Linking Motor and Cognitive Decline in Aging: Gait Variability and Working Memory as Early Markers of Frailty
Highlights
- Shorter stride length during fast walking, mild cognitive impairment, depressive symptoms, and female sex were identified as significant predictors of the transition from non-frail to prefrail status.
- Additionally, increased stride time variability at fast pace and poorer working memory performance were independently associated with the progression from prefrailty to frailty.
- Spatiotemporal gait variability and executive dysfunction represent sensitive multidomain markers for the early detection of frailty in community-dwelling older adults.
- Integrating gait and cognitive assessments into routine geriatric evaluations may enhance early identification and prevention efforts, supporting a multidimensional approach to aging care.
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Sample Size
2.4. Data Collection
2.5. Measures and Instruments
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
4. Discussion
4.1. Limitations
4.2. Relevance for Clinical Practice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, C.I.; Benyaminov, R.; Rahman, M.; Ngu, D.; Reinhardt, M. Frailty: A multidimensional biopsychosocial syndrome. Med. Clin. N. Am. 2023, 107, 183–197. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, G.; Wang, X.; Zheng, L.; Wang, C.; Wang, C.; Chen, L. Prevalence of cognitive frailty among community-dwelling older adults: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2022, 125, 104112. [Google Scholar] [CrossRef]
- Zhang, X.-M.; Cao, S.; Gao, M.; Xiao, S.; Xie, X.; Wu, X. The prevalence of social frailty among older adults: A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2023, 24, 29–37.e9. [Google Scholar] [CrossRef]
- Walston, J.; Robinson, T.N.; Zieman, S.; McFarland, F.; Carpenter, C.R.; Althoff, K.N.; Andrew, M.K.; Blaum, C.S.; Brown, P.J.; Buta, B.; et al. Integrating frailty research into the medical specialties—Report from a U13 conference. J. Am. Geriatr. Soc. 2017, 65, 2134–2139. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef] [PubMed]
- Buta, B.J.; Walston, J.D.; Godino, J.G.; Park, M.; Kalyani, R.R.; Xue, Q.-L.; Bandeen-Roche, K.; Varadhan, R. Frailty assessment instruments: Systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res. Rev. 2016, 26, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Sciacchitano, S.; Carola, V.; Nicolais, G.; Sciacchitano, S.; Napoli, C.; Mancini, R.; Rocco, M.; Coluzzi, F. To be frail or not to be frail: This is the question—A critical narrative review of frailty. J. Clin. Med. 2024, 13, 721. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.A.; Greenhaff, P.L.; Bartlett, D.B.; Jackson, T.A.; Duggal, N.A.; Lord, J.M. Multisystem physiological perspective of human frailty and its modulation by physical activity. Physiol. Rev. 2023, 103, 1137–1191. [Google Scholar] [CrossRef]
- Devitt, C.; Patel, D.; Mahboubi Ardakani, R.; Poovathoor, S.; Jin, Z.; Moller, D. Biomarkers and clinical evaluation in the detection of frailty. Int. J. Mol. Sci. 2025, 26, 7888. [Google Scholar] [CrossRef]
- Lema-Arranz, C.; Hemadeh, A.; Fernández-Bertólez, N.; Cibeira, N.; López-López, R.; Costa, S.; Millán-Calenti, J.C.; Lorenzo-López, L.; Valdiglesias, V.; Laffon, B. Association of inflammatory biomarkers with physical and cognitive frailty in a Spanish population of older adults. GeroScience, 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Johnson, N.; Qu, J.; Wagatsuma, K.; Su, Y.; Du, B.; He, Y.; Yang, P. Frailty and cardiovascular disease: A bidirectional relationship with clinical implications. Front. Cardiovasc. Med. 2025, 12, 1684701. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y.; Li, X.; Hou, X.; Yue, S.; Wang, J.; Ye, S.; Wu, J. Interacting and joint effects of frailty and inflammation on cardiovascular disease risk and the mediating role of inflammation in middle-aged and elderly populations. BMC Cardiovasc. Disord. 2025, 25, 118. [Google Scholar] [CrossRef]
- Dent, E.; Martin, F.C.; Bergman, H.; Woo, J.; Romero-Ortuno, R.; Walston, J.D. Management of frailty: Opportunities, challenges, and future directions. Lancet 2019, 394, 1376–1386. [Google Scholar] [CrossRef]
- Jia, B.; Wang, Z.; Zhang, T.; Yue, X.; Zhang, S. Prevalence of social frailty and risk factors among community-dwelling older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2024, 123, 105419. [Google Scholar] [CrossRef]
- Angulo, J.; El Assar, M.; Álvarez-Bustos, A.; Rodríguez-Mañas, L. Physical activity and exercise: Strategies to manage frailty. Redox Biol. 2020, 35, 101513. [Google Scholar] [CrossRef] [PubMed]
- Vahedi, A.; Eriksdotter, M.; Ihle-Hansen, H.; Wyller, T.B.; Øksengård, A.R.; Fure, B. Cognitive impairment in people with physical frailty using the phenotype model: A systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 2022, 37. [Google Scholar] [CrossRef] [PubMed]
- Kiiti Borges, M.; Oiring de Castro Cezar, N.; Silva Santos Siqueira, A.; Yassuda, M.; Cesari, M.; Aprahamian, I. The relationship between physical frailty and mild cognitive impairment in the elderly: A systematic review. J. Frailty Aging 2019, 8, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Yu, Z.; Chen, M.; Bao, Z.; Li, J.; He, W. Cognitive frailty, a novel target for the prevention of elderly dependency. Ageing Res. Rev. 2015, 20, 1–10. [Google Scholar] [CrossRef]
- Sargent, L.; Nalls, M.; Starkweather, A.; Hobgood, S.; Thompson, H.; Amella, E.J.; Singleton, A. Shared biological pathways for frailty and cognitive impairment: A systematic review. Ageing Res. Rev. 2018, 47, 149–158. [Google Scholar] [CrossRef]
- Hardi, N.; Kristian, K.; William, F.; Theresia, F.; Angelica, P.; Kuistono, J.A.; Irawan, M.A.; Handayani, Y.S. Cognitive frailty in urban community-dwelling older adults: Associated physical and psychological risk factors. J. Fam. Community Med. 2025, 32, 316–323. [Google Scholar] [CrossRef]
- Zhang, T.; Ren, Y.; Shen, P.; Jiang, S.; Yang, Y.; Wang, Y.; Li, Z.; Yang, Y. Prevalence and associated risk factors of cognitive frailty: A systematic review and meta-analysis. Front. Aging. Neurosci. 2022, 13, 755926. [Google Scholar] [CrossRef] [PubMed]
- Collyer, T.A.; Murray, A.M.; Woods, R.L.; Storey, E.; Chong, T.T.; Ryan, J.; Orchard, S.G.; Brodtmann, A.; Srikanth, V.K.; Shah, R.C.; et al. Association of dual decline in cognition and gait speed with risk of dementia in older adults. JAMA Netw. Open 2022, 5, e2214647. [Google Scholar] [CrossRef]
- Seo, K.; Takayanagi, N.; Sudo, M.; Tsutsui, S.; Yoshida, D.; Ishii, H. Association between daily gait speed patterns and cognitive impairment in community-dwelling older adults. Sci. Rep. 2023, 13, 2783. [Google Scholar] [CrossRef]
- Mukli, P.; Detwiler, S.; Owens, C.D.; Csipo, T.; Lipecz, A.; Pinto, C.B.; Tarantini, S.; Nyul-Toth, A.; Balasubramanian, P.; Hoffmeister, J.R.; et al. Gait variability predicts cognitive impairment in older adults with subclinical cerebral small vessel disease. Front. Aging. Neurosci. 2022, 14, 1052451. [Google Scholar] [CrossRef]
- Pieruccini-Faria, F.; Black, S.E.; Masellis, M.; Smith, E.E.; Almeida, Q.J.; Li, K.Z.H.; Bherer, L.; Camicioli, R.; Montero-Odasso, M. Gait variability across neurodegenerative and cognitive disorders: Results from the Canadian Consortium of Neurodegeneration in Aging (CCNA) and the Gait and Brain Study. Alzheimers Dement. 2021, 17, 1317–1328. [Google Scholar] [CrossRef]
- Pozo, N.; Romero, C.; Andrade, M.; Délano, P.H.; Medel, V.; Troncoso, M.; Orellana, P.; Rodriguez, M.I.; Fabres, C.; Delgado, C. Exploring the relationship between frailty and executive dysfunction: The role of frontal white matter hyperintensities. Front. Aging Neurosci. 2023, 15, 1196641. [Google Scholar] [CrossRef] [PubMed]
- Welstead, M.; Jenkins, N.D.; Russ, T.C.; Luciano, M.; Muniz-Terrera, G. A systematic review of frailty trajectories: Their shape and influencing factors. Gerontologist 2021, 61, e463–e475. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, M.N.; Huertas-Hoyas, E.; Novak, R.; Sipols, A.E.; García-Villamil-Neira, G.; Rodríguez-Sánchez, M.C.; Del-Ama, A.J.; Ruiz-Ruiz, L.; De Villa, S.G.; Jiménez-Ruiz, A.R. Stratification of older adults according to frailty status and falls using gait parameters explored using an inertial system. Appl. Sci. 2024, 14, 6704. [Google Scholar] [CrossRef]
- Bortone, I.; Sardone, R.; Lampignano, L.; Castellana, F.; Zupo, R.; Lozupone, M.; Moretti, B.; Giannelli, G.; Panza, F. How gait influences frailty models and health-related outcomes in clinical-based and population-based studies: A systematic review. J. Cachexia Sarcopenia Muscle 2021, 12, 274–297. [Google Scholar] [CrossRef]
- Camerlingo, N.; Shaafi Kabiri, N.; Psaltos, D.J.; Kelly, M.; Wicker, M.K.; Messina, I.; Auerbach, S.H.; Zhang, H.; Messere, A.; Isik Karahanoglu, F.; et al. Monitoring gait and physical activity of elderly frail individuals in free-living environment: A feasibility study. Gerontology 2024, 70, 439–454. [Google Scholar] [CrossRef]
- Bytyçi, I.; Henein, M.Y. Stride length predicts adverse clinical events in older adults: A systematic review and meta-analysis. J. Clin. Med. 2021, 10, 2670. [Google Scholar] [CrossRef]
- Noguerón García, A.; Huedo Ródenas, I.; García Molina, R.; Ruiz Grao, M.C.; Avendaño Céspedes, A.; Esbrí Víctor, M.; Odasso, M.; Abizanda, P. Gait plasticity impairment as an early frailty biomarker. Exp. Gerontol. 2020, 142, 111137. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Muir, S.W.; Hall, M.; Doherty, T.J.; Kloseck, M.; Beauchet, O.; Speechley, M. Gait variability is associated with frailty in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-López, L.; López-López, R.; Maseda, A.; Buján, A.; Rodríguez-Villamil, J.L.; Millán-Calenti, J.C. Clinical and neuropsychological correlates of prefrailty syndrome in a community-dwelling sample of older adults. Front. Med. 2020, 7, 609359. [Google Scholar] [CrossRef]
- Welch, V.; Ghogomu, E.; Smith, M.; Tugwell, P.; Darzi, A.; Neogi, T.; Noonan, E.; Whitehead, M.; Pottie, K.; Pardo Pardo, J.; et al. Improving the reporting on health equity in observational research (STROBE-Equity): Extension checklist and elaboration. BMJ 2025, 390, e083882. [Google Scholar] [CrossRef] [PubMed]
- Castell Alcalá, M.V.; Melgar Borrego, A.B.; Julián Viñals, R.; de Hoyos Alonso, M.C. Consideraciones sobre los estudios de prevalencia de fragilidad en el mayor en España [Comments on studies on the prevalence of frailty in the elderly in Spain]. Aten. Primaria 2012, 44, 295–296. [Google Scholar] [CrossRef][Green Version]
- Lienhard, K.; Schneider, D.; Maffiuletti, N.A. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med. Eng. Phys. 2013, 35, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.; Tay, L.; Pua, Y.H.; Mah, S.M.; Tay, E.L.; Wang, M.X.; Ng, Y.S. Single and dual task gait speed in frailty screening of community-dwelling older adults. J. Prim. Care Community Health 2024, 15, 21501319241306700. [Google Scholar] [CrossRef]
- Hwang, H.F.; Suprawesta, L.; Chen, S.J.; Yu, W.Y.; Lin, M.R. Predictors of incident reversible and potentially reversible cognitive frailty among Taiwanese older adults. BMC Geriatr. 2023, 23, 24. [Google Scholar] [CrossRef]
- Bulgarelli, L.; Gyr, E.; Villanueva, J.; Mejía, K.; Mejía, C.; Paredes, R.; Blumen, S. Normative data of the Spanish version of the Montreal Cognitive Assessment (MoCA) in older individuals from Peru. Dement. Neuropsychol. 2025, 19, e20240261. [Google Scholar] [CrossRef]
- Perez-Lao, A.; Ying, G.; Arias, F.; Levy, S.A.; Smith, G.E. A systematic review of available normative data on neuropsychological tests for Spanish speakers in the, U.S.; Latin America and the Caribbean, and Spain. Neuropsychol. Rev. 2025; in press. [Google Scholar] [CrossRef]
- Benedet, M.J.; Alejandre, M.A. TAVEC: Test de Aprendizaje Verbal España–Complutense; TEA Ediciones: Madrid, Spain, 1998. [Google Scholar]
- World Medical Association. Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- International Committee of Medical Journal Editors. Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals. April 2025. Available online: https://www.icmje.org/recommendations/ (accessed on 10 November 2025).
- Park, C.; Ko, F.C. The science of frailty: Sex differences. Clin. Geriatr. Med. 2021, 37, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Pophal da Silva, L.; Boneti Moreira, N.; Barbosa de Freitas, P.; Pereira, G.; Rodacki, A.L.F. Gait parameters of older adults according to their fall history and functional capacity while walking at different speeds. Gerontology 2021, 67, 532–543. [Google Scholar] [CrossRef]
- Smith, C.; Seematter-Bagnoud, L.; Santos-Eggimann, B.; Krief, H.; Bula, C.J. Executive function and prospective falls: A 6-year longitudinal study in community-dwelling older adults. BMC Geriatr. 2023, 23, 140. [Google Scholar] [CrossRef]
- Ginsberg, T.B.; Powell, L.; Patel, A.; Emrani, S.; Chopra, A.; Cavalieri, T.; Libon, D.J. Frailty phenotype and neuropsychological test performance: A preliminary analysis. J. Osteopath. Med. 2017, 117, 683–687. [Google Scholar] [CrossRef][Green Version]
- Corral-Pérez, J.; Casals, C.; Ávila-Cabeza-de-Vaca, L.; González-Mariscal, A.; Martínez-Zaragoza, I.; Villa-Estrada, F.; Reina-Campos, R.; Vázquez-Sánchez, M.Á. Health factors associated with cognitive frailty in older adults living in the community. Front. Aging. Neurosci. 2023, 15, 1232460. [Google Scholar] [CrossRef]
- Dobie, K.; Barr, C.J.; George, S.; Baker, N.; Pankhurst, M.; van den Berg, M.E.L. A systematic review of assessment tools for cognitive frailty: Use, psychometric properties, and clinical utility. J. Frailty Aging 2025, 14, 100033. [Google Scholar] [CrossRef]
- Umegaki, H.; Makino, T.; Shimada, H.; Hayashi, T.; Wu Cheng, X.; Kuzuya, M. Cognitive dysfunction in urban-community dwelling prefrail older subjects. J. Nutr. Health Aging 2018, 22, 549–554. [Google Scholar] [CrossRef]
- Aprahamian, I.; Suemoto, C.K.; Lin, S.M.; de Siqueira, A.S.S.; Biella, M.M.; de Melo, B.A.R.; Jacob-Filho, W. Depression is associated with self-rated frailty in older adults from an outpatient clinic: A prospective study. Int. Psychogeriatr. 2019, 31, 425–434. [Google Scholar] [CrossRef]
- Marconcin, P.; Barak, S.; Ferrari, G.; Gouveia, É.R.; de Maio Nascimento, M.; Willig, R.; Varela, M.; Marques, A. Prevalence of frailty and its association with depressive symptoms among European older adults from 17 countries: A 5-year longitudinal study. Int. J. Environ. Res. Public Health 2022, 19, 14055. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, R.S.; McElroy, T.; Rathor, L.; Martenson, M.S.; Lin, Y.; Mankowski, R.T. Sex differences in frailty among older adults. Exp. Gerontol. 2023, 184, 112333. [Google Scholar] [CrossRef]
- Park, H.; Aul, C.; DeGutis, J.; Lo, O.-Y.; Poole, V.N.; McGlinchey, R.; Bean, J.F.; Leritz, E.; Esterman, M. Evidence for a specific association between sustained attention and gait speed in middle-to-older-aged adults. Front. Aging Neurosci. 2021, 13, 703434. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.G.; Jacobsen, K.K.; Nilsson, C.; Jepsen, R.; Thygesen, L.; Suetta, C.; Holm, E.A. Prevalence and population characteristics associated with frailty in a rural low socioeconomic area in Denmark: The Lolland-Falster Health Study. BMJ Open 2024, 14, e073754. [Google Scholar] [CrossRef] [PubMed]
- Swenor, B.K.; Lee, M.J.; Tian, J.; Varadaraj, V.; Bandeen-Roche, K. Visual impairment and frailty: Examining an understudied relationship. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 596–602. [Google Scholar] [CrossRef] [PubMed]
| Measure | Total (n = 99) | Not Frail (n = 39) | Prefrail (n = 51) | Frail (n = 9) | p-Value |
|---|---|---|---|---|---|
| Sex n (%) | |||||
| Males | 41 (41.4%) | 19 (48.7%) | 21 (41.2%) | 1 (11.1%) | 0.119 |
| Females | 58 (58.6%) | 20 (51.3%) | 30 (58.8%) | 8 (88.9%) | |
| Cohabitation n (%) | |||||
| Alone | 29 (29.3%) | 14 (35.9%) | 11 (21.6%) | 4 (44.4%) | 0.329 |
| Spouse | 65(65.7%) | 24 (61.5%) | 37 (72.5%) | 4 (44.4%) | |
| Child/other relative | 5 (5.1%) | 1 (2.6%) | 3 (5.9%) | 1 (11.1%) | |
| Age mean ± | 78.1 ± 5.1 | 76.6 ± 4.4 | 78.5 ± 5.3 | 81.7 ± 5.4 | 0.027 |
| Education (years) mean ± | 8.0 ± 3.4 | 8.0 ± 3.0 | 8.3 ± 3.4 | 6.7 ± 4.6 | 0.453 |
| Monthly income € mean ± | 1602.5 ± 796.9 | 1627.4 ± 817.7 | 1609.1 ± 791.3 | 1457.1 ± 814.3 | 0.913 |
| Measure | Total (n = 99) | Not Frail (n = 39) | Prefrail (n = 51) | Frail (n = 9) | p-Value | |
|---|---|---|---|---|---|---|
| USUAL PACE | Gait velocity (m/s) mean ± | 1.04 ± 0.18 | 1.18 ± 0.11 | 0.96 ± 0.16 | 0.85 ± 0.11 | <0.001 |
| Stride length (cm) mean ± | 114.9 ± 15.9 | 126.7 ± 10.8 | 108.7 ± 13.3 | 98.5 ± 14.5 | <0.001 | |
| CV | 4.9 | 4.2 | 5.1 | 6.1 | 0.058 | |
| Stride time (s) mean ± | 1.12 ± 0.10 | 1.07 ± 0.07 | 1.14 ± 0.10 | 1.17 ± 0.13 | 0.004 | |
| CV | 3.8 | 2.4 | 4.2 | 8.2 | <0.001 | |
| Support time (%) | ||||||
| mean ± | 65.4 ± 2.6 | 63.9 ± 1.6 | 66.1 ± 2.6 | 68.1 ± 3.1 | <0.001 | |
| CV | 3.0 | 2.1 | 3.4 | 5.1 | <0.001 | |
| Swing time (%) | ||||||
| mean ± | 34.5 ± 2.5 | 36.0 ± 1.5 | 33.8 ± 2.4 | 31.9 ± 3.0 | <0.001 | |
| CV | 6.3 | 3.7 | 7.3 | 11.7 | <0.001 | |
| Double support time (%) mean ± | 30.4 ± 4.0 | 27.9 ± 3.1 | 31.7 ± 3.7 | 34.2 ± 3.2 | <0.001 | |
| CV | 10.4 | 9.9 | 10.5 | 12.1 | 0.085 | |
| FAST PACE | Gait velocity (m/s) mean ± | 1.31 ± 0.22 | 1.45 ± 0.14 | 1.24 ± 0.21 | 1.08 ± 0.18 | <0.001 |
| Stride length (cm) mean ± | 128.4 ± 18.1 | 139.7 ± 13.3 | 123.1 ± 16.4 | 109.3 ± 16.7 | <0.001 | |
| CV | 4.6 | 4.5 | 4.6 | 5.6 | 0.246 | |
| Stride time (s) | ||||||
| mean ± | 0.98 ± 0.08 | 0.96 ± 0.07 | 1.00 ± 0.07 | 1.02 ± 0.11 | 0.019 | |
| CV | 3.1 | 2.7 | 3.1 | 4.3 | <0.001 | |
| Support time (%) | ||||||
| mean ± | 63.3 ± 2.1 | 62.2 ± 1.6 | 63.8 ± 2.1 | 65.2 ± 2.1 | <0.001 | |
| CV | 2.4 | 2.1 | 2.6 | 2.7 | 0.002 | |
| Swing time (%) mean ± | 36.6 ± 2.1 | 37.7 ± 1.6 | 36.1 ± 2.1 | 34.7 ± 2.1 | <0.001 | |
| CV | 4.2 | 3.5 | 4.6 | 5.2 | <0.001 | |
| Double support time (%) mean ± | 26.6 ± 4.2 | 24.5 ± 3.2 | 27.5 ± 4.1 | 30.4 ± 4.3 | <0.000 | |
| CV | 11.6 | 11.2 | 12.0 | 10.3 | <0.872 |
| Total | Not Frail | Prefrail | Frail | p-Value | |
|---|---|---|---|---|---|
| Measure | (n = 99) | (n = 39) | (n = 51) | (n = 9) | |
| MoCA mean ± SD | 20.48 ± 3.99 | 21.85 ± 2.84 | 19.75 ± 4.35 | 18.78 ± 4.73 | 0.026 |
| TMT-A mean ± SD | 82.92 ± 50.95 | 70.52 ± 25.61 | 91.67 ± 64.28 | 87.11 ± 40.03 | 0.415 |
| TMT-B mean ± SD | 197.64 ± 86.08 | 177.56 ± 81.73 | 204.43 ± 89.63 | 246.11 ± 62.63 | 0.055 |
| Stroop (interference) mean ± SD | −4.10 ± 6.59 | −2.93 ± 7.10 | −4.42 ± 6.03 | −7.36 ± 6.71 | 0.208 |
| DSB mean ± SD | 3.62 ± 1.03 | 3.62 ± 0.99 | 3.75 ± 1.07 | 2.89 ± 0.78 | 0.071 |
| DSC mean ± SD | 16.30± 7.40 | 18.21 ± 7.19 | 15.51 ± 7.60 | 12.56 ± 5.15 | 0.090 |
| DSF mean ± SD | 5.17 ± 1.01 | 5.08 ± 0.87 | 5.20 ± 1.11 | 5.44 ± 1.01 | 0.589 |
| TAVEC (n = 49) | |||||
| mean ± SD | 7.08 ± 3.74 | 7.48 ± 3.88 | 7.05 ± 3.65 | 5.00 ± 4.08 | 0.508 |
| Model 1: non-frail vs. prefrail | Measure | Coefficients B | OR (95% CI) | p-Value |
| Sex (female) | 1.503 | 4.94 (1.20–16.77) | 0.025 | |
| MCI (MoCA) | 1.311 | 3.71 (1.08–12.69) | 0.037 | |
| Depressive symptoms (GDS-15) | 0.600 | 1.82 (1.26–2.62) | 0.001 | |
| Mean stride length (fast pace) | −0.082 | 0.922 (0.88–0.96) | <0.001 | |
| Model 2: prefrail vs. frail | MCI | MoCA | GDS-15 | DSB |
| 1.077 | 2.94 (1.34–6.44) | 0.007 | ||
| DSB | −0.912 | 0.40 (0.16–0.97) | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valeriano-Paños, E.; Moro-Tejedor, M.N.; Santamaria-Martin, M.J.; Vega-Albala, S.; Valeriano-Paños, M.; Velarde-García, J.F.; Roche-Seruendo, L.E. Linking Motor and Cognitive Decline in Aging: Gait Variability and Working Memory as Early Markers of Frailty. Healthcare 2025, 13, 3201. https://doi.org/10.3390/healthcare13243201
Valeriano-Paños E, Moro-Tejedor MN, Santamaria-Martin MJ, Vega-Albala S, Valeriano-Paños M, Velarde-García JF, Roche-Seruendo LE. Linking Motor and Cognitive Decline in Aging: Gait Variability and Working Memory as Early Markers of Frailty. Healthcare. 2025; 13(24):3201. https://doi.org/10.3390/healthcare13243201
Chicago/Turabian StyleValeriano-Paños, Elisa, Mª Nieves Moro-Tejedor, Mª Jesús Santamaria-Martin, Susana Vega-Albala, María Valeriano-Paños, Juan Francisco Velarde-García, and Luis Enrique Roche-Seruendo. 2025. "Linking Motor and Cognitive Decline in Aging: Gait Variability and Working Memory as Early Markers of Frailty" Healthcare 13, no. 24: 3201. https://doi.org/10.3390/healthcare13243201
APA StyleValeriano-Paños, E., Moro-Tejedor, M. N., Santamaria-Martin, M. J., Vega-Albala, S., Valeriano-Paños, M., Velarde-García, J. F., & Roche-Seruendo, L. E. (2025). Linking Motor and Cognitive Decline in Aging: Gait Variability and Working Memory as Early Markers of Frailty. Healthcare, 13(24), 3201. https://doi.org/10.3390/healthcare13243201

