Dexmedetomidine’s Role in Adult ICU After 20 Years of Experience—A Narrative Review
Highlights
- The unique arousable sedation in combination with mild opioid-spare analgesic effects, has confirmed to effectively minimize duration of intubation and mechanical ventilation, ICU and hospital length of stay the total hospital stay cost.
- The anxiolytic and sympatholytic action have proved to sufficiently enhance sleep qualit, and has an important role on prevention and treatment of ICU delirium and post-ICU syndrome, especially among elderly patients.
- Increasingly evident advocate promising neuro-, renal-, and cardio-protective and anti-inflammatory effects of Dex, which are attributed to autophagy and apoptosis inhibition, sympatholytic, and ischemia/reperfusion (I/R) injury protective effect.
Abstract
1. Introduction
2. Methods
3. Mechanism of Action
4. Pharmacokinetics and Administration
5. Effects of Dexmedetomidine
5.1. Sedation
5.2. Analgesic Effects
5.3. Hemodynamic Effects
5.4. Delirium in ICU
5.4.1. Delirium Prevention
5.4.2. Delirium Treatment
5.4.3. Delirium Among Elderly Patients
5.4.4. Comparative Efficacy
5.4.5. Sleep Quality Improvement in ICU
5.4.6. Post-Intensive Care Syndrome
5.4.7. Alcohol Withdrawal Syndrome
5.4.8. Anti-Inflammatory Effects
5.4.9. Cardio-Protective Properties
5.4.10. Dexmedetomidine in Sepsis
6. Recommendations for Practice and/or Further Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walsh, T.S.; Parker, R.A.; Aitken, L.M.; McKenzie, C.A.; Emerson, L.; Boyd, J.; Macdonald, A.; Beveridge, G.; Giddings, A.; Hope, D.; et al. A2B Trial Investigators. Dexmedetomidine- or Clonidine-Based Sedation Compared With Propofol in Critically Ill Patients: The A2B Randomized Clinical Trial. JAMA 2025, 334, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Tang, J.; Pan, J.; Han, M.; Cai, H.; Zhang, H. Effects of dexmedetomidine on stress hormones in patients undergoing cardiac valve replacement: A randomized controlled trial. BMC Anesth. 2020, 20, 142. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.P.R.; Shehabi, Y.; Reade, M.C.; Bailey, M.; Fraser, J.F.; Murray, L.; Anstey, C.; Singer, M. Stress response during early sedation with dexmedetomidine compared with usual-care in ventilated critically ill patients. Crit. Care 2022, 26, 359. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Garg, R.; Bharti, S.J.; Kumar, V.; Gupta, N.; Mishra, S.; Bhatnagar, S.; Kumar, A. Comparison of sedation efficacy of intravenous infusion of dexmedetomidine versus propofol in terms of opioid consumption in patients requiring postoperative mechanical ventilation after head and neck onco-surgeries—A randomized prospective study. Indian. J. Cancer 2024, 61, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.S.; Metwally, A.A.; Abdullatif, M.; Eid, E.A.; Mousa, M.G.; Sultan, A.A. Opioid sparing anesthesia in patients with liver cirrhosis undergoing liver resection: A controlled randomized double-blind study. BMC Anesth. 2025, 25, 53. [Google Scholar] [CrossRef] [PubMed]
- Nahmias, J.; Stopenski, S.; Jebbia, M.; Atallah, S.; Kirby, K.A.; Alvarez, C.A.; Aryan, N.; Tay-Lasso, E.; Dolich, M.; Lekawa, M.; et al. Dexmedetomidine for Analgesia in Nonintubated Patients With Traumatic Rib Fractures: A Randomized Clinical Trial. JAMA Surg. 2025, 160, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Weerink, M.A.S.; Struys, M.M.R.F.; Hannivoort, L.N.; Barends, C.R.M.; Absalom, A.R.; Colin, P. Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clin. Pharmacokinet. 2017, 56, 893–913. [Google Scholar] [CrossRef]
- Zhao, Y.; He, J.; Yu, N.; Jia, C.; Wang, S. Mechanisms of Dexmedetomidine in Neuropathic Pain. Front. Neurosci. 2020, 14, 330. [Google Scholar] [CrossRef]
- Giovannitti, J.A., Jr.; Thoms, S.M.; Crawford, J.J. Alpha-2 adrenergic receptor agonists: A review of current clinical applications. Anesth. Prog. 2015, 62, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Tiemann, D.; Park, E.; Salehi, A. Alpha-2 Agonists. Anesth. Clin. 2017, 35, 233–245. [Google Scholar] [CrossRef]
- Glaess, S.S.; Attridge, R.L.; Gutierrez, G.C. Clonidine as a strategy for discontinuing dexmedetomidine sedation in critically ill patients: A narrative review. Am. J. Health Syst. Pharm. 2020, 77, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Turunen, H.; Jakob, S.M.; Ruokonen, E.; Kaukonen, K.M.; Sarapohja, T.; Apajasalo, M.; Takala, J. Dexmedetomidine versus standard care sedation with propofol or midazolam in intensive care: An economic evaluation. Crit. Care 2015, 19, 67. [Google Scholar] [CrossRef]
- Devlin, J.W.; Skrobik, Y.; Gélinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Watson, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2018, 46, e825–e873. [Google Scholar] [CrossRef]
- Kotfis, K.; Zegan-Barańska, M.; Żukowski, M.; Kusza, K.; Kaczmarczyk, M.; Ely, E.W. Multicenter assessment of sedation and delirium practices in the intensive care units in Poland—Is this common practice in Eastern Europe? BMC Anesth. 2017, 17, 120. [Google Scholar] [CrossRef]
- Wang, J.; Peng, Z.Y.; Zhou, W.H.; Hu, B.; Rao, X.; Li, J.G. A National Multicenter Survey on Management of Pain, Agitation, and Delirium in Intensive Care Units in China. Chin. Med. J. 2017, 130, 1182–1188. [Google Scholar] [CrossRef]
- Møller, M.H.; Alhazzani, W.; Lewis, K.; Belley-Cote, E.; Granholm, A.; Centofanti, J.; McIntyre, W.B.; Spence, J.; Al Duhailib, Z.; Needham, D.M.; et al. Use of dexmedetomidine for sedation in mechanically ventilated adult ICU patients: A rapid practice guideline. Intensive Care Med. 2022, 48, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Hume, N.E.; Zerfas, I.; Wong, A.; Klein-Fedyshin, M.; Smithburger, P.L.; Buckley, M.S.; Devlin, J.W.; Kane-Gill, S.L. Clinical Impact of the Implementation Strategies Used to Apply the 2013 Pain, Agitation/Sedation, Delirium or 2018 Pain, Agitation/Sedation, Delirium, Immobility, Sleep Disruption Guideline Recommendations: A Systematic Review and Meta-Analysis. Crit. Care Med. 2024, 52, 626–636. [Google Scholar] [CrossRef]
- Lewis, K.; Balas, M.C.; Stollings, J.L.; McNett, M.; Girard, T.D.; Chanques, G.; Kho, M.E.; Pandharipande, P.P.; Weinhouse, G.L.; Brummel, N.E.; et al. A Focused Update to the Clinical Practice Guidelines for the Prevention and Management of Pain, Anxiety, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2025, 53, e711–e727. [Google Scholar] [CrossRef]
- Ungarian, J.; Rankin, J.A.; Then, K.L. Delirium in the Intensive Care Unit: Is Dexmedetomidine Effective? Crit. Care Nurse 2019, 39, e8–e21. [Google Scholar] [CrossRef]
- Scholz, J.; Finnerup, N.B.; Attal, N.; Aziz, Q.; Baron, R.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Cruccu, G.; Davis, K.D.; et al. Classification Committee of the Neuropathic Pain Special Interest Group (NeuPSIG). The IASP classification of chronic pain for ICD-11, chronic neuropathic pain. Pain 2019, 160, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Hu, M.; Lu, Y.; Cao, Y.; Chang, Y.; Dai, Z. The protective effects of dexmedetomidine on ischemic brain injury: A meta-analysis. J. Clin. Anesth. 2017, 40, 25–32. [Google Scholar] [CrossRef]
- Abu-Halaweh, S.; Obeidat, F.; Absalom, A.R.; AlOweidi, A.; Abeeleh, M.A.; Qudaisat, I.; Robinson, F.; Mason, K.P. Dexmedetomidine versus morphine infusion following laparoscopic bariatric surgery: Effect on supplemental narcotic requirement during the first 24 h. Surg. Endosc. 2016, 30, 3368–3374. [Google Scholar] [CrossRef] [PubMed]
- Obara, S.; Morimoto, I.; Iseki, Y.; Oishi, R.; Mogami, M.; Imaizumi, T.; Hosono, A.; Hakozaki, T.; Nakano, Y.; Isosu, T.; et al. The effect of obesity on dose of dexmedetomidine when administered with fentanyl during postoperative mechanical ventilation-retrospective. Fukushima J. Med. Sci. 2015, 61, 38–46. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, Y.; He, P.; He, Z.; Wang, X. Effects of mild hypoalbuminemia on the pharmacokinetics and pharmacodynamics of dexmedetomidine in patients after major abdominal or thoracic surgery. J. Clin. Anesth. 2015, 27, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Cortı’nez, L.I.; Anderson, B.J.; Holford, N.H.G.; Puga, V.; de la Fuente, N.; Auad, H.; Solari, S.; Allende, F.A. Dexmedetomidine pharmacokinetics in the obese. Eur. J. Clin. Pharmacol. 2015, 71, 1501–1508. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, T.; Huang, L.; Peng, W. Comparison between Dexmedetomidine and Midazolam for Sedation in Patients with Intubation after Oral and Maxillofacial Surgery. Biomed. Res. Int. 2020, 2020, 7082597. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, L.; Qi, B.; Zhang, Y.; Ni, C.; Zhang, Y.; Shi, X.; Xia, Q.; Masters, J.; Ma, D.; et al. Dexmedetomidine use during orthotopic liver transplantation surgery on early allograft dysfunction: A randomized controlled trial. Int. J. Surg. 2024, 110, 5518–5526. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Li, Z.; Young, N.; Boyd, D.; Atkins, Z.; Ji, F.; Liu, H.J. The Effect of Dexmedetomidine on Outcomes of Cardiac Surgery in Elderly Patients. J. Cardiothorac. Vasc. Anesth. 2016, 30, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Kawazoe, Y.; Miyamoto, K.; Morimoto, T.; Yamamoto, T.; Fuke, A.; Hashimoto, A.; Koami, H.; Beppu, S.; Katayama, Y.; Itoh, M.; et al. Dexmedetomidine for Sepsis in Intensive Care Unit Randomized Evaluation (DESIRE) Trial Investigators. Dexmedetomidine for Sepsis in Intensive Care Unit Randomized Evaluation (DESIRE) Trial Investigators. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis: A randomized clinical trial. JAMA 2017, 317, 1321–1328. [Google Scholar]
- Buckley, M.S.; Agarwal, S.K.; MacLaren, R.; Kane-Gill, S.L. Adverse Hemodynamic Events Associated With Concomitant Dexmedetomidine and Propofol for Sedation in Mechanically Ventilated ICU Patients. J. Intensive Care Med. 2020, 35, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Dexmedetomidine: Present and future directions. Korean J. Anesth. 2019, 72, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Singh, D.; Sood, D.; Kathuria, S. Role of dexmedetomidine in early extubation of the intensive care unit patients. J. Anaesthesiol. Clin. Pharmacol. 2015, 31, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.J.; Liu, M.; Fan, X.P. Differences in efficacy and safety of midazolam vs. dexmedetomidine in critically ill patients: A meta-analysis of randomized controlled trial. Exp. Ther. Med. 2021, 21, 156. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, J.; Wang, B.; Wang, P.; Wang, Z.; Yang, Y.; Liang, G.; Jing, X.; Jin, X.; Zhang, Z.; et al. use of midazolam and dexmedetomidine for long-term sedation may reduce weaning time in selected critically ill, mechanically ventilated patients: A randomized controlled study. Crit. Care 2022, 26, 122. [Google Scholar] [CrossRef]
- Winings, N.A.; Daley, B.J.; Bollig, R.W.; Roberts, R.F., Jr.; Radtke, J.; Heidel, R.E.; Taylor, J.E.; McMillen, J.C. Dexmedetomidine versus propofol for prolonged sedation in critically ill trauma and surgical patients. Surgeon 2021, 19, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Jakob, S.M.; Ruokonen, E.; Grounds, R.M.; Sarapohja, T.; Garratt, C.; Pocock, S.J.; Bratty, J.R.; Takala, J. Dexmedetomidine for Long-Term Sedation Investigators. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: Two randomized controlled trials. JAMA 2012, 307, 1151–1160. [Google Scholar] [CrossRef]
- Brandão, P.G.M.; Lobo, F.R.; Ramin, S.L.; Sakr, Y.; Machado, M.N.; Lobo, S.M. Dexmedetomidine as an Anesthetic Adjuvant in Cardiac Surgery: A Cohort Study. Braz. J. Cardiovasc. Surg. 2016, 31, 213–218. [Google Scholar] [CrossRef]
- Elgebaly, A.S.; Sabry, M. Sedation effects by dexmedetomidine versus propofol in decreasing duration of mechanical ventilation after open heart surgery. Ann. Card. Anaesth. 2018, 21, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Shehabi, Y.; Howe, B.D.; Bellomo, R.; Arabi, Y.M.; Bailey, M.; Bass, F.E.; Kadiman, S.B.; McArthur, C.J.; Murray, L.; Reade, M.C.; et al. Early Sedation with Dexmedetomidine in Critically Ill Patients. N. Engl. J. Med. 2019, 380, 2506–2517. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, J.; Lustrino, J.; Stephens, J.; Morgenstern, D.; Tang, W.Y. Cost-Minimization Analysis of Dexmedetomidine Compared to Other Sedatives for Short-Term Sedation During Mechanical Ventilation in the United States. Clin. Outcomes Res. 2020, 12, 389–397. [Google Scholar] [CrossRef]
- Shehabi, Y.; Serpa Neto, A.; Howe, B.D.; Bellomo, R.; Arabi, Y.M.; Bailey, M.; Bass, F.E.; Kadiman, S.B.; McArthur, C.J.; Reade, M.C.; et al. Early sedation with dexmedetomidine in ventilated critically ill patients and heterogeneity of treatment effect in the SPICE III randomised controlled trial. Intensive Care Med. 2021, 47, 455–466. [Google Scholar] [CrossRef]
- Hughes, C.G.; Mailloux, P.T.; Devlin, J.W.; Swan, J.T.; Sanders, R.D.; Anzueto, A.; Jackson, J.C.; Hoskins, A.S.; Pun, B.T.; Orun, O.M.; et al. Dexmedetomidine or Propofol for Sedation in Mechanically Ventilated Adults with Sepsis. N. Engl. J. Med. 2021, 384, 1424–1436. [Google Scholar] [CrossRef]
- Chitnis, S.; Mullane, D.; Brohan, J.; Noronha, A.; Paje, H.; Grey, R.; Bhalla, R.K.; Sidhu, J.; Klein, R. Dexmedetomidine Use in Intensive Care Unit Sedation and Postoperative Recovery in Elderly Patients Post-Cardiac Surgery (DIRECT). J. Cardiothorac. Vasc. Anesth. 2022, 36, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Stangaciu, B.; Tsotsolis, S.; Papadopoulou, S.; Lavrentieva, A. Sedation With Dexmedetomidine in Critically Ill Burn Patients Reduced Delirium During Weaning From Mechanical Ventilation. Cureus 2022, 14, e31813. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Lone, N.I.; McKenzie, C.A.; Weir, C.J.; Walsh, T.S. A2B trial investigators. Cost-Effectiveness of α2 Agonists for Intravenous Sedation in Patients With Critical Illness. JAMA Netw. Open 2025, 8, e2517533. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Lu, Z.; Xin, Y.C.; Cai, Y.; Chen, Y.; Pan, S.M. Alpha-2 agonists for long-term sedation during mechanical ventilation in critically ill patients. Cochrane Database Syst. Rev. 2015, 1, CD010269. [Google Scholar] [CrossRef]
- Lewis, K.; Piticaru, J.; Chaudhuri, D.; Basmaji, J.; Fan, E.; Møller, M.H.; Devlin, J.W.; Alhazzani, W. Safety and Efficacy of Dexmedetomidine in Acutely Ill Adults Requiring Noninvasive Ventilation: A Systematic Review and Meta-analysis of Randomized Trials. Chest 2021, 159, 2274–2288. [Google Scholar] [CrossRef]
- Heybati, K.; Zhou, F.; Ali, S.; Deng, J.; Mohananey, D.; Villablanca, P.; Ramakrishna, H. Outcomes of dexmedetomidine versus propofol sedation in critically ill adults requiring mechanical ventilation: A systematic review and meta-analysis of randomised controlled trials. Br. J. Anaesth. 2022, 129, 515–526. [Google Scholar] [CrossRef]
- Lewis, K.; Alshamsi, F.; Carayannopoulos, K.L.; Granholm, A.; Piticaru, J.; Al Duhailib, Z.; Chaudhuri, D.; Spatafora, L.; Yuan, Y.; Centofanti, J.; et al. Dexmedetomidine vs other sedatives in critically ill mechanically ventilated adults: A systematic review and meta-analysis of randomized trials. Intensive Care Med. 2022, 48, 811–840. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Ding, X.; Liu, C.; Jiang, W.; Xu, Y.; Wei, X.; Liu, X. A comparation of dexmedetomidine and midazolam for sedation in patients with mechanical ventilation in ICU: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0294292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lodenius, Å.; Ebberyd, A.; Hårdemark Cedborg, A.; Hagel, E.; Mkrtchian, S.; Christensson, E.; Ullman, J.; Scheinin, M.; Eriksson, L.I.; Fagerlund, M.J. Sedation with dexmedetomidine or propofol impairs hypoxic control of breathing in healthy male volunteers: A nonblinded, randomized crossover study. Anesthesiology 2016, 125, 700–715. [Google Scholar] [CrossRef]
- Peng, K.; Liu, H.-Y.; Wu, S.-R.; Cheng, H.; Ji, F.-H. Effects of combining dexmedetomidine and opioids for postoperative intravenous patient-controlled analgesia: A systematic review and meta-analysis. Clin. J. Pain 2015, 31, 1097–1104. [Google Scholar] [CrossRef]
- Chang, Y.F.; Chao, A.; Shih, P.Y.; Hsu, Y.C.; Lee, C.T.; Tien, Y.W.; Yeh, Y.C.; Chen, L.W. NTUH Center of Microcirculation Medical Research (NCMMR). Comparison of dexmedetomidine versus propofol on hemodynamics in surgical critically ill patients. J. Surg. Res. 2018, 228, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, L.; Donzelli, S.; Tordini, A.; Parise, A.; Pirozzi, C.; Di Meo, F.; Marallo, C.; Pace, V.; Marini, C.; Carreras, G. The point on the treatment of arrhythmic storm. Eur. Heart J. Suppl. 2024, 26 (Suppl. S1), i44–i48. [Google Scholar] [CrossRef]
- Nelson, K.M.; Patel, G.P.; Hammond, D.A. Effects from Continuous Infusions of Dexmedetomidine and Propofol on Hemodynamic Stability in Critically Ill Adult Patients with Septic Shock. J. Intensive Care Med. 2020, 35, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Morelli, A.; Sanfilippo, F.; Arnemann, P.; Hessler, M.; Kampmeier, T.G.; D’Egidio, A.; Orecchioni, A.; Santonocito, C.; Frati, G.; Greco, E.; et al. The Effect of Propofol and Dexmedetomidine Sedation on Norepinephrine Requirements in Septic Shock Patients: A Crossover Trial. Crit. Care Med. 2019, 47, e89–e95. [Google Scholar] [CrossRef]
- Cioccari, L.; Luethi, N.; Bailey, M.; Shehabi, Y.; Howe, B.; Messmer, A.S.; Proimos, H.K.; Peck, L.; Young, H.; Eastwood, G.M.; et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: A subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit. Care 2020, 24, 441. [Google Scholar] [CrossRef]
- Dargent, A.; Bourredjem, A.; Jacquier, M.; Bohe, J.; Argaud, L.; Levy, B.; Fournel, I.; Cransac, A.; Badie, J.; Quintin, L.; et al. Dexmedetomidine to Reduce Vasopressor Resistance in Refractory Septic Shock: α2 Agonist Dexmedetomidine for REfractory Septic Shock (ADRESS): A Double-Blind Randomized Controlled Pilot Trial. Crit. Care Med. 2025, 53, e884–e896. [Google Scholar] [CrossRef] [PubMed]
- Reade, M.C.; Eastwood, G.M.; Bellomo, R.; Bailey, M.; Bersten, A.; Cheung, B.; Davies, A.; Delaney, A.; Ghosh, A.; van Haren, F.; et al. Effect of Dexmedetomidine Added to Standard Care on Ventilator-Free Time in Patients With Agitated Delirium: A Randomized Clinical Trial. JAMA 2016, 315, 1460–1468. [Google Scholar] [CrossRef] [PubMed]
- Raquer, A.P.; Fong, C.T.; Walters, A.M.; Souter, M.J.; Lele, A.V. Delirium and Its Associations with Critical Care Utilizations and Outcomes at the Time of Hospital Discharge in Patients with Acute Brain Injury. Medicina 2024, 60, 304. [Google Scholar] [CrossRef]
- MacLaren, R.; Preslaski, C.R.; Mueller, S.W.; Kiser, T.H.; Fish, D.N.; Lavelle, J.C.; Malkoski, S.P. A randomized, double-blind pilot study of dexmedetomidine versus midazolam for intensive care unit sedation: Patient recall of their experiences and short-term psychological outcomes. J. Intensive Care Med. 2015, 30, 167–175. [Google Scholar] [CrossRef]
- Skrobik, Y.; Duprey, M.S.; Hill, N.S.; Devlin, J.W. Low-Dose Nocturnal Dexmedetomidine Prevents ICU Delirium. A Randomized, Placebo-controlled Trial. Am. J. Respir. Crit. Care Med. 2018, 197, 1147–1156. [Google Scholar] [CrossRef]
- Lee, H.; Yang, S.M.; Chung, J.; Oh, H.W.; Yi, N.J.; Suh, K.S.; Oh, S.Y.; Ryu, H.G. Effect of Perioperative Low-Dose Dexmedetomidine on Postoperative Delirium After Living-Donor Liver Transplantation: A Randomized Controlled Trial. Transpl. Proc. 2020, 52, 239–245. [Google Scholar] [CrossRef]
- Turan, A.; Duncan, A.; Leung, S.; Karimi, N.; Fang, J.; Mao, G.; Hargrave, J.; Gillinov, M.; Trombetta, C.; Ayad, S.; et al. Dexmedetomidine for reduction of atrial fibrillation and delirium after cardiac surgery (DECADE): A randomised placebo-controlled trial. Lancet 2020, 396, 177–185. [Google Scholar] [CrossRef]
- He, X.; Cheng, K.M.; Duan, Y.Q.; Xu, S.S.; Gao, H.R.; Miao, M.Y.; Li, H.L.; Chen, K.; Yang, Y.L.; Zhang, L.; et al. Feasibility of low-dose dexmedetomidine for prevention of postoperative delirium after intracranial operations: A pilot randomized controlled trial. BMC Neurol. 2021, 21, 472. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hong, Y.; Li, S.; Kuriyama, A.; Zhao, Y.; Hu, J.; Luo, A.; Sun, R. Effect of dexmedetomidine on delirium during sedation in adult patients in intensive care units: A systematic review and meta-analysis. J. Clin. Anesth. 2021, 69, 110157. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Li, T.; Zhang, J.; Li, Z.B.; Gao, X.J.; Xu, L. Clinical study of midazolam sequential with dexmedetomidine for agitated patients undergoing weaning to implement light sedation in intensive care unit. Chin. J. Traumatol. 2016, 19, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Serpa Neto, A.; Young, M.; Phongphithakchai, A.; Maeda, A.; Hikasa, Y.; Pattamin, N.; Kitisin, N.; Premaratne, G.; Chan, G.; Furler, J.; et al. A target trial emulation of dexmedetomidine to treat agitation in the intensive care unit. Crit. Care Sci. 2025, 37, e20250010. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, J.; Tang, Y.; Gong, C.C.; Wang, D.F. Role of dexmedetomidine in the treatment of delirium in critically ill patients: A systematic review and meta-analysis. Minerva Anestesiol. 2021, 87, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Djaiani, G.; Silverton, N.; Fedorko, L.; Carroll, J.; Styra, R.; Rao, V.; Katznelson, R. Dexmedetomidine versus propofol sedation reduces delirium after cardiac, surgery: A randomized controlled trial. Anesthesiology 2016, 124, 362–368. [Google Scholar] [CrossRef]
- Su, X.; Meng, Z.T.; Wu, X.H.; Cui, F.; Li, H.L.; Wang, D.X.; Zhu, X.; Zhu, S.N.; Maze, M.; Ma, D. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: A randomised, double-blind, placebo-controlled trial. Lancet 2016, 388, 1893–1902. [Google Scholar] [CrossRef]
- Deiner, S.; Luo, X.; Lin, H.M.; Sessler, D.I.; Saager, L.; Sieber, F.E.; Lee, H.B.; Sano, M.; Jankowski, C.; the Dexlirium Writing Group; et al. Intraoperative Infusion of Dexmedetomidine for Prevention of Postoperative Delirium and Cognitive Dysfunction in Elderly Patients Undergoing Major Elective Noncardiac Surgery: A Randomized Clinical Trial. JAMA Surg. 2017, 152, e171505. [Google Scholar] [CrossRef]
- Subramaniam, B.; Shankar, P.; Shaefi, S.; Mueller, A.; O’Gara, B.; Banner-Goodspeed, V.; Gallagher, J.; Gasangwa, D.; Patxot, M.; Packiasabapathy, S.; et al. Effect of Intravenous Acetaminophen vs Placebo Combined With Propofol or Dexmedetomidine on Postoperative Delirium Among Older Patients Following Cardiac Surgery: The DEXACET Randomized Clinical Trial. JAMA 2019, 321, 686–696. [Google Scholar] [CrossRef]
- Xie, K.; Chen, J.; Tian, L.; Gu, F.; Pan, Y.; Huang, Z.; Fang, J.; Yu, W.; Zhou, H. Postoperative infusion of dexmedetomidine via intravenous patient-controlled analgesia for prevention of postoperative delirium in elderly patients undergoing surgery. Aging Clin. Exp. Res. 2023, 35, 2137–2144. [Google Scholar] [CrossRef] [PubMed]
- Huet, O.; Gargadennec, T.; Oilleau, J.F.; Rozec, B.; Nesseler, N.; Bouglé, A.; Kerforne, T.; Lasocki, S.; Eljezi, V.; Dessertaine, G.; et al. EXACTUM and the Atlanrea Study Group. Prevention of post-operative delirium using an overnight infusion of dexmedetomidine in patients undergoing cardiac surgery: A pragmatic, randomized, double-blind, placebo-controlled trial. Crit. Care 2024, 28, 64. [Google Scholar] [CrossRef]
- Pereira, J.V.; Sanjanwala, R.M.; Mohammed, M.K.; Le, M.L.; Arora, R.C. Dexmedetomidine versus propofol sedation in reducing delirium among older adults in the ICU: A systematic review and meta-analysis. Eur. J. Anaesthesiol. 2020, 37, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Tu, H.; Jie, Z.; Zhou, X.; Li, C. Effect of Dexmedetomidine on Delirium in Elderly Surgical Patients: A Meta-analysis of Randomized Controlled Trials. Ann. Pharmacother. 2021, 55, 624–636. [Google Scholar] [CrossRef]
- Carrasco, G.; Baeza, N.; Cabré, L.; Portillo, E.; Gimeno, G.; Manzanedo, D.; Calizaya, M. Dexmedetomidine for the Treatment of Hyperactive Delirium Refractory to Haloperidol in Nonintubated ICU Patients: A Nonrandomized Controlled Trial. Crit. Care Med. 2016, 44, 1295–1306. [Google Scholar] [CrossRef]
- Shokri, H.; Ali, I. A randomized control trial comparing prophylactic dexmedetomidine versus clonidine on rates and duration of delirium in older adult patients undergoing coronary artery bypass grafting. J. Clin. Anesth. 2020, 61, 109622. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xie, G.; Zhang, K.; Song, S.; Song, F.; Jin, Y.; Fang, X. Dexmedetomidine vs propofol sedation reduces delirium in patients after cardiac surgery: A meta-analysis with trial sequential analysis of randomized controlled trials. J. Crit. Care 2017, 38, 190–196. [Google Scholar] [CrossRef]
- Flükiger, J.; Hollinger, A.; Speich, B.; Meier, V.; Tontsch, J.; Zehnder, T.; Siegemund, M. Dexmedetomidine in prevention and treatment of postoperative and intensive care unit delirium: A systematic review and meta-analysis. Ann. Intensive Care 2018, 8, 92. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Y.; Miao, S.; Liu, L.; Gan, S.; Kang, X.; Zhu, S. Effects of peri-operative intravenous administration of dexmedetomidine on emergence agitation after general anesthesia in adults: A meta-analysis of randomized controlled trials. Drug Des. Devel. Ther. 2019, 13, 2853–2864. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Sandeep, B.; Li, H.; Wang, B.S.; Huang, X. Impact of perioperative dexmedetomidine on postoperative delirium in adult undergoing cardiac surgery: A comprehensive bibliometrix and meta-analysis. Asian J. Psychiatr. 2025, 108, 104522. [Google Scholar] [CrossRef]
- Pan, H.; Liu, C.; Ma, X.; Xu, Y.; Zhang, M.; Wang, Y. Perioperative dexmedetomidine reduces delirium in elderly patients after non-cardiac surgery: A systematic review and meta-analysis of randomized-controlled trials. Can. J. Anaesth. 2019, 66, 1489–1500. [Google Scholar] [CrossRef]
- Li, F.; Wang, X.; Zhang, Z.; Zhang, X.; Gao, P. Dexmedetomidine Attenuates Neuroinflammatory-Induced Apoptosis after Traumatic Brain Injury via Nrf2 signaling pathway. Ann. Clin. Transl. Neurol. 2019, 6, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Neerland, B.E.; Busund, R.; Haaverstad, R.; Helbostad, J.L.; Landsverk, S.A.; Martinaityte, I.; Norum, H.M.; Ræder, J.; Selbaek, G.; Simpson, M.R.; et al. Alpha-2-adrenergic receptor agonists for the prevention of delirium and cognitive decline after open heart surgery (ALPHA2PREVENT): Protocol for a multicentre randomised controlled trial. BMJ Open 2022, 12, e057460. [Google Scholar] [CrossRef] [PubMed]
- Gargadennec, T.; Oilleau, J.F.; Rozec, B.; Nesseler, N.; Lasocki, S.; Futier, E.; Amour, J.; Durand, M.; Bougle, A.; Kerforne, T.; et al. Dexmedetomidine after Cardiac Surgery for Prevention of Delirium (EXACTUM) trial protocol: A multicentre randomised, double-blind, placebo-controlled trial. BMJ Open 2022, 12, e058968. [Google Scholar] [CrossRef]
- Haspolat, A.; Polat, F.; Köprülü, A.Ş. A Comparative Analysis of the Effects of Haloperidol and Dexmedetomidine on QTc Interval Prolongation during Delirium Treatment in Intensive Care Units. J. Crit. Care Med. 2024, 10, 222–231. [Google Scholar] [CrossRef]
- Minami, T.; Watanabe, H.; Kato, T.; Ikeda, K.; Ueno, K.; Matsuyama, A.; Maeda, J.; Sakai, Y.; Harada, H.; Kuriyama, A.; et al. Dexmedetomidine versus haloperidol for sedation of non-intubated patients with hyperactive delirium during the night in a high dependency unit: Study protocol for an open-label, parallel-group, randomized controlled trial (DEX-HD trial). BMC Anesth. 2023, 23, 193. [Google Scholar] [CrossRef]
- Zi, J.; Fan, Y.; Dong, C.; Zhao, Y.; Li, D.; Tan, Q. Anxiety administrated by dexmedetomidine to prevent new-onset of postoperative atrial fibrillation in patients undergoing off-pump coronary artery bypass graft. Int. Heart J. 2020, 61, 263–272. [Google Scholar] [CrossRef]
- Georgopoulos, D.; Kondili, E.; Alexopoulou, C.; Younes, M. Effects of Sedatives on Sleep Architecture Measured With Odds Ratio Product in Critically Ill Patients. Crit. Care Explor. 2021, 3, e0503. [Google Scholar] [CrossRef]
- Showler, L.; Deane, A.M.; Litton, E.; Ankravs, M.J.; Wibrow, B.; Barge, D.; Goldin, J.; Hammond, N.; Saxena, M.K.; Young, P.J.; et al. A multicentre point prevalence study of nocturnal hours awake and enteral pharmacological sleep aids in patients admitted to Australian and New Zealand intensive care units. Crit. Care Resusc. 2024, 26, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Sertaridou, E.N.; Chouvarda, I.G.; Arvanitidis, K.I.; Filidou, E.K.; Kolios, G.C.; Pnevmatikos, I.N.; Vasilios E Papaioannou, V.E. Melatonin and cortisol exhibit different circadian rhythm profiles during septic shock depending on timing of onset: A prospective observational study. Ann. Intensive Care 2018, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Fu, Q.; Luo, X.; Fu, S.; Hu, K. Effects of dexmedetomidine on sleep quality of patients after surgery without mechanical ventilation in ICU. Medicine 2017, 96, e7081. [Google Scholar] [CrossRef]
- Wu, X.H.; Cui, F.; Zhang, C.; Meng, Z.T.; Wang, D.X.; Ma, J.; Wang, G.F.; Zhu, S.N.; Ma, D. Low-dose Dexmedetomidine Improves Sleep Quality Pattern in Elderly Patients after Noncardiac Surgery in the Intensive Care Unit: A Pilot Randomized Controlled Trial. Anesthesiology 2016, 125, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.M.; Zhu, S.N.; Zhang, C.; Li, S.L.; Wang, D.X. Effect of low-dose dexmedetomidine on sleep quality in postoperative patients with mechanical ventilation in the intensive care unit: A pilot randomized trial. Front. Med. 2022, 9, 931084. [Google Scholar] [CrossRef]
- Qu, J.Z.; Mueller, A.; McKay, T.B.; Westover, M.B.; Shelton, K.T.; Shaefi, S.; D’Alessandro, D.A.; Berra, L.; Brown, E.N.; Houle, T.T.; et al. Nighttime dexmedetomidine for delirium prevention in non-mechanically ventilated patients after cardiac surgery (MINDDS): A single-centre, parallel-arm, randomised, placebo-controlled superiority trial. EClinicalMedicine 2023, 56, 101796. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Su, X.; Zhao, Y.; Zhong, C.L.; Mo, X.Q.; Zhang, R.; Wang, K.; Zhu, S.N.; Shen, Y.E.; Zhang, C.; et al. Effect of mini-dose dexmedetomidine supplemented intravenous analgesia on sleep structure in older patients after major noncardiac surgery: A randomized trial. Sleep. Med. 2023, 102, 9–18. [Google Scholar] [CrossRef]
- Sun, P.; Liang, X.Q.; Chen, N.P.; Ma, J.H.; Zhang, C.; Shen, Y.E.; Zhu, S.N.; Wang, D.X. Impact of mini-dose dexmedetomidine supplemented analgesia on sleep structure in patients at high risk of obstructive sleep apnea: A pilot trial. Front. Neurosci. 2024, 18, 1426729. [Google Scholar] [CrossRef]
- Wang, L.; Liang, X.Q.; Sun, Y.X.; Hua, Z.; Wang, D.X. Effect of perioperative dexmedetomidine on sleep quality in adult patients after noncardiac surgery: A systematic review and meta-analysis of randomized trials. PLoS ONE 2024, 19, e0314814. [Google Scholar] [CrossRef]
- Dong, C.H.; Gao, C.N.; An, X.H.; Li, N.; Yang, L.; Li, D.C.; Tan, Q. Nocturnal dexmedetomidine alleviates post-intensive care syndrome following cardiac surgery: A prospective randomized controlled clinical trial. BMC Med. 2021, 19, 306. [Google Scholar] [CrossRef] [PubMed]
- VanderWeide, L.A.; Foster, C.J.; MacLaren, R.; Kiser, T.H.; Fish, D.N.; Mueller, S.W. Evaluation of early dexmedetomidine addition to the standard of care for severe alcohol withdrawal in the ICU: A retrospective controlled cohort study. J. Intensive Care Med. 2016, 31, 198–204. [Google Scholar] [CrossRef]
- Beg, M.; Fisher, S.; Siu, D.; Rajan, S.; Troxell, L.; Liu, V.X. Treatment of alcohol withdrawal syndrome with and without dexmedetomidine. Perm. J. 2016, 20, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Yavarovich, E.R.; Bintvihok, M.; McCarty, J.C.; Breeze, J.L.; LaCamera, P. Association between dexmedetomidine use for the treatment of alcohol withdrawal syndrome and intensive care unit length of stay. J. Intensive Care 2019, 7, 49. [Google Scholar] [CrossRef]
- Collier, T.E.; Farrell, L.B.; Killian, A.D.; Kataria, V.K. Effect of Adjunctive Dexmedetomidine in the Treatment of Alcohol Withdrawal Compared to Benzodiazepine Symptom-Triggered Therapy in Critically Ill Patients: The EvADE Study. J. Pharm. Pract. 2022, 35, 356–362. [Google Scholar] [CrossRef]
- Ware, L.R.; Schuler, B.R.; Goodberlet, M.Z.; Marino, K.K.; Lupi, K.E.; DeGrado, J.R. Evaluation of Dexmedetomidine as an Adjunct to Phenobarbital for Alcohol Withdrawal in Critically Ill Patients. J. Intensive Care Med. 2023, 38, 553–561. [Google Scholar] [CrossRef]
- Wong, A.; Smithburger, P.L.; Kane-Gill, S.L. Review of adjunctive dexmedetomidine in the management of severe acute alcohol withdrawal syndrome. Am. J. Drug Alcohol. Abus. 2015, 41, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.D.; Giometti, R.; Weeks, S.M. The use of dexmedetomidine as an adjuvant to benzodiazepine-based therapy to decrease the severity of delirium in alcohol withdrawal in adult intensive care unit patients: A systematic review. JBI Database Syst. Rev. Implement. Rep. 2015, 13, 224–252. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Polintan, E.T.T.; Danganan, L.M.L.; Cruz, N.S.; Macapagal, S.C.; Catahay, J.A.; Patarroyo-Aponte, G.; Azmaiparashvili, Z.; Lo, K.B. Adjunctive Dexmedetomidine in Alcohol Withdrawal Syndrome: A Systematic Review and Meta-analysis of Retrospective Cohort Studies and Randomized Controlled Trials. Ann. Pharmacother. 2023, 57, 696–705. [Google Scholar] [CrossRef]
- Fiore, M.; Alfieri, A.; Torretta, G.; Passavanti, M.B.; Sansone, P.; Pota, V.; Simeon, V.; Chiodini, P.; Corrente, A.; Pace, M.C. Dexmedetomidine as Adjunctive Therapy for the Treatment of Alcohol Withdrawal Syndrome: A Systematic Review and Meta-Analysis. Pharmaceuticals 2024, 17, 1125. [Google Scholar] [CrossRef]
- Yuan, C.; Timmins, F.; Thompson, D.R. Post-intensive care syndrome: A concept analysis. Int. J. Nurs. Stud. 2021, 114, 103814. [Google Scholar] [CrossRef]
- Bulow, N.M.H.; Colpo, E.; Pereira, R.P.; Correa, E.F.M.; Waczuk, E.P.; Duarte, M.F.; Rocha, J.B.T. Dexmedetomidine decreases the inflammatory response to myocardial surgery under mini-cardiopulmonary bypass. Braz. J. Med. Biol. Res. 2016, 49, e4646. [Google Scholar] [CrossRef]
- Zhai, M.; Kang, F.; Han, M.; Huang, X.; Li, J. The effect of dexmedetomidine on renal function in patients undergoing cardiac valve replacement under cardiopulmonary bypass: A double-blind randomized controlled trial. J. Clin. Anesth. 2017, 40, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, J.R. Novel algorithms for the prophylaxis and management of alcohol withdrawal syndromes—Beyond benzodiazepines. Crit. Care Clin. 2017, 33, 559–599. [Google Scholar] [CrossRef]
- Glahn, A.; Proskynitopoulos, P.J.; Bleich, S.; Hillemacher, T. Pharmacotherapeutic management of acute alcohol withdrawal syndrome in critically Ill patients. Expert. Opin. Pharmacother. 2020, 21, 1083–1092. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.Q.; Lu, Y.; Yang, Q.L.; Zhao, P.L.; Hang, C.H.; Li, W. Delirium as a mediating factor in the survival benefits of dexmedetomidine in acute brain injury management. Sci. Rep. 2025, 15, 30937. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Xu, J.; Wu, C.; Zhang, B.; Wang, G.; Ma, D. Effects of dexmedetomidine on perioperative stress, inflammation, and immune function: Systematic review and meta-analysis. Br. J. Anaesth. 2019, 123, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Vogel, T.; Gao, X.; Lin, B.; Kulwin, C.; Chen, J. Neuroprotective effect of dexmedetomidine in a murine model of traumatic brain injury. Sci. Rep. 2018, 8, 4935. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ma, W.; Zhu, J.; Jiao, W.; Wang, Y. Dexmedetomidine alleviates early brain injury following traumatic brain injury by inhibiting autophagy and neuroinflammation through the ROS/Nrf2 signaling pathway. Mol. Med. Rep. 2021, 24, 661. [Google Scholar] [CrossRef]
- Huang, G.R.; Hao, F.G. Dexmedetomidine Inhibits Inflammation to Alleviate Early Neuronal Injury via TLR4/NF-κB Pathway in Rats with Traumatic Brain Injury. Crit. Rev. Eukaryot. Gene Expr. 2021, 31, 41–47. [Google Scholar] [CrossRef]
- Liu, S.Y.; Kelly-Hedrick, M.; Komisarow, J.; Hatfield, J.; Ohnuma, T.; Treggiari, M.M.; Colton, K.; Arulraja, E.; Vavilala, M.S.; Laskowitz, D.T.; et al. Association of Early Dexmedetomidine Utilization With Clinical Outcomes After Moderate-Severe Traumatic Brain Injury: A Retrospective Cohort Study. Anesth. Analg. 2024, 139, 366–374. [Google Scholar] [CrossRef]
- Chen, S.; Ren, S.; Li, X.; Liu, K. Dexmedetomidine administration is associated with a reduced risk of ICU mortality in critically ill patients with ischemic stroke. Front. Neurol. 2025, 16, 1571957. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Wang, H.; Zhang, Y.; Zhang, J. Association between dexmedetomidine sedation and mortality in critically ill patients with ischaemic stroke: A retrospective study based on MIMIC-IV database. BMJ Open 2025, 15, e101395. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Peng, J.; Zhang, Y.H.; Liu, H.T. Dexmedetomidine is Associated with Reduced In-Hospital Mortality Risk of Patients with Subarachnoid Hemorrhage Undergoing Surgery. World Neurosurg. 2025, 194, 123539. [Google Scholar] [CrossRef]
- Lu, S.; Song, H.; Lin, Y.; Song, B.; Lin, S. A randomized controlled trial investigating the impact of early goal-directed sedation dominated by dexmedetomidine on cerebral oxygen metabolism and inflammatory mediators in patients with severe brain injury. Neurol. Sci. 2025, 46, 1741–1750. [Google Scholar] [CrossRef]
- Pan, W.; Lin, L.; Zhang, N.; Yuan, F.; Hua, X.; Wang, Y.; Mo, L. Neuroprotective Effects of Dexmedetomidine Against Hypoxia-Induced Nervous System Injury are Related to Inhibition of NF-κB/COX-2 Pathways. Cell Mol. Neurobiol. 2016, 36, 1179–1188. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, K.; Wang, W.; Xie, G.; Cheng, B.; Wang, Y.; Hu, Y.; Fang, X. Dexmedetomidine Versus Propofol Sedation Improves Sublingual Microcirculation After Cardiac Surgery: A Randomized Controlled Trial. J. Cardiothorac. Vasc. Anesth. 2016, 30, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Huang, X.; Wen, J.; Peng, M. Dexmedetomidine Pretreatment Confers Myocardial Protection and Reduces Mechanical Ventilation Duration for Patients Undergoing Cardiac Valve Replacement under Cardiopulmonary Bypass. Ann. Thorac. Cardiovasc. Surg. 2024, 30, oa-23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.R.; Peng, C.M.; Liu, Z.Z.; Leng, Y.F. The effect of dexmedetomidine on myocardial ischemia/reperfusion injury in patients undergoing cardiac surgery with cardiopulmonary bypass: A meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7409–7417. [Google Scholar] [CrossRef]
- Cakir, M.; Polat, A.; Tekin, S.; Vardi, N.; Taslidere, E.; Duran, Z.R.; Tanbek, K. The effect of dexmedetomidine against oxidative and tubular damage induced by renal ischemia reperfusion in rats. Ren. Fail. 2015, 37, 704–708. [Google Scholar] [CrossRef]
- Tan, F.; Chen, Y.; Yuan, D.; Gong, C.; Li, X.; Zhou, S. Dexmedetomidine protects against acute kidney injury through downregulating inflammatory reactions in endotoxemia rats. Biomed. Rep. 2015, 3, 365–370. [Google Scholar] [CrossRef]
- Liu, J.; Shi, K.; Hong, J.; Gong, F.; Mo, S.; Chen, M.; Zheng, Y.; Jiang, L.; Xu, L.; Tu, Y.; et al. Dexmedetomidine protects against acute kidney injury in patients with septic shock. Ann. Palliat. Med. 2020, 9, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sheng, B.; Wang, S.; Lu, F.; Zhen, J.; Chen, W. Dexmedetomidine prevents acute kidney injury after adult cardiac surgery: A meta-analysis of randomized controlled trials. BMC Anesth. 2018, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, S.; Zhang, H.; Gao, M. Does dexmedetomidine reduce the risk of acute kidney injury after cardiac surgery? A meta-analysis of randomized controlled trials. Braz. J. Anesth. 2024, 74, 744446. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, M.H.; Shen, Q.H.; Xu, D.C. The effectiveness of dexmedetomidine for preventing acute kidney injury after surgery: A systematic review and meta-analysis. Front. Med. 2024, 11, 1414794. [Google Scholar] [CrossRef]
- Al-Regal, A.R.E.; Ramzy, E.A.; Atia, A.A.A.; Emara, M.M. Dexmedetomidine for Reducing Mortality in Patients With Septic Shock: A Randomized Controlled Trial (DecatSepsis). Chest 2024, 166, 1394–1405. [Google Scholar] [CrossRef]
- Iten, M.; Bachmann, K.; Jakob, S.M.; Grandgirard, D.; Leib, S.L.; Cioccari, L. Adjunctive Sedation with Dexmedetomidine for the Prevention of Severe Inflammation and Septic Encephalopathy: A Pilot Randomized Controlled Study. Crit. Care Med. 2025, 53, e1377–e1388. [Google Scholar] [CrossRef] [PubMed]
- Patidar, A.K.; Khanna, P.; Kashyap, L.; Ray, B.R.; Maitra, S. Utilization of NIRS Monitor to Compare the Regional Cerebral Oxygen Saturation Between Dexmedetomidine and Propofol Sedation in Mechanically Ventilated Critically ill Patients with Sepsis- A Prospective Randomized Control Trial. J. Intensive Care Med. 2025, 40, 379–387. [Google Scholar] [CrossRef]
- Chen, P.; Jiang, J.; Zhang, Y.; Li, G.; Qiu, Z.; Levy, M.M.; Hu, B. Effect of Dexmedetomidine on duration of mechanical ventilation in septic patients: A systematic review and meta-analysis. BMC Pulm. Med. 2020, 20, 42. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Q.; Wang, P.; Jin, W.; Zhong, C.; Ge, Z.; Xu, K. The Effect of Dexmedetomidine as a Sedative Agent for Mechanically Ventilated Patients With Sepsis: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 776882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, T.; Mei, Q.; Dai, S.; Liu, Y.; Zhu, H. Use of dexmedetomidine in patients with sepsis: A systematic review and meta-analysis of randomized-controlled trials. Ann. Intensive Care 2022, 12, 81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]

| Study Design | Study Population | Intervention | Comparison | Main Outcomes | Secondary Outcomes | Adverse Events | Study Limitations | |
|---|---|---|---|---|---|---|---|---|
| Turunen H, et al., 2015 [12] | Post hoc analysis of MIDEX and PRODEX study (Jakob SM, et al. JAMA 2012;307:1151–60) [36] | 990 ICU adult patients requiring prolonged MV | 493 Dex group 250 midazolam (MIDEX) 247 propofol (PRODEX) | Dex vs. propofol or midazolam | Reduce total ICU resource utilization and respective costs | - Shortening the extubation time and - MV duration, especially in comparison with midazolam | Not referred | - Great heterogeneity of study population. - ICU patients with severe neurological disorders were excluded. |
| Gupta S, et al., 2015 [32] | RCT | 40 ICU MV patients | 0.2–0.7 mcg/kg/h Dex vs. 0.04–0.2 mg/kg/h midazolam | Dex vs. midazolam | Dex significantly minimized time to extubation | Easy arousability, Lack of respiratory depression | Not referred | A small single-center study |
| Cheng H, et al., 2016 [28] | Single-center Retrospective clinical trial | 505 ICU CAP patients, aged > 65 years | 0.24–0.6 μgr/kg/h Dex | Dex vs. other sedatives | Dex decreased in-hospital (0.90 vs. 2.83%) and operative mortality (1.35 vs. 3.18%) | Dex reduced risk of stroke (0.9 vs. 1.77%), delirium (7.21% vs. 10.95%) | Not referred | A single-center non-randomized cohort study, with a relatively small sample size |
| Brandão PGM, et al., 2016 [37] | Single-center Retrospective clinical trial | 1302 ICU CAP patients | 0.5 μgr/kg/h Dex | Dex vs. other sedatives | Dex was associated with lower 30-day mortality (3.4 vs. 9.7%) | Shorter ICU LOS (3.1 vs. 7.3%) Decreased incidence of neurological problems | Not referred |
|
| Kawazoe Y, et al., 2017 [29] | Multicenter RCT (8 ICUs in Japan) (DESIRE trial) | 201 septic MV patients | Sedation with Dex vs. without Dex | Same 28-day mortality (22.8 vs. 30.8%) and Ventilator-free days (20 vs. 18) | Dex group had higher rate of well-controlled sedation but no reduction in delirium | Higher rates of bradycardia in Dex group |
| |
| Elgebaly AS, et al. Ann Card Anae [38] | Single-center RCT | 50 ICU CAP patients, aged 18–55 years | 0.8 μgr/kg/h Dex vs. 1.5 mg/kg/h propofol | Dex vs. propofol | No difference between groups in extubation time, analgesic requirements, or ICU and hospital LOS | Same hemodynamic stability, Increased financial costs in Dex group | Not referred |
|
| Shehabi Y, et al., 2019 [39] | Multicenter RCT (SPICE III trial) | 4000 patients | Dex as sole or primary sedative or usual care | Dex vs. other sedatives | Same 90-day mortality, | Dex group required supplemental sedatives | Higher rates of bradycardia and hypotension in Dex group |
|
| Wang L, et al., 2020 [26] | Single-center RCT | 40 oral and maxillofacial postsurgical ICU, intubated patients | 0.1 μgr/kg/h Dex vs. 0.2 mg/kg/h midazolam | Dex vs. midazolam | BPS and Ramsay scores were higher in midazolam group. Shorter time of extubation in Dex group. | Lower incidence of delirium and respiratory depression in Dex group. | Higher rates of bradycardia in Dex group | A small single-center study |
| Aggarwal J, et al., 2020 [40] | A single-center cost analysis study | Short term sedation in ICU, MV patients | Dex vs. other sedatives | Dex reduced costs/person Dex reduced ICU LOS | Not referred |
| ||
| Winings NA, et al.,2021 [35] | Single-center RCT | 57 trauma MV ICU patients | Dex vs. propofol | No significant difference in MV duration (125 vs. 130 h) Dex achieved better target sedation | No difference in mortality, ICU and hospital LOS, or incidence of delirium. | Similar incidences of bradycardia and hypotension |
| |
| Shehabi Y, et al., 2021 [41] | Secondary analysis of SPICE III trial | 1825 ICU patients, MV more than 24 h, aged > 65 years | Dex vs. standard sedation | Dex vs. other sedatives | Reduced 90-day mortality in patients >65 years old | High probability to increase 90-day mortality in younger non-operative patients | No difference |
|
| Hughes CH, et al., 2021 [42] | Multicenter RCT (MENDS 2 trial) | 432 ICU MV septic patients | Dex vs. propofol | No difference in mortality, Delirium risk, or ventilator-free days | Not referred | Lack of pain and delirium prevention strategy | ||
| Zhou Y, et al., 2022 [34] | Single-Center RCT | 252 ICU, MV patients, long lasting weaning | 0.2–0.7μ g/kg/h Dex plus midazolam vs. plus propofol vs. midazolam alone during SBT | When midazolam was switched to Dex, faster extubation | Less weaning time, Lower delirium, | No difference in adverse events rate |
| |
| Chitnis S, et al., 2022 [43] | Single-Center RCT (DIRECT study) | 70 postsurgical cardiac patients, older than 75 years old | Dex vs. propofol | Decrease in MCAS score in Dex group | No difference in delirium rate, time to extubation, length of hospital stay | No difference in adverse events rate |
| |
| Stangaciu B, et al., 2022 [44] | Single-Center Retrospective clinical trial | 56 MV, burn ICU patients, during weaning | Dex 1 mcg/kg bolus and 0.4–0.1 mcg/kg/h iv vs. 0.08 mg/kg/h midazolam or 15–30 mcg/kg/min propofol | Dex vs. midazolam or propofol | No significantly shorter duration of MV (9.3 vs. 7.5 days), Lower delirium rate (38.4 vs. 53.3%) (assessed with CAM-ICU score), | Less need for supplemental analgesia (23.1 vs. 53.3%) (assessed with RASS score), Less need for antipsychotic agents (15.4 vs. 53.3%) | - Bradycardia - Abdominal distention | - A small retrospective single-center study. - Patients with Dex sedation were younger and had higher percentage of 3rd-degree burn injuries. |
| Walsh TS, et al., 2025 [1] | Multicenter Open-label RCT (41 ICUs in UK) (A2B trial) | 1404 adult, MV, ICU patients | Propofol + opioids vs. Dex or clonidine + opioid | Dex or clonidine vs. propofol | Reduced MV duration (Dex: 136 h, clonidine: 146 h and propofol: 162 h) | More agitation in Dex group and clonidine vs. propofol, Similar mortality | Higher rate of bradycardia in Dex and clonidine group | |
| Morris S, et al., 2025 [45] | Multicenter Open-label RCT (41 ICUs in UK) (economic evaluation of A2B trial) | 1404 adult, MV, ICU patients | Propofol + opioids vs. Dex or clonidine + opioid | Dex or clonidine vs. propofol | Similar costs and QALYs | Not referred | A post hoc economic evaluation of previous RCTs | |
| Chen K, et al., 2015 [46] | Systematic Review of 7 studies | 1624 adult patients requiring prolonged MV | Dex vs. propofol, or midazolam, or lorazepam | Reduced duration of MV by 22% | Reduced length of ICU stay by 14% | |||
| Zhou WJ, et al., 2021 [33] | Systematic Review of 8 studies | 1379 patients | Dex vs. midazolam | Dex reduced LOS in ICU, time to extubation, delirium | No difference in hypotension incidence and mortality | Higher incidence of bradycardia with Dex | ||
| Lewis K, et al., 2021 [47] | Systematic Review of 12 RCTs | 738 NIV patients | Dex vs. other sedatives | Reduced the risk of intubation Reduced ICU LOS | Reduced risk of delirium | - Bradycardia - Hypotension | - | |
| Heybati K, et al., 2022 [48] | Systematic Review of 41 studies | 3948 MV ICU patients | Dex vs. propofol | No difference in ICU LOS | Reduced MV duration and delirium risk only among cardiac surgical patients | - Bradycardia, - Hypotension, especially among elderly | ||
| Lewis K, et al., 2022 [49] | Systematic Review of 77 RCTs | 11,997 patients MV ICU patients | Dex vs. other sedatives | Reduced MV duration Reduced ICU LOS | Reduced delirium risk |
| - | |
| Wen J, et al., 2023 [50] | Systemic Review of 16 RCTs | 2035 patients | Dex vs. midazolam |
| - No difference in mortality and - length of hospital stay | - Bradycardia, - No difference in hypotension | ||
| Study Design | Study Population | Comparison | Assessment of Delirium | Main Outcomes | Secondary Outcomes | Study Limitations | |
|---|---|---|---|---|---|---|---|
| 2.1 Delirium Prevention | |||||||
| MacLaren R, et al., 2015 [61] | Single-center double-blind RCT | 11 ICU MV patients in weaning time received Dex vs. 12 midazolam | 0.61 μg/kg/h Dex vs. 3.7 mg/h midazolam | - CAM-ICU | Dex reduced delirium incidences |
|
|
| Kawazoe Y, et al., 2017 [29] | Open-label, multicenter RCT (8 ICUs in Japan) (DESIRE trial) | 201 ICU septic MV patients | Sedation with Dex vs. without Dex | - CAM-ICU | Same 28-day mortality (22.8 vs. 30.8%) and Ventilator-free days (20 vs. 18) |
|
|
| Skrobik Y, et al., 2018 [62] | Two-center double-blind RCT | 100 ICU patients | i.v. 0.2 μg/kg/h Dex from 9:30 pm to 6:15 am vs. placebo, until ICU discharge | - ICU Delirium Screening Checklist every 12 h. - LSEQ | Decrease incidence of ICU delirium (20% Dex group vs. 46% placebo group) | No difference in
|
|
| Lee H, et al., 2020 [63] | Single-center RCT | 217 Postsurgical liver transplant patients | Perioperative i.v. 0.1 μg/kg/h Dex for 48 h vs. placebo | - CAM-ICU every 8 h postoperatively | No difference in delirium incidence (9% Dex group vs. 5.9% placebo group) | No difference in
|
|
| Turan A, et al., 2020 [64] | Multicenter RCT (DECADE trial) | 794 cardiac surgery patients | Perioperative infusion of Dex vs. placebo |
| No significant difference in atrial fibrillation incidence (30% in Dex group vs. 34% in placebo group) | No significant difference in delirium incidence (17% in Dex group vs. 12% in placebo group) |
|
| He X, et al., 2021 [65] | Single-center RCT | 60 Postsurgical brain-surgical patients | Perioperative i.v. 0.1 μg/kg/h Dex for <24 h vs. placebo | - CAM-ICU every 12 h. postoperatively | Drug interruption rate | No difference in
|
|
| Wang S, et al., 2021 [66] | Systematic Review of 36 studies | 9623 ICU patients | Dex vs. non-Dex sedation | Dex was associated with
| Dex was associated with
|
| |
| Stangaciu B, et al., 2022 [44] | Single-center Retrospective Clinical Trial | 56 MV, severe burn ICU patients, during weaning | Dex 1 mcg/kg bolus and 0.4–0.1 mcg/kg/h iv vs. 0.08 mg/kg/h midazolam or 15–30 mcg/kg/min propofol | - CAM-ICU |
|
|
|
| Heybati K, et al. [48] | Systematic review of 41 trials | 3948 ICU, MV patients | Dex vs. propofol |
|
|
| |
| Wen J, et al. [50] | Systematic review of 16 RCTs | 2035 ICU | Dex vs. midazolam |
| No difference in
|
| |
| 2.2 Delirium Treatment | |||||||
| Reade MC, et al. [59] | Multicenter, double-blind RCT (DahLIA study) | 74 adult intubated ICU patients with agitated delirium | Dex initially at a rate of 0.5 μg/kg/h and then titrated to rates 0–1.5 μg/kg/h vs. placebo | - CAM-ICU - MAAS score | - Increased ventilator-free h at 7 days (144.8 vs. 127.5 h.), - Earlier extubation (21.9 vs. 44.3 h.) | - Accelerated resolution of delirium (23.3 vs. 40.0 h.) - Lower quantities of other sedatives and opioids - Shorter ICU LOS (2.9 vs. 4.1 days) - no difference in incidence of bradycardia, hypotension, or temporarily agitation between the 2 groups | - Relatively small sample size - Different duration of MV before randomization (144.8 h in Dex group vs. 127.5 in placebo) |
| Lu X, et al. [67] | Single-center double-blind RCT | 80 agitated intubated ICU patients | Group A: i.v. 0.3–3 mg/kg/h midazolam for 24 h and then i.v. 0.2–1 μg/kg/h Dex Group B: only i.v. 0.3–3 mg/kg/h midazolam |
|
|
| |
| Serpa Neto A, et al., 2025 [68] | Target-trial emulation | 2052 ICU patients’ records with delirium (314 treated with Dex) | Dex vs. other sedatives |
|
|
| |
| Liu X, et al., 2021 [69] | Systematic Review of 10 RCTs and 5 non-RCTs | 1017 critically ill patients with delirium | Dex vs. other agents for delirium treatment |
|
|
| |
| 2.3 Delirium among elderly patients | |||||||
| Djaiani G, et al., 2016 [70] | Single-center RCT | 183 Cardiac postsurgical patients > 60 years old | i.v. 0.4 μg/kg bolus and 0.2–0.7 μg/kg /h Dex max for 24 h. vs. 25–50 μg/kg/min propofol | - CAM-ICU 12 h postoperatively - CAM when discharged ICU | Decrease incidence of postoperative delirium (17 vs. 31.5%) |
|
|
| Su X, et al., 2016 [71] | Multicenter, double-blind RCT | 700 ICU non-cardiac surgical patients > 65 years old | i.v. 0.1 μg/kg/h Dex vs. placebo | CAM-ICU every 12 h. | Decrease incidence of postoperative delirium (9 vs. 23%) | Hypertension and tachycardia more frequently in placebo (18 vs. 10% and 14 vs. 7%, respectively) |
|
| Deiner S, et al., 2017 [72] | Multicenter double-blind RCT | 404 patients > 65 years old, undergoing non-cardiac surgery | Intraoperative use of i.v. 0.5 μg/kg/h Dex and 2 h postoperatively vs. placebo |
| Dex did not significantly reduce postoperative delirium (12.2% vs. 11.4%) |
| |
| Subramaniam B, et al., 2019 [73] | RCT | 120 cardiac surgical patients aged > 60 years | Postoperative sedation with propofol vs. Dex and analgesia with acetaminophen vs. placebo |
|
|
|
|
| Chitnis S, et al., 2022 [43] | Single-center RCT (DIRECT study) | 70 postsurgical cardiac patients, >75 years old | Dex vs. propofol | Not referred | Decrease in MCAS score in Dex group | No difference in
|
|
| Xie K, et al., 2023 [74] | Single-center RCT | 236 patients > 60 years old undergoing thoracoabdominal tumor surgery | Postoperative Dex + sufentanil via PCIA vs. only sufentanil via PCIA | Not referred | The incidence of delirium was significant lower in Dex group (3.4 vs. 10.1%) | No difference in ICU and hospital LOS and mortality |
|
| Huet Q, et al., 2024 [75] | Double-blind RCT | 333 postsurgical cardiac patients, >65 years old | Overnight Dex infusion vs. placebo |
| The incidence of delirium was not significant different between the two groups (12.6% Dex vs. 12.4% placebo) | Dex group had significantly more hypotensive events (7.3% vs. 0.6%) |
|
| Pereira J, et al., 2020 [76] | Systematic Review of 6 RCTs and 2 retrospective cohorts | 1249 ICU patients, aged > 60 years | Dex vs. propofol |
| Lower delirium risk | No reduced in - ICU LOS, - hospital LOS or - MV duration - No difference in bradycardia or hypotension |
|
| Lin C, et al., 2021 [77] | Systematic Review of 21 studies | Elderly surgical ICU patients with delirium | Dex vs. other sedatives |
|
- Increased bradycardia |
| |
| 2.4 Comparative efficacy | |||||||
| Carrasco G, et al., 2016 [78] | Single-center non-randomized study | 132 non-intubated patients in ICU with agitated delirium | Dex vs. Haloperidol |
| Haloperidol associated with
|
| |
| Shokri H, et al., 2020 [79] | Prospective observation RCT | 286 cardiac surgery patients >60 years old | i.v. 0.7–1.2 μg/kg/h Dex for 72 h vs. 0.5 μg/kg clonidine | - RASS score | Dex achieved
|
| |
| Study Design | Material | Comparison | Main Outcomes | Study Limitations | |
|---|---|---|---|---|---|
| 3.1. Sleep quality improvement in ICU | |||||
| Wu XH, et al., 2016 [95] | RCT | 61 non-cardiac postsurgical, non-intubated, ICU patients > 65 years old | Dex 0.1 μg/kg/h vs. placebo for 15 h postsurgically |
|
|
| Lu W, et al., 2017 [94] | Observational Study | 20 non-intubated, non-MV, ICU, postsurgical patients | 11 in Dex group vs. 9 in no-sedation group |
|
|
| Georgopoulos D, et al., 2021 [91] | Retrospective study | 23 MV, ICU patients | Dex vs. propofol vs. no sedation |
|
|
| Sun YM, et al., 2022 [96] | RCT | 80 non-cardiac, postsurgical, MV, patients | Dex 0.1–0.2 μg/kg/h vs. placebo for >72 h |
|
|
| Qu JZ, et al., 2023 [97] | Single-center RCT (The MINDDS trial) | 394 cardiac, postsurgical patients > 60 years old | A short nighttime dose of iv Dex (1 μg/kg in 40 min) |
|
|
| Zhang ZF, et al., 2023 [98] | RCT | 118 non-cardiac, postsurgical, non-intubated patients > 65 years old | Dex 0.02 μg/kg/h vs. placebo + opioid analgesia for up to 3 days |
|
|
| Sun PS, et al., 2024 [99] | RCT | 123 non-cardiac, postsurgical, non-intubated patients, with OSA | Dex 0.02 μg/kg/h vs. placebo + opioid analgesia |
|
|
| Wang L, et al., 2024 [100] | Systematic review of 29 trials | 5610 non-cardiac, postsurgical patients | Perioperative Dex vs. placebo |
|
|
| 3.2. Post-Intensive Care Syndrome | |||||
| Zi J, et al., 2020 [90] | Single-center RCT | 196 patients underwent off-pump coronary artery bypass | Dex vs. propofol perioperatively |
|
|
| Dong CH, et al., 2021 [101] | Single-center RCT | 508 patients underwent off-pump coronary artery bypass | Prophylactic nocturnal Dex vs. placebo |
|
|
| 3.3. Alcohol withdrawal syndrome | |||||
| VanderWeide LA, et al., 2016 [102] | Retrospective cohort study | 42 AWS ICU patients | Benzodiazepine alone vs. benzodiazepine + Dex |
|
|
| Beg M, et al., 2016 [103] | Retrospective cohort study | 77 AWS ICU patients | Benzodiazepine alone vs. benzodiazepine + Dex |
|
|
| Yavarovich ER, et al. [104] | Multicenter retrospective cohort study (8 ICUs) | 438 AWS ICU patients | Benzodiazepine alone vs. benzodiazepine + Dex |
|
|
| Collier TE, et al., 2022 [105] | Single-center retrospective cohort study (The EvADE study) | 147 AWS ICU patients | Benzodiazepine alone vs. benzodiazepine + Dex |
|
|
| Ware LR, et al., 2023 [106] | Single-center retrospective cohort study | 197 AWS ICU patients | Phenobarbital alone vs. phenobarbital + Dex |
|
|
| Wong A, et al., 2015 [107] | Review of 13 studies | Dex as an adjunctive agent |
|
| |
| Woods D, et al., 2015 [108] | Systematic review of 4 studies | 55 AWS ICU patients | Dex as adjunctive therapy + standard of care vs. benzodiazepine |
|
|
| Polintan ETT, et al., 2023 [109] | Systematic review of 12 studies | AWS ICU patients | Dex as adjunctive therapy + standard of care vs. benzodiazepine |
|
|
| Fiore M, et al., 2024 [110] | Systematic review of 9 studies (RCTs and non-RCTs) | AWS ICU patients | Dex as adjunctive therapy + standard of care vs. benzodiazepine |
|
|
| Study Design | Material | Intervention | Outcomes | Study Limitations | |
|---|---|---|---|---|---|
| Wu J, et al., 2018 [118] | Animal study | 76 male C57 BL/6 mice (TBI model) | Different doses of Dex or placebo in addition, 1 and 12 h after TBI |
| Mice treated with Dex were hypothermic |
| Li F, et al., 2019 [85] | Animal study | Male Sprague-Dawley rats (TBI model) | 25 μg/kg Dex 30 min after TBI vs. placebo |
| Not refereed |
| Feng X, et al., 2021 [119] | Animal study | C57 BL/6 mice (TBI model) | 30 μg/kg Dex vs. normal saline |
| Not refereed |
| Huang GR, et al., 2021 [120] | Animal study | Rat (BI model) | Dex vs. normal saline |
| Not refereed |
| Liu SY, et al. A 2024 [121] | Retrospective study (Premier dataset) | 19,751 ICU patients with TBI | Dex vs. other sedatives |
|
|
| Chen S, et al., 2025 [122] | Retrospective study (MIMIC-IV database) | 646 ICU patients with ischemic stroke | Dex vs. other sedatives |
|
|
| Yang Y, et al., 2025 [123] | Retrospective study (MIMIC-IV database) | 2816 ICU patients with ischemic stroke | Dex vs. other sedatives |
|
|
| Liu Y, et al., 2025 [124] | Retrospective study (MIMIC-IV database) | 527 patients with aSAH | Dex vs. midazolam or propofol |
|
|
| Lu S, et al., 2025 [125] | Single-center RCT | 60 TBI patients | Dex vs. propofol |
|
|
| Jiang L, et al., 2017 [21] | Systematic review and meta-analysis | 19 RCTs including 879 patients | Dex during operation |
| - |
| Study Design | Material | Comparison | Outcomes | Study Limitations | |
|---|---|---|---|---|---|
| 5.1. Cardio-protective properties | |||||
| Bulow NMH et al., 2016 [112] | RCT | 12 CPB patients in Dex group vs. 11 CPB controls | Dex perioperatively in CPB patients plus other sedatives vs. only other sedatives |
|
|
| Liu X, et al., 2016 [127] | RCT | E60 elective valve and CAP surgery patients | 0.2–1.5 μg/kg/h Dex or 5–50 μg/kg/min propofol |
|
|
| Yuan B, et al., 2024 [128] | RCT | 52 CPB patients vs. 52 controls | 0.5 μg/kg Dex before anesthesia induction + 0.5 μg/kg/h vs. 0.125 mL/kg NaCl 0.9% before aortic occlusion |
|
|
| Zhang GR, et al., 2021 [129] | Systematic Review of 17 studies | 866 CPB patients | Dex vs. other sedatives |
|
|
| 5.2. Renoprotective properties | |||||
| Cakir M, et al., 2015 [130] | Animal study | Group 1: 10 I/R injury rats Group 2: 10 controls Group 3: I/R + 10 μg/kg Dex Group 4: I/R + 100 μg/kg Dex | 10 μg/kg Dex vs. 100 μg/kg Dex |
|
|
| Tan F, et al., 2015 [131] | Animal study | Group 1: 8 sepsis model rats Group 2: 8 controls Group 3: 8 Dex + sepsis model Group 4: 8 Dex + yohimbine + sepsis model | 10 μg/kg Dex before sepsis vs. a2-adrenergic receptor agonist (yohimbine) |
|
|
| Zhai M, et al., 2017 [113] | Single-center RCT | 72 valve replacement CPB patients | 0.6 μg/kg Dex before anesthesia induction + 0.2 μg/kg/h vs. NaCl 0.9% |
|
|
| Liu J, et al., 2020 [132] | RCT | 200 MV septic ICU patients | Dex vs. propofol |
|
|
| Liu Y, et al., 2018 [133] | Systematic review of 10 studies | 1575 postoperative cardiac surgery ICU patients | Dex vs. other sedatives |
|
|
| Zhao C, et al., 2024 [134] | Systematic review of 15 RCTs | 2907 postoperative cardiac surgical patients | Dex vs. other sedatives |
|
|
| Zhao J, et al., 2024 [135] | Systematic review of 25 trials | 3997 postsurgical patients | Dex vs. controls |
| - 3 studies focused on pediatric patients - Notably study heterogeneity - Small sample size of non-cardiac surgical patients |
| 5.3. Dexmedetomidine in sepsis | |||||
| Al-Regal ARE, et al., 2024 [136] | RCT (The DecatSepsis) | 90 Septic ICU patients | Dex infusion for 48 h to maintain the HR:60–90/min |
|
|
| Iten M, et al., 2025 [137] | Single-Center RCT | 70 Septic, MV, ICU patients | 0.1–1.4 μg/kg/h Dex vs. propofol/midazolam group |
|
|
| Patidar AK, et al., 2025 [138] | Single-center RCT | 54 septic ICU patients | 5 mcg/mL Dex vs. 10 mg/mL propofol, aiming RASS: –2 to 0 |
|
|
| Dargent A, et al., 2025 [58] | The ADRESS Multicenter RCT (5 French ICUs) | Septic shock, MV, ICU patients | Dex vs. placebo in patients with refractory septic shock |
|
|
| Chen P, et al., 2020 [139] | Systematic Review of 4 studies | 349 MV septic patients | Dex vs. other sedatives |
|
|
| Wang C, et al., 2021 [140] | Systematic Review of 9 studies | 1134 septic ICU patients | Dex vs. other sedatives |
|
|
| Zhang T, et al., 2022 [141] | Systematic Review of 19 RCTs | 1929 septic patients | Dex vs. other sedatives |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sertaridou, E.N.; Fountoulaki, M.; Jha, A.; Papaioannou, V.E.; Alexopoulou, C. Dexmedetomidine’s Role in Adult ICU After 20 Years of Experience—A Narrative Review. Healthcare 2025, 13, 2882. https://doi.org/10.3390/healthcare13222882
Sertaridou EN, Fountoulaki M, Jha A, Papaioannou VE, Alexopoulou C. Dexmedetomidine’s Role in Adult ICU After 20 Years of Experience—A Narrative Review. Healthcare. 2025; 13(22):2882. https://doi.org/10.3390/healthcare13222882
Chicago/Turabian StyleSertaridou, Eleni N., Maria Fountoulaki, Abhishek Jha, Vasilios E. Papaioannou, and Christina Alexopoulou. 2025. "Dexmedetomidine’s Role in Adult ICU After 20 Years of Experience—A Narrative Review" Healthcare 13, no. 22: 2882. https://doi.org/10.3390/healthcare13222882
APA StyleSertaridou, E. N., Fountoulaki, M., Jha, A., Papaioannou, V. E., & Alexopoulou, C. (2025). Dexmedetomidine’s Role in Adult ICU After 20 Years of Experience—A Narrative Review. Healthcare, 13(22), 2882. https://doi.org/10.3390/healthcare13222882

