Detecting Burnout Among Undergraduate Computing Students with Supervised Machine Learning
Abstract
1. Introduction
2. Related Work
2.1. Survey Data
2.2. Social Media Data
2.3. Biometric Data
2.4. Electronic Health Records
3. Materials and Methods
3.1. Study Participants
3.2. Data Collection
3.2.1. Target Variables
3.2.2. Predictor Variables
3.3. Feature Engineering
3.3.1. Data Cleaning
3.3.2. Feature Transformation
3.4. Model Training
3.4.1. Naïve Bayes
3.4.2. Logistic Regression
3.4.3. Support Vector Machine
3.4.4. Decision Tree
3.4.5. Extreme Gradient Boosting
3.5. Model Evaluation
4. Results
4.1. Exhaustion Detection Performance
4.2. Cynicism Detection Performance
4.3. Professional Efficacy Detection Performance
4.4. Feature Associations with Exhaustion
4.5. Feature Associations with Cynicism
4.6. Feature Associations with Professional Efficacy
5. Discussion
5.1. Detecting Exhaustion
5.2. Detecting Cynicism
5.3. Detecting Professional Efficacy
5.4. Features Associated with Burnout Dimensions
5.5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AUC | Area Under the Curve |
| CS | Computer Science |
| CY | Cynicism |
| DT | Decision Tree |
| ECG | Electrocardiogram |
| EHR | Electronic Health Record |
| EX | Exhaustion |
| FN | False Negative |
| FP | False Positive |
| GBDT | Gradient Boosting Decision Tree |
| GPA | Grade Point Average |
| IT | Information Technology |
| LR | Logistic Regression |
| MBI | Maslach Burnout Inventory |
| MBI-GS(S) | Maslach Burnout Inventory-General Survey for Students |
| MLP | Multilayer Perceptron |
| MUET | Malaysian University English Test |
| NB | Naive Bayes |
| PE | Professional Efficacy |
| RF | Random Forest |
| SVM | Support Vector Machine |
| TN | True Negative |
| TP | True Positive |
| XGBoost | Extreme Gradient Boosting |
References
- Boni, R.A.D.S.; Paiva, C.E.; De Oliveira, M.A.; Lucchetti, G.; Fregnani, J.H.T.G.; Paiva, B.S.R. Burnout among Medical Students during the First Years of Undergraduate School: Prevalence and Associated Factors. PLoS ONE 2018, 13, e0191746. [Google Scholar] [CrossRef] [PubMed]
- Gilbey, P.; Moffat, M.; Sharabi-Nov, A.; Cohen, O.; Kroszynski, G.N.; Karnieli-Miller, O.; Gillis, R.; Urkin, J.; Moscovici, K. Burnout in Israeli Medical Students: A National Survey. BMC Med. Educ. 2023, 23, 55. [Google Scholar] [CrossRef]
- Wickramasinghe, N.D.; Dissanayake, D.S.; Abeywardena, G.S. Validity and Reliability of the Maslach Burnout Inventory-Student Survey in Sri Lanka. BMC Psychol. 2018, 6, 52. [Google Scholar] [CrossRef]
- Schaufeli, W.B.; Martínez, I.M.; Pinto, A.M.; Salanova, M.; Bakker, A.B. Burnout and Engagement in University Students: A Cross-National Study. J. Cross-Cult. Psychol. 2002, 33, 464–481. [Google Scholar] [CrossRef]
- Maslach, C.; Jackson, S.E.; Leiter, M.P. Maslach Burnout Inventory: Manual, 4th ed.; Mind Garden: Menlo Park, CA, USA, 2018. [Google Scholar]
- IsHak, W.; Nikravesh, R.; Lederer, S.; Perry, R.; Ogunyemi, D.; Bernstein, C. Burnout in Medical Students: A Systematic Review. Clin. Teach. 2013, 10, 242–245. [Google Scholar] [CrossRef]
- Erschens, R.; Keifenheim, K.E.; Herrmann-Werner, A.; Loda, T.; Schwille-Kiuntke, J.; Bugaj, T.J.; Nikendei, C.; Huhn, D.; Zipfel, S.; Junne, F. Professional Burnout among Medical Students: Systematic Literature Review and Meta-Analysis. Med. Teach. 2019, 41, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Nteveros, A.; Kyprianou, M.; Artemiadis, A.; Charalampous, A.; Christoforaki, K.; Cheilidis, S.; Germanos, O.; Bargiotas, P.; Chatzittofis, A.; Zis, P. Burnout among Medical Students in Cyprus: A Cross-Sectional Study. PLoS ONE 2020, 15, e0241335. [Google Scholar] [CrossRef]
- Portoghese, I.; Leiter, M.P.; Maslach, C.; Galletta, M.; Porru, F.; D’Aloja, E.; Finco, G.; Campagna, M. Measuring Burnout Among University Students: Factorial Validity, Invariance, and Latent Profiles of the Italian Version of the Maslach Burnout Inventory Student Survey (MBI-SS). Front. Psychol. 2018, 9, 2105. [Google Scholar] [CrossRef] [PubMed]
- Noori Ahmadabadi, M.; Parsaei, A.; Sherafati, A.; Karimi, H.; Mortaz Hejri, S.; Pazooki, B. Determining the Prevalence of Burnout Among Medical Students Using Maslach Burnout Inventory: A Cross-Sectional Study. J. Iran. Med. Counc. 2022. [Google Scholar] [CrossRef]
- Pagnin, D.; De Queiroz, V. Influence of Burnout and Sleep Difficulties on the Quality of Life among Medical Students. SpringerPlus 2015, 4, 676. [Google Scholar] [CrossRef]
- Alqifari, A.; Alghidani, M.; Almazyad, R.; Alotaibi, A.; Alharbi, W.A.; Aljumail, E.; Alqefari, G.; Alkamees, A.; Alqifari, H. Burnout in Medical Undergraduate Students in Qassim, Saudi Arabia. Middle East Curr. Psychiatry 2021, 28, 47. [Google Scholar] [CrossRef]
- Cazan, A.-M. Learning Motivation, Engagement and Burnout among University Students. Procedia—Soc. Behav. Sci. 2015, 187, 413–417. [Google Scholar] [CrossRef]
- Jagodics, B.; Szabó, É. Student Burnout in Higher Education: A Demand-Resource Model Approach. Trends Psychol. 2022, 31, 757–776. [Google Scholar] [CrossRef]
- Obregon, M.; Luo, J.; Shelton, J.; Blevins, T.; MacDowell, M. Assessment of Burnout in Medical Students Using the Maslach Burnout Inventory-Student Survey: A Cross-Sectional Data Analysis. BMC Med. Educ. 2020, 20, 376. [Google Scholar] [CrossRef]
- Pérez-Fuentes, M.D.C.; Gázquez-Linares, J.J.; Molero-Jurado, M.D.M.; Martos-Martinez, Á.; Barragán-Martín, A.B.; Simón-Márquez, M.D.M. Student Burnout and Engagement: Relationship with Adolescent Use of Alcohol and Attitudes towards Authority. Int. J. Clin. Health Psychol. 2021, 21, 100225. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, D.; Bayati, M.; Liu, J.; Nguyen, L.; Sinha, A.; Kannampallil, T.; Shanafelt, T.; Profit, J. Predicting Primary Care Physician Burnout from Electronic Health Record Use Measures. Mayo Clin. Proc. 2024, 99, 1411–1421. [Google Scholar] [CrossRef] [PubMed]
- Merhbene, G.; Nath, S.; Puttick, A.R.; Kurpicz-Briki, M. BurnoutEnsemble: Augmented Intelligence to Detect Indications for Burnout in Clinical Psychology. Front. Big Data 2022, 5, 863100. [Google Scholar] [CrossRef] [PubMed]
- Latkin, C.A.; Edwards, C.; Davey-Rothwell, M.A.; Tobin, K.E. The Relationship between Social Desirability Bias and Self-Reports of Health, Substance Use, and Social Network Factors among Urban Substance Users in Baltimore, Maryland. Addict. Behav. 2017, 73, 133–136. [Google Scholar] [CrossRef]
- Rosenman, R.; Tennekoon, V.; Hill, L.G. Measuring Bias in Self-Reported Data. Int. J. Behav. Healthc. Res. 2011, 2, 320. [Google Scholar] [CrossRef]
- Paulhus, D.L. Two-Component Models of Socially Desirable Responding. J. Personal. Soc. Psychol. 1984, 46, 598–609. [Google Scholar] [CrossRef]
- Brulé, G.; Veenhoven, R. The ‘10 Excess’ Phenomenon in Responses to Survey Questions on Happiness. Soc. Indic. Res. 2017, 131, 853–870. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.M.; Rogers, R.; Sharf, A.J.; Ross, C.A. Faking Good: An Investigation of Social Desirability and Defensiveness in an Inpatient Sample With Personality Disorder Traits. J. Personal. Assess. 2019, 101, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Feher, G.; Kapus, K.; Tibold, A.; Banko, Z.; Berke, G.; Gacs, B.; Varadi, I.; Nyulas, R.; Matuz, A. Mental Issues, Internet Addiction and Quality of Life Predict Burnout among Hungarian Teachers: A Machine Learning Analysis. BMC Public Health 2024, 24, 2322. [Google Scholar] [CrossRef] [PubMed]
- AlShahrani, I.; Eroje, A.B.I.; Tikare, S.; Togoo, R.A.; Soliman, A.E.-N.M.; Rao, G.R. Psychometric Properties and Validation of the Arabic Maslach Burnout Inventory-Student Survey in Saudi Dental Students. Saudi J. Med. Med. Sci. 2022, 10, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Chauca-Bajaña, L.; Ordoñez Balladares, A.; Carrión Bustamante, I.A.; Sánchez Salcedo, A.C.; Suárez-Palacios, J.; Villao-León, X.A.; Morán Peña, F.J.; Egüés Cevallos, R.C.; Tolozano-Benites, R.; Velásquez Ron, B. Burnout Syndrome Among Dental Students in Clinical Training: A Multicenter Cross-Sectional Study in Ecuador. Int. J. Environ. Res. Public Health 2025, 22, 1393. [Google Scholar] [CrossRef]
- Rashid, S.; Badrul, T.; Rafid, L.; Setu, J.H.; Halder, N.; Islam, A. Ensemble and Deep Learning Approaches for Automated Screening of Anxiety, Depression, and Burnout in Medical Student Populations. In Proceedings of the 2024 Advances in Science and Engineering Technology International Conferences (ASET), Abu Dhabi, United Arab Emirates, 3–5 June 2024; pp. 1–10. [Google Scholar] [CrossRef]
- Batata, O.; Augusto, V.; Xie, X. Caregivers Burnout Prediction Using Supervised Learning. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 1749–1754. [Google Scholar] [CrossRef]
- Adapa, K.; Pillai, M.; Foster, M.; Charguia, N.; Mazur, L. Using Explainable Supervised Machine Learning to Predict Burnout in Healthcare Professionals. In Studies in Health Technology and Informatics; Séroussi, B., Weber, P., Dhombres, F., Grouin, C., Liebe, J.-D., Pelayo, S., Pinna, A., Rance, B., Sacchi, L., Ugon, A., et al., Eds.; IOS Press: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Havaei, F.; Ji, X.R.; MacPhee, M.; Straight, H. Identifying the Most Important Workplace Factors in Predicting Nurse Mental Health Using Machine Learning Techniques. BMC Nurs. 2021, 20, 216. [Google Scholar] [CrossRef]
- Tu, Y.; Huang, C.; Wu, X.; He, T. Understanding the Determinants of Student Burnout in Blended Learning Environments. In Proceedings of the 2023 3rd International Conference on Educational Technology (ICET), Xi’an, China, 15–17 September 2023; pp. 100–104. [Google Scholar] [CrossRef]
- Pereira, M.G.; Santos, M.; Magalhães, R.; Rodrigues, C.; Araújo, O.; Durães, D. Burnout Risk Profiles in Psychology Students: An Exploratory Study with Machine Learning. Behav. Sci. 2025, 15, 505. [Google Scholar] [CrossRef]
- Wu, J.; Ma, J.; Wang, Y.; Wang, J. Understanding and Predicting the Burst of Burnout via Social Media. Proc. ACM Hum.-Comput. Interact. 2021, 4, 1–27. [Google Scholar] [CrossRef]
- Tang, Z.; King, Z.; Segovia, A.C.; Yu, H.; Braddock, G.; Ito, A.; Sakamoto, R.; Shimaoka, M.; Sano, A. Burnout Prediction and Analysis in Shift Workers: Counterfactual Explanation Approach. In Proceedings of the 2023 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Pittsburgh, PA, USA, 15–18 October 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Gupta, M.D.; Jha, M.K.; Bansal, A.; Yadav, R.; Ramakrishanan, S.; Girish, M.P.; Sarkar, P.G.; Qamar, A.; Kumar, S.; Kumar, S.; et al. COVID 19-Related Burnout among Healthcare Workers in India and ECG Based Predictive Machine Learning Model: Insights from the BRUCEE- Li Study. Indian Heart J. 2021, 73, 674–681. [Google Scholar] [CrossRef]
- Lou, S.S.; Liu, H.; Warner, B.C.; Harford, D.; Lu, C.; Kannampallil, T. Predicting Physician Burnout Using Clinical Activity Logs: Model Performance and Lessons Learned. J. Biomed. Inform. 2022, 127, 104015. [Google Scholar] [CrossRef]
- Liu, H.; Lou, S.S.; Warner, B.C.; Harford, D.R.; Kannampallil, T.; Lu, C. HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 3377–3387. [Google Scholar] [CrossRef]
- Wickramasinghe, N.D.; Dissanayake, D.S.; Abeywardena, G.S. Clinical Validity and Diagnostic Accuracy of the Maslach Burnout Inventory-Student Survey in Sri Lanka. Health Qual. Life Outcomes 2018, 16, 220. [Google Scholar] [CrossRef]
- Li-Sauerwine, S.; Rebillot, K.; Melamed, M.; Addo, N.; Lin, M. A 2-Question Summative Score Correlates with the Maslach Burnout Inventory. WestJEM 2020, 21, 610–617. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Goldberg, Y. Neural Network Methods for Natural Language Processing; Synthesis Lectures on Human Language Technologies; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval, 1st ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Provost, F.; Fawcett, T. Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking, 1st ed.; O’Reilly: Sebastopol, CA, USA, 2013. [Google Scholar]
- Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2017. [Google Scholar]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd ed.; Data Science/Machine Learning; O’Reilly: Sebastopol, CA, USA, 2023. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A Systematic Analysis of Performance Measures for Classification Tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Khan, A.R. Facial Emotion Recognition Using Conventional Machine Learning and Deep Learning Methods: Current Achievements, Analysis and Remaining Challenges. Information 2022, 13, 268. [Google Scholar] [CrossRef]
- Grus, J. Data Science from Scratch: First Principles with Python, 2nd ed.; O’Reilly Media, Incorporated: Sebastopol, CA, USA, 2019. [Google Scholar]
- Mingers, J. An Empirical Comparison of Selection Measures for Decision-Tree Induction. Mach. Learn. 1989, 3, 319–342. [Google Scholar] [CrossRef]
- Mueller, J.P.; Massaron, L. Machine Learning, 2nd ed.; For Dummies; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2021. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer New York: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Jahedizadeh, S.; Ghanizadeh, A.; Ghapanchi, Z. A Cross-Contextual Analysis of EFL Students’ Burnout with Respect to Their Gender and Educational Level. Int. J. Engl. Educ. 2015, 4, 10–22. [Google Scholar]
- Fares, J.; Saadeddin, Z.; Al Tabosh, H.; Aridi, H.; El Mouhayyar, C.; Koleilat, M.K.; Chaaya, M.; El Asmar, K. Extracurricular Activities Associated with Stress and Burnout in Preclinical Medical Students. J. Epidemiol. Glob. Health 2015, 6, 177. [Google Scholar] [CrossRef] [PubMed]
- Puranitee, P.; Saetang, S.; Sumrithe, S.; Busari, J.O.; Van Mook, W.N.K.A.; Heeneman, S. Exploring Burnout and Depression of Thai Medical Students: The Psychometric Properties of the Maslach Burnout Inventory. Int. J. Med. Educ. 2019, 10, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Yahya, M.S.; Abutiheen, A.A.; Al- Haidary, A.F. Burnout among Medical Students of the University of Kerbala and Its Correlates. Middle East Curr. Psychiatry 2021, 28, 78. [Google Scholar] [CrossRef]
- Wing, T.; Pey, Y.; Subramaniam, V.; Raof, N.; Ting, O.; Ahmad, M. Prevalence of Burnout in Medical and Non-Medical Undergraduate Malaysian Students in Various International Universities—A Cross-Sectional Study. J. Adv. Med. Med. Res. 2018, 25, 1–13. [Google Scholar] [CrossRef]
- Shankland, R.; Kotsou, I.; Vallet, F.; Bouteyre, E.; Dantzer, C.; Leys, C. Burnout in University Students: The Mediating Role of Sense of Coherence on the Relationship between Daily Hassles and Burnout. High. Educ. 2019, 78, 91–113. [Google Scholar] [CrossRef]
- Shadid, A.; Shadid, A.M.; Shadid, A.; Almutairi, F.E.; Almotairi, K.E.; Aldarwish, T.; Alzamil, O.; Alkholaiwi, F.; Khan, S.-U.-D. Stress, Burnout, and Associated Risk Factors in Medical Students. Cureus 2020, 12, e6633. [Google Scholar] [CrossRef] [PubMed]




| Dimension | Class | |
|---|---|---|
| No Burnout (Coded: 0) | Burnout (Coded: 1) | |
| Exhaustion | 324 (57.35%) | 241 (42.65%) |
| Cynicism | 284 (50.27%) | 281 (49.73%) |
| Professional Efficacy | 332 (58.76%) | 233 (41.24%) |
| No. | Feature | Type | Description | Possible Values |
|---|---|---|---|---|
| 1 | Career | Ordinal | Level of academic program enrollment | 1 = Foundation; 2 = Diploma; 3 = Undergraduate |
| 2 | Program Status | Binary | Current program completion status | Completed Program (0); Active in Program (1) |
| 3 | Current Term | Binary | Length of the current trimester | Short (0); Long (1) |
| 4 | Academic Level | Ordinal | Current year level within program type | 1 = First year foundation; 2 = First year diploma; 3 = Second year diploma; 4 = First year bachelor’s; 5 = Second year bachelor’s; 6 = Third year bachelor’s |
| 5 | Campus | Binary | Campus location | Cyberjaya (0); Malacca (1) |
| 6 | Program | Nominal | Specific academic program enrolled | B.C.S (Hons); B.I.T. (Hons); Dip. I.T.; Foundation |
| 7 | Faculty | Binary | Faculty of enrollment | Faculty of Computing & Informatics (0); Faculty of Information Science & Technology (1) |
| 8 | Nationality | Binary | Student nationality status | International (0); Local (1) |
| 9 | Race | Nominal | Ethnic group classification | Chinese; Indian; Malay; Others (Malaysian); Others (non-Malaysian) |
| 10 | Gender | Binary | Student’s gender | Female (0); Male (1) |
| 11 | Discount | Binary | Status indicating if a student receives a tuition discount | No (0); Yes (1) |
| 12 | MUET Score | Binary | Status indicating if the student has a Malaysian University English Test score | No (0); Yes (1) |
| 13 | Financial Assistance | Binary | Status indicating if a student receives any form of financial assistance | No (0); Yes (1) |
| 14 | Loan | Binary | Status indicating if a student receives an educational loan | No (0); Yes (1) |
| 15 | Cumulative GPA | Continuous | Student’s cumulative grade point average | Theoretical range: 0.00–4.00; Range in the dataset: 1.14–4.00 |
| 16 | Academic Status | Nominal | Student’s current academic standing | Pass; Probation; Terminated-Reinstated |
| 17 | Class of Honors | Nominal | Academic achievement classification | Credit; Distinction; First Class; Less 2; Pass; Second Class (Upper); Second Class (Lower); Third Class |
| 18 | Total Credit Hours | Continuous | Total academic credits earned | Range in dataset: 5–116 |
| Model | Python 3.9 Package | Key Hyperparameters |
|---|---|---|
| NB | sklearn.naive_bayes.BernoulliNB | alpha = 1.0 (smoothing parameter) |
| LR | sklearn.linear_model.LogisticRegression | C = 1.0 (regularization), penalty = ‘l2’, solver = ‘lbfgs’, max_iter = 1000, random_state = 42 |
| SVM | sklearn.svm.LinearSVC | C = 1.0 (regularization), penalty = ‘l2′, loss = ‘squared_hinge’, max_iter = 1000, random_state = 42 |
| DT | sklearn.tree.DecisionTreeClassifier | criterion = ‘gini’, max_depth = None, min_samples_split = 2, min_samples_leaf = 1, random_state = 42 |
| XGBoost | xgboost.XGBClassifier | n_estimators = 100, learning_rate = 0.3 (default), max_depth = 6 (default), objective = ‘binary:logistic’, random_state = 42 |
| Feature | χ2 | df | p-Value | Significant | Cramer’s V | Effect Size |
|---|---|---|---|---|---|---|
| Career | 6.843 | 2 | 0.033 | Yes | 0.110 | Small |
| Program Status | 0.000 | 1 | 1.000 | No | 0.000 | Negligible |
| Current Term | 1.625 | 1 | 0.202 | No | 0.054 | Negligible |
| Academic Level | 7.772 | 5 | 0.169 | No | 0.117 | Small |
| Campus | 0.013 | 1 | 0.908 | No | 0.005 | Negligible |
| Program | 7.408 | 3 | 0.060 | No | 0.115 | Small |
| Faculty | 0.013 | 1 | 0.908 | No | 0.005 | Negligible |
| Nationality | 0.989 | 1 | 0.320 | No | 0.042 | Negligible |
| Race | 1.379 | 4 | 0.848 | No | 0.049 | Negligible |
| Gender | 0.797 | 1 | 0.372 | No | 0.038 | Negligible |
| Discount | 0.000 | 1 | 0.999 | No | 0.000 | Negligible |
| MUET Score | 0.228 | 1 | 0.633 | No | 0.020 | Negligible |
| Financial Assistance | 0.525 | 1 | 0.469 | No | 0.030 | Negligible |
| Loan | 0.018 | 1 | 0.893 | No | 0.006 | Negligible |
| Academic Status | 4.160 | 2 | 0.125 | No | 0.086 | Negligible |
| Class of Honors | 5.998 | 7 | 0.540 | No | 0.103 | Small |
| Feature | Mdn (No EX) | Mdn (EX) | IQR (No EX) | IQR (EX) | U-Statistic | p-Value | Significant |
|---|---|---|---|---|---|---|---|
| Cumulative GPA | 3.46 | 3.41 | 0.76 | 0.76 | 39,876.5 | 0.664 | No |
| Total Credit Hours | 44.00 | 46.00 | 53.00 | 47.00 | 38,810.5 | 0.904 | No |
| Feature | χ2 | df | p-Value | Significant | Cramer’s V | Effect Size |
|---|---|---|---|---|---|---|
| Career | 3.291 | 2 | 0.193 | No | 0.076 | Negligible |
| Program Status | 0.000 | 1 | 1.000 | No | 0.000 | Negligible |
| Current Term | 0.287 | 1 | 0.592 | No | 0.023 | Negligible |
| Academic Level | 5.952 | 5 | 0.311 | No | 0.103 | Small |
| Campus | 0.297 | 1 | 0.586 | No | 0.023 | Negligible |
| Program | 4.438 | 3 | 0.218 | No | 0.089 | Negligible |
| Faculty | 0.297 | 1 | 0.586 | No | 0.023 | Negligible |
| Nationality | 0.000 | 1 | 1.000 | No | 0.000 | Negligible |
| Race | 0.558 | 4 | 0.968 | No | 0.031 | Negligible |
| Gender | 5.203 | 1 | 0.023 | Yes | 0.096 | Negligible |
| Discount | 0.072 | 1 | 0.788 | No | 0.011 | Negligible |
| MUET Score | 0.323 | 1 | 0.570 | No | 0.024 | Negligible |
| Financial Assistance | 0.801 | 1 | 0.371 | No | 0.038 | Negligible |
| Loan | 0.151 | 1 | 0.698 | No | 0.016 | Negligible |
| Academic Status | 8.474 | 2 | 0.014 | Yes | 0.122 | Small |
| Class of Honors | 8.261 | 7 | 0.310 | No | 0.121 | Small |
| Feature | Mdn (No CY) | Mdn (CY) | IQR (No CY) | IQR (CY) | U-Statistic | p-Value | Significant |
|---|---|---|---|---|---|---|---|
| Cumulative GPA | 3.47 | 3.38 | 0.71 | 0.78 | 44,046.0 | 0.033 | Yes |
| Total Credit Hours | 44.00 | 46.00 | 56.25 | 45.00 | 37,232.5 | 0.168 | No |
| Feature | χ2 | df | p-Value | Significant | Cramer’s V | Effect Size |
|---|---|---|---|---|---|---|
| Career | 1.957 | 2 | 0.376 | No | 0.059 | Negligible |
| Program Status | 0.000 | 1 | 1.000 | No | 0.000 | Negligible |
| Current Term | 0.518 | 1 | 0.472 | No | 0.030 | Negligible |
| Academic Level | 5.329 | 5 | 0.377 | No | 0.097 | Negligible |
| Campus | 0.424 | 1 | 0.515 | No | 0.027 | Negligible |
| Program | 2.539 | 3 | 0.468 | No | 0.067 | Negligible |
| Faculty | 0.424 | 1 | 0.515 | No | 0.027 | Negligible |
| Nationality | 6.607 | 1 | 0.010 | Yes | 0.108 | Small |
| Race | 10.232 | 4 | 0.037 | Yes | 0.135 | Small |
| Gender | 0.000 | 1 | 1.000 | No | 0.000 | Negligible |
| Discount | 0.324 | 1 | 0.569 | No | 0.024 | Negligible |
| Muet Score | 0.001 | 1 | 0.980 | No | 0.001 | Negligible |
| Financial Assistance | 0.422 | 1 | 0.516 | No | 0.027 | Negligible |
| Loan | 0.264 | 1 | 0.607 | No | 0.022 | Negligible |
| Academic Status | 4.822 | 2 | 0.090 | No | 0.092 | Negligible |
| Class of Honors | 12.791 | 7 | 0.077 | No | 0.150 | Small |
| Feature | Mdn (Not Low PE) | Mdn (Low PE) | IQR (Not Low PE) | IQR (Low PE) | U-Statistic | p-Value | Significant |
|---|---|---|---|---|---|---|---|
| Cumulative GPA | 3.51 | 3.33 | 0.78 | 0.76 | 44,073.0 | 0.005 | Yes |
| Total Credit Hours | 44.50 | 46.00 | 52.00 | 47.00 | 36,948.5 | 0.364 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeskuatov, E.; Foo, L.K.; Chua, S.-L. Detecting Burnout Among Undergraduate Computing Students with Supervised Machine Learning. Healthcare 2025, 13, 3182. https://doi.org/10.3390/healthcare13233182
Yeskuatov E, Foo LK, Chua S-L. Detecting Burnout Among Undergraduate Computing Students with Supervised Machine Learning. Healthcare. 2025; 13(23):3182. https://doi.org/10.3390/healthcare13233182
Chicago/Turabian StyleYeskuatov, Eldar, Lee Kien Foo, and Sook-Ling Chua. 2025. "Detecting Burnout Among Undergraduate Computing Students with Supervised Machine Learning" Healthcare 13, no. 23: 3182. https://doi.org/10.3390/healthcare13233182
APA StyleYeskuatov, E., Foo, L. K., & Chua, S.-L. (2025). Detecting Burnout Among Undergraduate Computing Students with Supervised Machine Learning. Healthcare, 13(23), 3182. https://doi.org/10.3390/healthcare13233182

