Motor Imagery Ability and Motor Imagery Perspective Among Professional Football Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Main Outcome Measures
2.3.1. Vividness of Movement Imagery Questionnaire-2
2.3.2. Intervention Protocol
- Warm-up (8 min): light running, dynamic stretching, and bodyweight drills (e.g., squats, knee lifts),
- Balance Training (15 min): progressive static and dynamic tasks on unstable surfaces, including single-leg stance on foam and wobble boards, dynamic transitions, and controlled squats,
2.3.3. Statistical Analysis
3. Results
Vividness of Movement Imagery Questionnaire-2 (VMIQ-2-GR)
4. Discussion
4.1. Clinical Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zach, S.; Dobersek, U.; Filho, E.; Inglis, V.; Tenenbaum, G. A meta-analysis of mental imagery effects on post-injury functional mobility, perceived pain, and self-efficacy. Psychol. Sport Exerc. 2018, 34, 79–87. [Google Scholar] [CrossRef]
- MacIntyre, T.E.; Madan, C.R.; Moran, A.P.; Collet, C.; Guillot, A. Motor imagery, performance and motor rehabilitation. Prog. Brain Res. 2018, 240, 141–159. [Google Scholar]
- Ferreira Dias Kanthack, T.; Guillot, A.; Saboul, D.; Debarnot, U.; Di Rienzo, F. Breathing with the mind: Effects of motor imagery on breath-hold performance. Physiol. Behav. 2019, 208, 27–29. [Google Scholar] [CrossRef]
- Mokienko, O.A.; Chernikova, L.A.; Frolov, A.A.; Bobrov, P.D. Motor imagery and its practical application. Zhurnal Vyss. Nervn. Deiatelnosti Im. IP Pavlov. 2013, 63, 195–204. [Google Scholar] [CrossRef]
- Stenekes, M.W.; Geertzen, J.H.; Nicolai, J.P.A.; De Jong, B.M.; Mulder, T. Effects of Motor Imagery on Hand Function During Immobilization After Flexor Tendon Repair. Arch. Phys. Med. Rehabil. 2009, 90, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Dickstein, R.; Deutsch, J.E. Physical Therapist Practice. Phys. Ther. 2007, 87, 942–953. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.E. Comparing movement imagery and action observation as techniques to increase imagery ability. Psychol. Sport Exerc. 2019, 44, 99–106. [Google Scholar] [CrossRef]
- Plakoutsis, G.; Tsepis, E.; Fousekis, K.; Paraskevopoulos, E.; Papandreou, M. The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains. Healthcare 2024, 12, 1432. [Google Scholar] [CrossRef]
- Plakoutsis, G.; Tsepis, E.; Fousekis, K.; Christakou, A.; Papandreou, M. The Complementary Role of Motor Imagery on VO2max and Lactate in Professional Football Players with Grade II Ankle Sprains During the Return-to-Play Period. Appl. Sci. 2025, 15, 820. [Google Scholar] [CrossRef]
- Plakoutsis, G.; Paraskevopoulos, E.; Zavvos, A.; Papandreou, M. The Effects of Motor Imagery on Pain in Lower Limb Sports Injuries: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 2545. [Google Scholar] [CrossRef]
- McArdle, S. Psychological rehabilitation from anterior cruciate ligament-medial collateral ligament reconstructive surgery: A case study. Sports Health 2010, 2, 73–77. [Google Scholar] [CrossRef]
- Beauchamp, M.R.; Bray, S.R.; Albinson, J.G. Pre-competition imagery, self-efficacy and performance in collegiate golfers. J. Sports Sci. 2002, 20, 697–705. [Google Scholar] [CrossRef]
- Wesch, N.; Callow, N.; Hall, C.; Pope, J.P. Imagery and self-efficacy in the injury context. Psychol. Sport Exerc. 2016, 24, 72–81. [Google Scholar] [CrossRef]
- McCormick, A.; Meijen, C.; Marcora, S. Psychological Determinants of Whole-Body Endurance Performance. Sports Med. 2015, 45, 997–1015. [Google Scholar] [CrossRef] [PubMed]
- Dawson, M.A.; Hamson-Utley, J.J.; Hansen, R.; Olpin, M. Examining the effectiveness of psychological strategies on physiologic markers: Evidence-based suggestions for holistic care of the athlete. J. Athl. Train. 2014, 49, 331–337. [Google Scholar] [CrossRef]
- Herring, S.A.; Boyajian-O’Neill, L.A.; Coppel, D.B.; Daniels, J.M.; Gould, D.; Grana, W.; Hong, E.; Indelicato, P.; Jaffe, R.; Joy, E.; et al. Psychological issues related to injury in athletes and the team physician: A consensus statement. Med. Sci. Sports Exerc. 2006, 38, 2030–2034. [Google Scholar]
- Evans, L.; Hare, R.; Mullen, R. Imagery Use During Rehabilitation from Injury. J. Imag. Res. Sport Phys. Act. 2006, 1, 1. [Google Scholar] [CrossRef]
- Isaac, A.; Marks, D.F.; Russell, D.G. An instrument for assessing imagery of movement: The Vividness of Movement Imagery Questionnaire (VMIQ). J. Ment. Imag. 1986, 10, 23–30. [Google Scholar]
- Roberts, R.; Callow, N.; Hardy, L.; Markland, D.; Bringer, J. Movement imagery ability: Development and assessment of a revised version of the vividness of movement imagery questionnaire. J. Sport Exerc. Psychol. 2008, 30, 200–221. [Google Scholar] [CrossRef]
- Gregg, M.; Hall, C.; Mcgowan, E.; Hall, N. The relationship between imagery ability and imagery use among Athletes. J. Appl. Sport Psychol. 2011, 23, 129–141. [Google Scholar] [CrossRef]
- Di Corrado, D.; Guarnera, M.; Vitali, F.; Quartiroli, A.; Coco, M. Imagery ability of elite level athletes from individual vs. Team and contact vs. No-contact sports. Peer J. 2019, 7, e6940. [Google Scholar] [CrossRef]
- Plakoutsis, G.; Fousekis, K.; Tsepis, E.; Papandreou, M. Cross cultural adaptation, validity and reliability of the Greek version of the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2). Discov. Psychol. 2023, 3, 30. [Google Scholar] [CrossRef]
- Yu, Q.H.; Fu, A.S.N.; Kho, A.; Li, J.; Sun, X.H.; Chan, C.C.H. Imagery perspective among young athletes: Differentiation between external and internal visual imagery. J. Sport Health Sci. 2016, 5, 211–218. [Google Scholar] [CrossRef]
- Callow, N.; Roberts, R. Imagery research: An investigation of three issues. Psychol. Sport Exerc. 2010, 11, 325–329. [Google Scholar] [CrossRef]
- Christakou, A.; Zervas, Y. The effectiveness of imagery on pain, edema, and range of motion in athletes with a grade II ankle sprain. Phys. Ther. Sport 2007, 8, 130–140. [Google Scholar] [CrossRef]
- Olsson, C.J.; Jonsson, B.; Nyberg, L. Internal imagery training in active high jumpers: Cognition and Neurosciences. Scand. J. Psychol. 2008, 49, 133–140. [Google Scholar] [CrossRef]
- Tsekoura, M.; Billis, E.; Samada, E.K.; Savvidou, I.; Fousekis, K.; Xergia, S.; Lampropoulou, S.; Tsepis, E. Cross cultural adaptation, reliability and validity of the Greek version of Identification of Functional Ankle Instability (IdFAI) questionnaire. J. Foot Ankle Surg. 2021, 27, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Plakoutsis, G.; Zapantis, D.; Panagiotopoulou, E.M.; Paraskevopoulos, E.; Moutzouri, M.; Koumantakis, G.A.; Papandreou, M. Reliability and Validity of the Portable KForce Plates for Measuring Countermovement Jump (CMJ). Appl. Sci. 2023, 13, 11200. [Google Scholar] [CrossRef]
- Verhagen, E.; Van Der Beek, A.; Twisk, J.; Bouter, L.; Bahr, R.; Van Mechelen, W. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: A prospective controlled trial. Am. J. Sports Med. 2004, 32, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- McGuine, T.A.; Keene, J.S. The effect of a balance training program on the risk of ankle sprains in high school athletes. Am. J. Sports Med. 2006, 34, 1103–1111. [Google Scholar] [CrossRef]
- Eils, E.; Schröter, R.; Schröderr, M.; Gerss, J.; Rosenbaum, D. Multistation proprioceptive exercise program prevents ankle injuries in basketball. Med. Sci. Sports Exerc. 2010, 42, 2098–2105. [Google Scholar] [CrossRef]
- Cleland, J.A.; Mintken, P.; McDevitt, A.; Bieniek, M.; Carpenter, K.; Kulp, K.; Whitman, J.M. Manual physical therapy and ex-ercise versus supervised home exercise in the management of patients with inversion ankle sprain: A multicenter randomized clinical trial. J. Orthop. Sports Phys. Ther. 2013, 43, 443–455. [Google Scholar] [CrossRef]
- Mchugh, M.L. The Chi-square test of independence Lessons in biostatistics. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Cho, M.; Ki, C.S. Correct use of repeated measures analysis of variance. Korean J. Lab. Med. 2009, 29, 1–9. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hardy, L.; Callow, N. Efficacy of external and internal visual imagery perspectives for the enhancement of performance on tasks in which form is important. J. Sport Exerc. Psychol. 1999, 21, 95–112. [Google Scholar] [CrossRef]
- Callow, N.; Hardy, L. The relationship between the use of kinaesthetic imagery and different visual imagery perspectives. J. Sports Sci. 2004, 22, 167–177. [Google Scholar] [CrossRef]
- Stevens, J.A. Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition 2005, 95, 329–350. [Google Scholar] [CrossRef]
- Holmes, P.S.; Collins, D.J. The PETTLEP Approach to Motor Imagery: A Functional Equivalence Model for Sport Psychologists. J. Appl. Sport Psychol. 2001, 13, 60–83. [Google Scholar] [CrossRef]
- Féry, Y.A. Differentiating visual and kinesthetic imagery in mental practice. Can. J. Experiment. Psychol. 2003, 57, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guillot, A.; Collet, C.; Nguyen, V.A.; Malouin, F.; Richards, C.; Doyon, J. Brain activity during visual versus kinesthetic imagery: An fMRI study. Hum. Brain Map. 2009, 30, 2157–2172. [Google Scholar] [CrossRef]
- Jackson, P.L.; Meltzoff, A.N.; Decety, J. Neural circuits involved in imitation and perspective-taking. NeuroImage 2006, 31, 429–439. [Google Scholar] [CrossRef]
- Arvinen-Barrow, M.; Weigand, D.A.; Thomas, S.; Hemmings, B.; Walley, M. Elite and novice athletes’ imagery use in open and closed sports. J. Appl. Sport Psychol. 2007, 19, 93–104. [Google Scholar] [CrossRef]
- Watt, A.P.; Spittle, M.; Jaakkola, T.; Morris, T. Adopting Paivio’s General Analytic Framework to Examine Imagery Use in Sport. J. Imag. Res. Sport Phys. Act. 2008, 3, 4. [Google Scholar] [CrossRef]
- Schuster, C.; Hilfiker, R.; Amft, O.; Scheidhauer, A.; Andrews, B.; Butler, J.; Kischka, U.; Ettlin, T. Best practice for motor imagery: A systematic literature review on motor imagery training elements in five different disciplines. BMC Med. 2011, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Driediger, M.; Hall, C.; Callow, N. Imagery use by injured athletes: A qualitative analysis. J. Sports Sci. 2006, 24, 261–272. [Google Scholar] [CrossRef]
- Coelho, R.W.; de Oliveira, S.; Elsangedy, H.M.; Krinski, K.; Colombo, H.; Buzzachera, C.F.; de Campos, W.; da Silva, S.G. The effect of imagery in the tennis service precision and performance. Revis. Brasil. Cin. Desem. Hum. 2008, 10, 176–183. [Google Scholar]
- Radcliffe, J.N.; Comfort, P.; Fawcett, T. The perception of psychology and the frequency of psychological strategies used by strength and conditioning practitioners. J. Strength Cond. Res. 2013, 27, 1136–1146. [Google Scholar] [CrossRef]
- Di Rienzo, F.; Joassy, P.; Kanthack, T.; MacIntyre, T.E.; Debarnot, U.; Blache, Y.; Hautier, C.; Collet, C.; Guillot, A. Effects of Action Observation and Action Observation Combined with Motor Imagery on Maximal Isometric Strength. Neuroscience 2019, 418, 82–95. [Google Scholar] [CrossRef] [PubMed]
| Variable | Total (N = 58) | MI Group (n = 29) | Relaxation Group (n = 29) | Statistical Test | p-Value |
|---|---|---|---|---|---|
| Age (years) (M ± SD) | 20.5 ± 3.3 | 20.5 ± 3.3 | 21.2 ± 3.1 | Independent t-test | 0.37 (NS) |
| BMI (kg/m2) (M ± SD) | 22.3 ± 1.9 | 22.8 ± 1.7 | 21.8 ± 2.1 | Independent t-test | 0.05 |
| Years of Training (M ± SD) | 11.1 ± 2.7 | 11.0 ± 2.8 | 11.2 ± 2.6 | Independent t-test | 0.81 (NS) |
| Training Hours per Week | 12.1 ± 1.5 | 11.9 ± 1.6 | 12.3 ± 1.4 | Independent t-test | 0.26 (NS) |
| Dominant Leg—Right (n, %) | 46 (79.3%) | 25 (86.2%) | 21 (72.4%) | Chi-square | 0.19 (NS) |
| Dominant Leg—Left (n, %) | 12 (20.7%) | 4 (13.8%) | 8 (27.6%) | ||
| Injured Leg—Right | 39 (67.2%) | 21 (72.4%) | 18 (62.1%) | Chi-square | 0.40 (NS) |
| Injured Leg—Left | 19 (32.8%) | 8 (27.6%) | 11 (37.9%) | ||
| Previous LAS (Right) | 38 (65.5%) | 17 (58.6%) | 21 (72.4%) | Independent t-test | 0.30 (NS) |
| Previous LAS (Left) | 12 (20.7%) | 6 (20.7%) | 6 (20.7%) | ||
| Previous LAS (Both) | 8 (13.8%) | 6 (20.7%) | 2 (6.9%) | ||
| Total Previous LAS (n, %) | Chi-square for trend | 0.35 (NS) | |||
| 1 | 30 (51.7%) | 17 (58.6%) | 13 (44.8%) | ||
| 2 | 21 (36.2%) | 9 (31.0%) | 12 (41.4%) | ||
| ≥3 | 7 (12.1%) | 3 (10.3%) | 4 (13.8%) |
| Effect | Test | F-Value | Degrees of Freedom (df) | p-Value | Partial η2 (Effect Size) | Interpretation |
|---|---|---|---|---|---|---|
| Within-Subjects Effects | ||||||
| Time | Sphericity Assumed | 35.343 | 5; 280 | <0.001 | 0.387 | Significant main effect of Time. Scores change significantly across time points. |
| Greenhouse-Geisser | 35.343 | 2.150; 120.413 | <0.001 | 0.387 | Significant after Greenhouse-Geisser correction. | |
| Huynh-Feldt | 35.343 | 2.279; 127.614 | <0.001 | 0.387 | Significant after Huynh-Feldt correction. | |
| Time × Group | Sphericity Assumed | 0.565 | 5; 280 | 0.727 | 0.010 | No significant interaction. Time effects do not differ between groups. |
| Greenhouse-Geisser | 0.565 | 2.150; 120.413 | 0.582 | 0.010 | No significant interaction after Greenhouse-Geisser correction. | |
| Huynh-Feldt | 0.565 | 2.279; 127.614 | 0.592 | 0.010 | No significant interaction after Huynh-Feldt correction. | |
| Between-Subjects Effects | ||||||
| Group | - | 1.679 | 1.56 | 0.200 | 0.029 | No significant differences between MI and Placebo groups overall. |
| Sphericity Tests | ||||||
| Mauchly’s W | - | 0.032 | 14 | <0.001 | - | Sphericity violated. Greenhouse-Geisser & Huynh-Feldt corrections were used. |
| Pairwise Comparisons—6 sessions (Time) | ||||||
| Session 1 vs. Session 3 | - | - | - | <0.001 | - | Significant difference (p < 0.001). |
| Session 1 vs. Session 6 | - | - | - | <0.001 | - | Significant difference (p < 0.001). |
| Session 2 vs. Session 6 | - | - | - | <0.001 | - | Significant difference (p < 0.001). |
| Estimated Marginal Means—6 sessions (Time) | ||||||
| Session 1 | - | 29.293 | - | - | - | Mean score at Time 1 (95% CI: 26.782, 31.804). |
| Session 6 | - | 21.569 | - | - | - | Mean score at Time 6 (95% CI: 19.620, 23.518). |
| Sessions | IVI (MI)—Means | IVI (Relaxation)—Means | EVI (MI)—Means | EVI (Relaxation)—Means | KVI (MI)—Means | KVI (Relaxation)—Means |
|---|---|---|---|---|---|---|
| 1 | 20.86 | 23.21 | 28.07 | 30.52 | 23.34 | 24.83 |
| 2 | 21.59 | 22.72 | 26.34 | 30.07 | 21.52 | 23.41 |
| 3 | 20.86 | 20.00 | 24.24 | 26.14 | 20.76 | 22.97 |
| 4 | 19.41 | 18.72 | 23.28 | 25.14 | 19.24 | 21.90 |
| 5 | 17.97 | 17.17 | 21.76 | 23.59 | 18.24 | 21.83 |
| 6 | 16.17 | 16.69 | 20.07 | 23.07 | 17.28 | 20.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plakoutsis, G.; Paraskevopoulos, E.; Krekoukias, G.; Christakou, A.; Papandreou, M. Motor Imagery Ability and Motor Imagery Perspective Among Professional Football Players. Healthcare 2025, 13, 3045. https://doi.org/10.3390/healthcare13233045
Plakoutsis G, Paraskevopoulos E, Krekoukias G, Christakou A, Papandreou M. Motor Imagery Ability and Motor Imagery Perspective Among Professional Football Players. Healthcare. 2025; 13(23):3045. https://doi.org/10.3390/healthcare13233045
Chicago/Turabian StylePlakoutsis, George, Eleftherios Paraskevopoulos, Georgios Krekoukias, Anna Christakou, and Maria Papandreou. 2025. "Motor Imagery Ability and Motor Imagery Perspective Among Professional Football Players" Healthcare 13, no. 23: 3045. https://doi.org/10.3390/healthcare13233045
APA StylePlakoutsis, G., Paraskevopoulos, E., Krekoukias, G., Christakou, A., & Papandreou, M. (2025). Motor Imagery Ability and Motor Imagery Perspective Among Professional Football Players. Healthcare, 13(23), 3045. https://doi.org/10.3390/healthcare13233045

