose index predictive power for type 2 diabetes mellitus: A Chinese cohort study. Int. J. Diabetes Dev. Ctries. 2024. [Google Scholar] [CrossRef]
- Owen, K.B.; Corbett, L.; Ding, D.; Eime, R.; Bauman, A. Gender differences in physical activity and sport participation in adults across 28 European countries between 2005 and 2022. Ann. Epidemiol. 2025, 101, 52–57. [Google Scholar] [CrossRef]
- Choi, J.; Yoon, T.W.; Yu, M.H.; Kang, D.R.; Choi, S. Gender and age differences in the prevalence and associated factors of metabolic syndrome among children and adolescents in South Korea. Child. Health Nurs. Res. 2021, 27, 160–170. [Google Scholar] [CrossRef]
- Kumahara, H.; Schutz, Y.; Ayabe, M.; Yoshioka, M.; Yoshitake, Y.; Shindo, M.; Ishii, K.; Tanaka, H. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: A validation study against whole-body indirect calorimetry. Br. J. Nutr. 2004, 91, 235–243. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Yoon, J.S.; Shim, Y.S.; Lee, H.S.; Hwang, I.T.; Hwang, J.S. A population-based study of TyG index distribution and its relationship to cardiometabolic risk factors in children and adolescents. Sci. Rep. 2021, 11, 23660. [Google Scholar] [CrossRef]
- Yoon, J.S.; Lee, H.J.; Jeong, H.R.; Shim, Y.S.; Kang, M.J.; Hwang, I.T. Triglyceride glucose index is superior biomarker for predicting type 2 diabetes mellitus in children and adolescents. Endocr. J. 2022, 69, 559–565. [Google Scholar] [CrossRef]
- Kim, B.; Jin, H.Y.; Yoon, J.S.; Noh, E.S.; Hwang, I.T. Triglyceride glucose index is associated with ultrasonographic fatty liver indicator in children and adolescents with non-alcoholic fatty liver disease. J. Clin. Res. Pediatr. Endocrinol. 2024, 16, 306–313. [Google Scholar] [PubMed]
- Furdela, V.; Pavlyshyn, H.; Shulhai, A.M.; Kozak, K.; Furdela, M. Triglyceride glucose index, pediatric NAFLD fibrosis index, and triglyceride-to-high-density lipoprotein cholesterol ratio are the most predictive markers of the metabolically unhealthy phenotype in overweight/obese adolescent boys. Front. Endocrinol. 2023, 14, 1124019. [Google Scholar]
- Tian, X.; Chen, S.; Wang, P.; Xu, Q.; Zhang, Y.; Luo, Y.; Wu, S.; Wang, A. Insulin resistance mediates obesity-related risk of cardiovascular disease: A prospective cohort study. Cardiovasc. Diabetol. 2022, 21, 289. [Google Scholar]
- Chen, W.; Ding, S.; Tu, J.; Xiao, G.; Chen, K.; Zhang, Y.; Huang, R.; Liao, Y. Association between the insulin resistance marker TyG index and subsequent adverse long-term cardiovascular events in young and middle-aged US adults based on obesity status. Lipids Health Dis. 2023, 22, 65. [Google Scholar]
- Xie, Y.; Guo, R.; Li, Z.; Guo, X.; Sun, G.; Sun, Z.; Zheng, J.; Sun, Y.; Zheng, L. Temporal relationship between body mass index and triglyceride-glucose index and its impact on the incident of hypertension. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1220–1229. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.; Wu, Y.; Huang, H.; Hu, F.; Zhang, M.; Sun, L.; Hu, D. Association of triglyceride-glucose index and its 6-year change with risk of hypertension: A prospective cohort study. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 568–576. [Google Scholar] [CrossRef]
- Fritz, J.; Brozek, W.; Concin, H.; Nagel, G.; Kerschbaum, J.; Lhotta, K.; Ulmer, H.; Zitt, E. The triglyceride-glucose index and obesity-related risk of end-stage kidney disease in Austrian adults. JAMA Netw. Open 2021, 4, e212612. [Google Scholar] [CrossRef]
- Kretschmer, L.; Salali, G.D.; Andersen, L.B.; Hallal, P.C.; Northstone, K.; Sardinha, L.B.; Dyble, M.; Bann, D.; International Children’s Accelerometry Database (ICAD) Collaborators. Gender differences in the distribution of children’s physical activity: Evidence from nine countries. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 103. [Google Scholar]
- Yaribeygi, H.; Maleki, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Pathophysiology of Physical Inactivity-Dependent Insulin Resistance: A Theoretical Mechanistic Review Emphasizing Clinical Evidence. J. Diabetes Res. 2021, 2021, 7796727. [Google Scholar]
- Lombardo, M.; Feraco, A.; Armani, A.; Camajani, E.; Gorini, S.; Strollo, R.; Padua, E.; Caprio, M.; Bellia, A. Gender differences in body composition, dietary patterns, and physical activity: Insights from a cross-sectional study. Front. Nutr. 2024, 11, 1414217. [Google Scholar]
- Hannon, T.S.; Janosky, J.; Arslanian, S.A. Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr. Res. 2006, 60, 759–763. [Google Scholar] [CrossRef] [PubMed]
Variables | IS (n = 533) | IR (n = 80) | Total (n = 613) | p for Group |
---|---|---|---|---|
Age (years) | 9.7 ± 1.3 | 10.7 ± 0.9 | 9.8 ± 1.3 | <0.001 |
Gender | 0.001 | |||
Boys, n (%) | 292 (91.3) | 28 (8.8) | 320 (52.2) | |
Girls, n (%) | 241 (82.3) | 52 (17.7) | 293 (47.8) | |
BMI (kg/m2) | 18.7 ± 3.1 | 22.2 ± 3.7 | 19.2 ± 3.4 | <0.001 |
WC (cm) | 65.7 ± 11.3 | 76.1 ± 10.3 | 67.1 ± 11.7 | <0.001 |
WHtR | 0.83 ± 0.06 | 0.85 ± 0.06 | 0.83 ± 0.06 | 0.041 |
Tanner scale scores | 1.7 ± 0.9 | 2.3 ± 1.1 | 1.8 ± 1.0 | <0.001 |
Systolic BP (mmHg) | 108.1 ± 16.0 | 114.8 ± 16.5 | 109.0 ± 16.2 | 0.001 |
Diastolic BP (mmHg) | 65.8 ± 6.6 | 69.7 ± 13.1 | 66.3 ± 12.1 | 0.007 |
FBG (mg/dL) | 90.9 ± 6.6 | 96.6 ± 7.7 | 91.7 ± 7.0 | <0.001 |
TC (mg/dL) | 172.5 ± 26.7 | 171.6 ± 32.0 | 172.4 ± 27.4 | <0.001 |
TGs (mg/dL) | 81.2 ± 44.4 | 106.1 ± 66.2 | 84.5 ± 48.5 | <0.001 |
HDLC (mg/dL) | 59.4 ± 13.2 | 49.6 ± 10.6 | 58.1 ± 13.3 | <0.001 |
TyG index | 8.10 ± 0.45 | 8.39 ± 0.52 | 8.14 ± 0.47 | <0.001 |
Insulin (µU/mL) | 7.0 ± 2.9 | 18.7 ± 6.3 | 8.5 ± 5.3 | <0.001 |
HOMA-IR | 1.6 ± 0.7 | 4.5 ± 1.5 | 2.0 ± 1.3 | <0.001 |
Physical activity | ||||
LPA (min/day) | 171 ± 41 | 164 ± 46 | 170 ± 42 | 0.151 |
MPA (min/day) | 72 ± 24 | 76 ± 24 | 72 ± 24 | 1.58 |
VPA (min/day) | 33 ± 16 | 28 ± 18 | 32 ± 17 | 0.011 |
Variables | Mediation Analysis | |||
---|---|---|---|---|
β | SE | t | p-Value | |
WHtR (X) → TyG (M) | 1.8154 | 0.3155 | 5.7534 | <0.001 |
WHtR (X) → HOMA-IR (Y) | 0.7284 | 0.1480 | 4.9189 | <0.001 |
TyG (M) → HOMA-IR (Y) | 0.1924 | 0.0197 | 9.7718 | <0.001 |
Variable | Bootstrap results for indirect effect (X → M → Y) | |||
Effect | SE | LL 95% CI | UL 95% CI | |
TyG | 0.3493 | 0.0748 | 0.2100 | 0.5037 |
Variables | Dependent Variable: TyG | |||
---|---|---|---|---|
B | SE | t | p-Values | |
WHtR (X) | 4.091 | 1.003 | 4.077 | 0.001 |
Gender (W) | 0.133 | 0.048 | 2.784 | 0.006 |
Interaction (X × W) | −1.369 | 0.631 | −2.168 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Qiu, X.; Kim, S.; Kang, H. The Role of Gender in the Relationship Between Waist-to-Hip Ratio, Triglyceride–Glucose Index, and Insulin Resistance in Korean Children. Healthcare 2025, 13, 823. https://doi.org/10.3390/healthcare13070823
Kang S, Qiu X, Kim S, Kang H. The Role of Gender in the Relationship Between Waist-to-Hip Ratio, Triglyceride–Glucose Index, and Insulin Resistance in Korean Children. Healthcare. 2025; 13(7):823. https://doi.org/10.3390/healthcare13070823
Chicago/Turabian StyleKang, Seamon, Xiaoming Qiu, Simon Kim, and Hyunsik Kang. 2025. "The Role of Gender in the Relationship Between Waist-to-Hip Ratio, Triglyceride–Glucose Index, and Insulin Resistance in Korean Children" Healthcare 13, no. 7: 823. https://doi.org/10.3390/healthcare13070823
APA StyleKang, S., Qiu, X., Kim, S., & Kang, H. (2025). The Role of Gender in the Relationship Between Waist-to-Hip Ratio, Triglyceride–Glucose Index, and Insulin Resistance in Korean Children. Healthcare, 13(7), 823. https://doi.org/10.3390/healthcare13070823