Effects of Exercise-Based Cardiac Rehabilitation on Risk Factors, Fitness, and Quality of Life in Patients Undergoing Percutaneous Coronary Intervention: Emergency Department Versus Outpatient Routes
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Health Survey, Blood Collection, Quality of Life, and Physical Activity Questionnaire
2.3. Body Composition
2.4. Graded Exercise Tests (GXTs) and Grip Strength
2.5. Exercise-Based CR Program
2.6. Data Analysis
3. Results
3.1. General Characteristics
3.2. Comparison of Changes in Blood Pressure and Lipid Profiles
3.3. Comparison of Changes in Fitness, Physical Activity, and Body Composition
3.4. Comparison of Changes in Quality of Life
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mensah, G.A.; Fuster, V.; Murray, C.J.; Roth, G.A.; Abate, Y.H.; Abbasian, M.; Abd-Allah, F.; Abdollahi, A.; Abdollahi, M.; Abdulah, D.M.; et al. Global burden of cardiovascular diseases and risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef]
- Kim, H.C. Epidemiology of cardiovascular disease and its risk factors in Korea. Glob. Health Med. 2021, 3, 134–141. [Google Scholar] [CrossRef]
- Baek, J.; Lee, H.; Lee, H.-H.; Heo, J.E.; Cho, S.M.J.; Kim, H.C. Thirty-six year trends in mortality from diseases of circulatory system in Korea. Korean Circ. J. 2021, 51, 320–332. [Google Scholar] [CrossRef]
- Arafa, A.; Lee, H.-H.; Eshak, E.S.; Shirai, K.; Liu, K.; Li, J.; Anni, N.S.; Shim, S.Y.; Kim, H.C.; Iso, H. Modifiable risk factors for cardiovascular disease in Korea and Japan. Korean Circ. J. 2021, 51, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Dai, N.; Lee, S.H.; Choi, K.H.; Lefieux, A.; Molony, D.; Hwang, D.; Kim, H.K.; Jeon, K.-H.; Lee, H.-J. Physiological distribution and local severity of coronary artery disease and outcomes after percutaneous coronary intervention. Cardiovasc. Interv. 2021, 14, 1771–1785. [Google Scholar] [CrossRef]
- Lolley, R.; Forman, D.E. Cardiac rehabilitation and survival for ischemic heart disease. Curr. Cardiol. Rep. 2021, 23, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Lara-Breitinger, K.; Lynch, M.; Kopecky, S. Nutrition intervention in cardiac rehabilitation: A review of the literature and strategies for the future. J. Cardiopulm. Rehabil. Prev. 2021, 41, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Sjölin, I.; Bäck, M.; Nilsson, L.; Schiopu, A.; Leosdottir, M. Association between attending exercise-based cardiac rehabilitation and cardiovascular risk factors at one-year post myocardial infarction. PLoS ONE 2020, 15, e0232772–e0232786. [Google Scholar] [CrossRef]
- Li, T.; Jiang, H.; Ding, J. The role of exercise-based cardiac rehabilitation after percutaneous coronary intervention in patients with coronary artery disease: A meta-analysis of randomised controlled trials. Acta Cardiol. 2024, 79, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Mane, F.; Flores, R.; Conde, I.; Silva, R.; Medeiros, P.; Rodrigues, C.; Oliveira, C.; Ferreira, A.; Costa, J.; Quina, C. The impact of outpatient emergency medical system in STEMI patients undergoing primary angioplasty: A single-centre experience. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, zuac041.075. [Google Scholar] [CrossRef]
- McGrady, A.; McGinnis, R.; Badenhop, D.; Bentle, M.; Rajput, M. Effects of depression and anxiety on adherence to cardiac rehabilitation. J. Cardiopulm. Rehabil. Prev. 2009, 29, 358–364. [Google Scholar] [CrossRef]
- Eken, C.; Oktay, C.; Bacanli, A.; Gulen, B.; Koparan, C.; Ugras, S.S.; Cete, Y. Anxiety and depressive disorders in patients presenting with chest pain to the emergency department: A comparison between cardiac and non-cardiac origin. J. Emerg. Med. 2010, 39, 144–150. [Google Scholar] [CrossRef]
- Kim, S.-H.; So, W.-Y. Rasch validation of the SF-36 for assessing the health status of Korean older adults. J. Phys. Ther. Sci. 2015, 27, 601–606. [Google Scholar] [CrossRef]
- Kim, S.H.; Jo, M.-W.; Lee, S.-i. Psychometric properties of the Korean short form-36 health survey version 2 for assessing the general population. Asian Nurs. Res. 2013, 7, 61–66. [Google Scholar] [CrossRef]
- Chun, M.Y. Validity and reliability of Korean version of international physical activity questionnaire short form in the elderly. Korean J. Fam. Med. 2012, 33, 144–151. [Google Scholar] [CrossRef]
- Oh, J.Y.; Yang, Y.J.; Kim, B.S.; Kang, J.H. Validity and reliability of Korean version of International Physical Activity Questionnaire (IPAQ) short form. J. Korean Acad. Fam. Med. 2007, 28, 532–541. [Google Scholar]
- Kurth, J.D.; Klenosky, D.B. Validity evidence for a daily, online-delivered, adapted version of the International Physical Activity Questionnaire Short Form (IPAQ-SF). Meas. Phys. Educ. Exerc. Sci. 2021, 25, 127–136. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, O.; Marra, M.; Sacco, A.M.; Pasanisi, F.; Scalfi, L. Bioelectrical impedance (BIA)-derived phase angle in adults with obesity: A systematic review. Clin. Nutr. 2021, 40, 5238–5248. [Google Scholar] [CrossRef]
- Gibson, A.L.; Wagner, D.R.; Heyward, V.H. Advanced Fitness Assessment and Exercise Prescription, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2024. [Google Scholar]
- Griffith, G.J.; Wang, A.P.; Liem, R.I.; Carr, M.R.; Corson, T.; Ward, K. A Reference Equation for Peak Oxygen Uptake for Pediatric Patients Who Undergo Treadmill Cardiopulmonary Exercise Testing. Am. J. Cardiol. 2024, 212, 41–47. [Google Scholar] [CrossRef]
- American Association of Cardiovascular & Pulmonary Rehabilitation. AACVPR Cardiac Rehabilitation Resource Manual: Promoting Health and Preventing Disease, 1st ed.; Human Kinetics: Champaign, IL, USA, 2006. [Google Scholar]
- Watanabe, K.; Watanabe, K.; Yoshioka, M. Measurement Accuracy of Hand Dynamometers Used for Physical Fitness Testing. Mukogawa J. Health Exerc. Sci. 2014, 4, 23–29. [Google Scholar]
- Brawner, C.A.; Berry, R.; Harding, A.W.; Nustad, J.K.; Ozemek, C.; Richardson, L.A.; Savage, P.D. Clinical exercise physiologists in cardiac rehabilitation and clinical exercise testing. J. Clin. Exerc. Physiol. 2023, 12, 38–45. [Google Scholar] [CrossRef]
- Kirkman, D.L.; Lee, D.-c.; Carbone, S. Resistance exercise for cardiac rehabilitation. Prog. Cardiovasc. Dis. 2022, 70, 66–72. [Google Scholar] [CrossRef]
- Martin, B.-J.; Hauer, T.; Arena, R.; Austford, L.D.; Galbraith, P.D.; Lewin, A.M.; Knudtson, M.L.; Ghali, W.A.; Stone, J.A.; Aggarwal, S.G. Cardiac rehabilitation attendance and outcomes in coronary artery disease patients. Circulation 2012, 126, 677–687. [Google Scholar] [CrossRef]
- Resurreccion, D.M.; Motrico, E.; Rigabert, A.; Rubio-Valera, M.; Conejo-Ceron, S.; Pastor, L.; Moreno-Peral, P. Barriers for nonparticipation and dropout of women in cardiac rehabilitation programs: A systematic review. J. Women’s Health 2017, 26, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Lueckmann, S.L.; Hoebel, J.; Roick, J.; Markert, J.; Spallek, J.; Von Dem Knesebeck, O.; Richter, M. Socioeconomic inequalities in primary-care and specialist physician visits: A systematic review. Int. J. Equity Health 2021, 20, 1–19. [Google Scholar] [CrossRef]
- McMaughan, D.J.; Oloruntoba, O.; Smith, M.L. Socioeconomic status and access to healthcare: Interrelated drivers for healthy aging. Front. Public Health 2020, 8, 512143–512151. [Google Scholar] [CrossRef]
- Dawson, L.P.; Andrew, E.; Nehme, Z.; Bloom, J.; Biswas, S.; Cox, S.; Anderson, D.; Stephenson, M.; Lefkovits, J.; Taylor, A.J. Association of socioeconomic status with outcomes and care quality in patients presenting with undifferentiated chest pain in the setting of universal health care coverage. J. Am. Heart Assoc. 2022, 11, e024923–e024949. [Google Scholar] [CrossRef]
- Herlitz, S.; Ohm, J.; Häbel, H.; Ekelund, U.; Hofmann, R.; Svensson, P. Socioeconomic status is associated with process times in the emergency department for patients with chest pain. J. Am. Coll. Emerg. Physicians Open 2023, 4, e13005–e13013. [Google Scholar] [CrossRef]
- Zhou, J.; Liew, D.; Duffy, S.J.; Shaw, J.; Walton, A.; Chan, W.; Gerber, R.; Stub, D. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: A health economic analysis. Circ. Cardiovasc. Qual. Outcomes 2021, 14, e006789–e006799. [Google Scholar] [CrossRef]
- Kim, Y.; Schneider, T.; Faß, E.; Lochbaum, M. Personal social capital and self-rated health among middle-aged and older adults: A cross-sectional study exploring the roles of leisure-time physical activity and socioeconomic status. BMC Public Health 2021, 21, 48. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, D.; Chen, Y.; Tan, M.; Chen, X. Effect of socioeconomic status on the physical and mental health of the elderly: The mediating effect of social participation. BMC Public Health 2022, 22, 605–616. [Google Scholar] [CrossRef]
- Straker, L.; Holtermann, A.; Lee, I.-M.; van der Beek, A.J.; Stamatakis, E. Privileging the privileged: The public health focus on leisure time physical activity has contributed to widening socioeconomic inequalities in health. Br. J. Sports Med. 2021, 55, 525–526. [Google Scholar] [CrossRef]
- Pak, T.-Y. What are the effects of expanding social pension on health? Evidence from the Basic Pension in South Korea. J. Econ. Ageing 2021, 18, 100287–100316. [Google Scholar] [CrossRef]
- Khadanga, S.; Savage, P.D.; Ades, P.A.; Yant, B.; Anair, B.; Kromer, L.; Gaalema, D.E. Lower-socioeconomic status patients have extremely high-risk factor profiles on entry to cardiac rehabilitation. J. Cardiopulm. Rehabil. Prev. 2024, 44, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Aksović, N.; Bjelica, B.; Joksimović, M.; Skrypchenko, I.; Filipović, S.; Milanović, F.; Pavlović, B.; Ćorluka, B.; Pržulj, R. Effects of aerobic physical activity to cardio-respiratory fitness of the elderly population: Systematic overview. Pedagog. Phys. Cult. Sports 2020, 24, 208–218. [Google Scholar] [CrossRef]
- Kerrigan, D.J.; Reddy, M.; Walker, E.M.; Cook, B.; McCord, J.; Loutfi, R.; Saval, M.A.; Baxter, J.; Brawner, C.A.; Keteyian, S.J. Cardiac rehabilitation improves fitness in patients with subclinical markers of cardiotoxicity while receiving chemotherapy: A randomized controlled study. J. Cardiopulm. Rehabil. Prev. 2023, 43, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, C.; van Sluijs, E.M.; Sutton, S.; Hardeman, W.; Corder, K.; Griffin, S.J. Overestimation of physical activity level is associated with lower BMI: A cross-sectional analysis. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 68. [Google Scholar] [CrossRef]
- Rao, A.; Zecchin, R.; Newton, P.J.; Phillips, J.; DiGiacomo, M.; Denniss, A.R.; Hickman, L. The prevalence and impact of depression and anxiety in cardiac rehabilitation: A longitudinal cohort study. Eur. J. Prev. Cardiol. 2020, 27, 478–489. [Google Scholar] [CrossRef]
- Shan, R.; Zhang, L.; Zhu, Y.; Ben, L.; Xin, Y.; Wang, F.; Yan, L. Effect of Early Exercise Rehabilitation on Cardiopulmonary Function and Quality of Life in Patients after Coronary Artery Bypass Grafting. Contrast Media Mol. Imaging 2022, 2022, 4590037–4590043. [Google Scholar] [CrossRef]
- Wu, G.; Hu, Y.; Ding, K.; Li, X.; Li, J.; Shang, Z. The Effect of Cardiac Rehabilitation on Lipid Levels in Patients with Coronary Heart Disease. A Systematic Review and Meta-Analysis. Global Heart 2022, 17, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Javaherian, M.; Dabbaghipour, N.; Mohammadpour, Z.; Moghadam, B.A. The role of the characteristics of exercise-based cardiac rehabilitation program in the improvement of lipid profile level: A systematic review and meta-analysis. ARYA Atheroscler. 2020, 16, 192–207. [Google Scholar] [PubMed]




| Variables | OP (n = 206) | ER (n = 94) | p |
|---|---|---|---|
| Age, years | 58.0 ± 10.2 | 62.1 ± 9.9 | 0.022 |
| Body mass index, kg/m2 | 24.8 ± 2.5 | 25.1 ± 2.4 | 0.396 |
| Monthly income, USD | 5495 ± 2329 | 4121 ± 2648 | 0.002 |
| Education | |||
| Middle school | 40 (19.4%) | 33 (35.1%) | <0.001 |
| High school | 105 (51.0%) | 49 (52.1%) | |
| College or university | 61 (29.6%) | 12 (12.8%) | |
| Smoking | |||
| Never smoker | 46 (22.3%) | 22 (23.4%) | 0.735 |
| Past smoker | 87 (42.2%) | 43 (45.7%) | |
| Current smoker | 73 (35.4%) | 29 (30.9%) | |
| Alcohol | |||
| High risk | 42 (20.4%) | 24 (25.5%) | 0.527 |
| Medium risk | 71 (34.5%) | 33 (35.1%) | |
| Low risk | 93 (44.7%) | 37 (39.4%) | |
| Occupation | |||
| Yes | 128 (62.1%) | 46 (48.9%) | 0.032 |
| No | 78 (37.9%) | 48 (51.1%) | |
| Residence region | |||
| Area within the same city | 129 (62.6%) | 51 (54.3%) | 0.170 |
| Province | 77 (37.4%) | 43 (45.7%) | |
| Vessel number | |||
| One | 128 (62.1%) | 54 (57.4%) | 0.276 |
| Two | 60 (29.1%) | 26 (27.7%) | |
| Three | 18 (8.7%) | 14 (14.9%) | |
| Pre-existing diseases | |||
| Diabetes | 73 (35.8%) | 43 (44.8%) | 0.162 |
| Hypertension | 136 (66.7%) | 62 (64.6%) | 0.794 |
| Dyslipidemia | 88 (43.1%) | 51 (53.1%) | 0.109 |
| Prescribed medication | |||
| Antiplatelet therapy | 195 (95.6%) | 89 (92.7%) | 0.408 |
| Statin | 166 (81.4%) | 79 (82.3%) | 0.848 |
| β-blocker | 191 (93.6%) | 86 (89.6%) | 0.247 |
| ACE inhibitors | 183 (89.7%) | 89 (92.7%) | 0.525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Choi, Y.; Lee, J.; Kim, Y. Effects of Exercise-Based Cardiac Rehabilitation on Risk Factors, Fitness, and Quality of Life in Patients Undergoing Percutaneous Coronary Intervention: Emergency Department Versus Outpatient Routes. Healthcare 2025, 13, 3097. https://doi.org/10.3390/healthcare13233097
Yang T, Choi Y, Lee J, Kim Y. Effects of Exercise-Based Cardiac Rehabilitation on Risk Factors, Fitness, and Quality of Life in Patients Undergoing Percutaneous Coronary Intervention: Emergency Department Versus Outpatient Routes. Healthcare. 2025; 13(23):3097. https://doi.org/10.3390/healthcare13233097
Chicago/Turabian StyleYang, Tong, Yongchul Choi, Jiyoung Lee, and Yonghwan Kim. 2025. "Effects of Exercise-Based Cardiac Rehabilitation on Risk Factors, Fitness, and Quality of Life in Patients Undergoing Percutaneous Coronary Intervention: Emergency Department Versus Outpatient Routes" Healthcare 13, no. 23: 3097. https://doi.org/10.3390/healthcare13233097
APA StyleYang, T., Choi, Y., Lee, J., & Kim, Y. (2025). Effects of Exercise-Based Cardiac Rehabilitation on Risk Factors, Fitness, and Quality of Life in Patients Undergoing Percutaneous Coronary Intervention: Emergency Department Versus Outpatient Routes. Healthcare, 13(23), 3097. https://doi.org/10.3390/healthcare13233097

