Optimizing Emergency Response in Hospitals: A Systematic Review of Surge Capacity Planning and Crisis Resource Management
Abstract
1. Introduction
- Conducting an in-depth review of surge capacity strategies employed by hospitals during high-stress scenarios, including the expansion of physical space, staffing adjustments, and supply chain resilience.
- Evaluating the role of IT algorithms in improving staff readiness and operational efficiency during emergencies.
- Assessing the impact of hospital policies on reducing patient wait times and optimizing resource allocation.
- Examining case studies of hospitals that successfully (or unsuccessfully) managed surge events, identifying key lessons for future preparedness.
- Reviewing international frameworks and guidelines for emergency response in healthcare systems, highlighting gaps and opportunities for standardization.
2. Materials and Methods
2.1. Research Questions
2.2. Protocol and Eligibility Criteria
2.3. Information Sources
2.4. Searches
- Q1: Search: (((healthcare) OR (medical service)) AND ((demand forecasting)) OR (demand estimation)), Filters: 2014–2024, English.
- Q2: ((((healthcare) OR (medical service)) AND (algorithm forecast surge) OR (hospital capacity planning) OR (resource allocation) OR (surge demand))) OR (resource allocation), Filters: 2014–2024, English.
- Q3: ((staffing models) OR (workforce management)) AND (healthcare surge demand), Filters: 2014–2024, English.
- Q4: ((hospital capacity management) AND (temporary facilities)) AND (resource management), Filters: 2014–2024, English.
2.5. Inclusion and Exclusion Criteria
- Articles addressing hospital emergency management strategies during surges (e.g., pandemics, natural disasters, mass casualty events).
- Studies evaluating surge capacity adaptations, such as staffing models, overflow wards, or ICU bed expansion.
- Research on emergency preparedness frameworks and IT algorithms, including simulation exercises, policy interventions, or resource allocation protocols.
- Case studies reporting lessons learned from real-world hospital crises, with emphasis on systemic challenges or successful mitigation efforts especially during the COVID-19 period.
- Articles discussing international or national guidelines for hospital emergency response.
- Studies not aligned with the research questions (e.g., non-hospital settings, non-emergency contexts).
- Articles written in languages other than English.
- Duplicate publications or overlapping datasets.
- Studies focused solely on pre-hospital emergency services (e.g., EMS, ambulance logistics) without hospital integration.
- Research exclusively on public health surveillance or epidemiological modeling without direct ties to hospital management.
2.6. Article Selection
2.7. Data Extraction
3. Results
3.1. Hospital Resources
3.2. IT Algorithms
3.3. Ethical Dimension
3.4. Case Studies from Different Countries
4. Policies and Lessons
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simou, E.; Koutsogeorgou, E. Effects of the economic crisis on health and healthcare in Greece in the literature from 2009 to 2013: A systematic review. Health Policy 2014, 115, 111–119. [Google Scholar] [CrossRef]
- Shrestha, G.S.; Shrestha, N.; Lamsal, R.; Pradhan, S.; Shrestha, A.; Canelli, R.; Ortega, R. Emergency Intubation in COVID-19. N. Engl. J. Med. 2021, 384, e20. [Google Scholar] [CrossRef]
- Chiesa, R.; Kahlberg, A.; Rinaldi, E.; Mascia, D. Emergency management of the COVID-19 pandemic in a vascular surgery department of a large metropolitan hospital in Italy. Preparation, escalation, de-escalation, and normal activity. J. Card. Surg. 2021, 36, 1632–1636. [Google Scholar] [CrossRef]
- Wang, Y.s.; Sun, H.j.; Zou, J.c.; Ning, J.; Du, Y. Evaluation Model for Hospital Response Capability for Public Health Emergency. Disaster Med. Public Health Prep. 2021, 15, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Zarka, S.; Furman, E.; Polyakov, O. Hospital Operation During a Disaster—Hospital Multi-Component Emergency Center (HMCEC). Disaster Med. Public Health Prep. 2021, 15, 92–98. [Google Scholar] [CrossRef]
- Yaghoubi, T.; Ardalan, A.; Ebadi, A.; Nejati, A.; Khankeh, H.; Safarpour, H.; Khorasani-Zavareh, D. Development and Psychometric Properties of Decision-Making Scale for Emergency Hospital Evacuation in Disasters. Disaster Med. Public Health Prep. 2023, 17, e380. [Google Scholar] [CrossRef]
- Hasan, M.; Nasrullah, S.; Quattrocchi, A.; Arcos González, P.; Castro-Delgado, R. Hospital surge capacity preparedness in disasters and emergencies: A systematic review. Public Health 2023, 225, 12–21. [Google Scholar] [CrossRef]
- Nocci, M.; Villa, G.; Ragazzoni, L.; Tofani, L.; Romagnoli, S.; Baldini, G.; Bertini, P.; Hubloue, I.; Scolletta, S.; Mechi, M.T.; et al. Relationship between intensive care surge capacity and hospital factors: An extensive experience. Intern. Emerg. Med. 2023, 18, 1521–1532. [Google Scholar] [CrossRef]
- Toerper, M.F.; Kelen, G.D.; Sauer, L.M.; Bayram, J.D.; Catlett, C.; Levin, S. Hospital surge capacity: A web-based simulation tool for emergency planners. Disaster Med. Public Health Prep. 2018, 12, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Chintiroglou, M.; Karanikas, H.; Tasoulis, S. Greek Hospital Data Mining and Analysis. In Caring Is Sharing–Exploiting the Value in Data for Health and Innovation; IOS Press: Amsterdam, The Netherlands, 2023; pp. 282–286. [Google Scholar]
- Karwa, M.L.; Naqvi, A.A.; Betchen, M.; Puri, A.K. In-Hospital Triage. Crit. Care Clin. 2024, 40, 533–548. [Google Scholar] [CrossRef] [PubMed]
- Olson, C.A.; Eng-Kulawy, J.; Buckland-Coffey, D.D. Hospitalists as facilitators of surge and contingency medical operations and planning. Mil. Med. 2024, 189, 70–73. [Google Scholar] [CrossRef]
- Dhamanti, I.; Suwantika, A.A.; Atika, N.; Tjahjono, B. The impact of hospital surge capacity during the 2009 influenza pandemic on patient safety: A systematic review. Int. J. Healthc. Manag. 2025, 18, 386–399. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M. Equity and efficiency of health resource allocation in Sichuan Province, China. BMC Health Serv. Res. 2024, 24, 1439. [Google Scholar] [CrossRef]
- Zhou, M. The allocation and utilization efficiency of hospital beds in Sichuan Province, China. Medicine 2024, 103, e39329. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, T.; Zhou, L.; He, Y.; Wang, J.; Wang, Y.; Huang, L. Equity and efficiency of health resource allocation in the Chengdu-Chongqing Economic Circle of China. Front. Public Health 2024, 12, 1369568. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Ingolfsson, A. Forecasting to support EMS tactical planning: What is important and what is not. Health Care Manag. Sci. 2024, 27, 604–630. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Yue, X.; Xiong, Q.; Jia, K.; Zou, Y. The analysis of GM (1, 1) grey model to predict the health resource allocation in Jilin Province, China: An observational study. Medicine 2024, 103, e39298. [Google Scholar] [CrossRef]
- Li, M.; Ao, Y.; Peng, P.; Bahmani, H.; Han, L.; Zhou, Z.; Li, Q. Resource allocation of rural institutional elderly care in China’s new era: Spatial-temporal differences and adaptation development. Public Health 2023, 223, 7–14. [Google Scholar] [CrossRef]
- Athanasakis, K.; Kyriopoulos, I.; Kyriopoulos, J. Can We Incorporate Societal Values in Resource Allocation Decisions Among Disease Categories? An Empirical Approach. Value Health Reg. Issues 2021, 25, 29–36. [Google Scholar] [CrossRef]
- Winkelmann, J.; Webb, E.; Williams, G.A.; Hernández-Quevedo, C.; Maier, C.B.; Panteli, D. European countries’ responses in ensuring sufficient physical infrastructure and workforce capacity during the first COVID-19 wave. Health Policy 2022, 126, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Brüggmann, D.; Klingelhöfer, D.; Maier, W.; Schwettmann, L.; Weiss, D.J.; Groneberg, D.A. Access to intensive care in 14 European countries: A spatial analysis of intensive care need and capacity in the light of COVID-19. Intensive Care Med. 2020, 46, 2026–2034. [Google Scholar] [CrossRef]
- Etu, E.E.; Monplaisir, L.; Masoud, S.; Arslanturk, S.; Emakhu, J.; Tenebe, I.; Miller, J.B.; Hagerman, T.; Jourdan, D.; Krupp, S. A Comparison of Univariate and Multivariate Forecasting Models Predicting Emergency Department Patient Arrivals during the COVID-19 Pandemic. Healthcare 2022, 10, 1120. [Google Scholar] [CrossRef]
- Du, T.; Li, J.; Guo, L.; Wang, X.; Zhu, Q. The evolutionary game of establishing a remote consultation system based on the downward allocation of medical resources in a medical alliance. PLoS ONE 2024, 19, e0305747. [Google Scholar] [CrossRef]
- Ye, Y.; Huang, L.; Wang, J.; Chuang, Y.C.; Pan, L. Patient allocation method in major epidemics under the situation of hierarchical diagnosis and treatment. BMC Med. Inform. Decis. Mak. 2022, 22, 331. [Google Scholar] [CrossRef]
- Sendi, P.; Gafni, A.; Birch, S.; Walter, S.D. Incorporating Portfolio Uncertainty in Decision Rules for Healthcare Resource Allocation. Healthcare 2021, 9, 325. [Google Scholar] [CrossRef]
- Martin, R.J.; Mousavi, R.; Saydam, C. Predicting emergency medical service call demand: A modern spatiotemporal machine learning approach. Oper. Res. Health Care 2021, 28, 100285. [Google Scholar] [CrossRef]
- Al-Azzani, M.A.K.; Davari, S.; England, T.J. An empirical investigation of forecasting methods for ambulance calls-a case study. Health Syst. 2021, 10, 268–285. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xie, Z.; Liu, H.; Pei, Z.; Liu, D. Multiobjective Emergency Resource Allocation under the Natural Disaster Chain with Path Planning. Int. J. Environ. Res. Public Health 2022, 19, 7876. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, X. A data-driven combined prediction method for the demand for intensive care unit healthcare resources in public health emergencies. BMC Health Serv. Res. 2024, 24, 477. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Rao, Q.; Ma, Y.; Ding, X.; Zhang, X.; Li, X. Forecasting demands of blood components based on prediction models. Transfus. Clin. Biol. 2024, 31, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Shafiekhani, S.; Namdar, P.; Rafiei, S. A COVID-19 forecasting system for hospital needs using ANFIS and LSTM models: A graphical user interface unit. Digit. Health 2022, 8, 20552076221085057. [Google Scholar] [CrossRef]
- Paireau, J.; Andronico, A.; Hozé, N.; Layan, M.; Crépey, P.; Roumagnac, A.; Lavielle, M.; Boëlle, P.Y.; Cauchemez, S. An ensemble model based on early predictors to forecast COVID-19 health care demand in France. Proc. Natl. Acad. Sci. USA 2022, 119, e2103302119. [Google Scholar] [CrossRef]
- Meakin, S.; Abbott, S.; Bosse, N.; Munday, J.; Gruson, H.; Hellewell, J.; Sherratt, K.; Funk, S. Comparative assessment of methods for short-term forecasts of COVID-19 hospital admissions in England at the local level. BMC Med. 2022, 20, 86. [Google Scholar] [CrossRef]
- Hanf, M.; Salle, L.; Mas, C.; Ghribi, S.E.; Huitorel, M.; Mebarki, N.; Larid, S.; Mazué, J.L.; Wargon, M. A near real-time interactive dashboard for monitoring and anticipating demands in emergency care in the Île-de-France region (France). J. Am. Med. Inform. Assoc. 2024, 31, 2369–2373. [Google Scholar] [CrossRef]
- Weissman, G.E.; Crane-Droesch, A.; Chivers, C.; Luong, T.; Hanish, A.; Levy, M.Z.; Lubken, J.; Becker, M.; Draugelis, M.E.; Anesi, G.L.; et al. Locally Informed Simulation to Predict Hospital Capacity Needs During the COVID-19 Pandemic. Ann. Intern. Med. 2020, 173, 21–28. [Google Scholar] [CrossRef]
- Plank, M.J.; Watson, L.; Maclaren, O.J. Near-term forecasting of COVID-19 cases and hospitalisations in Aotearoa New Zealand. PLoS Comput. Biol. 2024, 20, e1011752. [Google Scholar] [CrossRef]
- Jones, P.; Faure, S.; Munro, A. Variation in resources and impact on performance: Results of the emergency department benchmarking survey. N. Z. Med. 2021, 134, 64–72. [Google Scholar]
- Gitto, S.; Di Mauro, C.; Ancarani, A.; Mancuso, P. Forecasting national and regional level intensive care unit bed demand during COVID-19: The case of Italy. PLoS ONE 2021, 16, e0247726. [Google Scholar] [CrossRef] [PubMed]
- Trucco, P.; Nocetti, C.; Sannicandro, R.; Carlucci, M.; Weinstein, E.S.; Faccincani, R. Assessing Hospital Adaptive Resource Allocation Strategies in Responding to Mass Casualty Incidents. Disaster Med. Public Health Prep. 2022, 16, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Kociurzynski, R.; D’Ambrosio, A.; Papathanassopoulos, A.; Bürkin, F.; Hertweck, S.; Eichel, V.M.; Heininger, A.; Liese, J.; Mutters, N.T.; Peter, S.; et al. Forecasting local hospital bed demand for COVID-19 using on-request simulations. Sci. Rep. 2023, 13, 21321. [Google Scholar] [CrossRef]
- Donker, T.; Bürkin, F.M.; Wolkewitz, M.; Haverkamp, C.; Christoffel, D.; Kappert, O.; Hammer, T.; Busch, H.J.; Biever, P.; Kalbhenn, J.; et al. Navigating hospitals safely through the COVID-19 epidemic tide: Predicting case load for adjusting bed capacity. Infect. Control Hosp. Epidemiol. 2021, 42, 653–658. [Google Scholar] [CrossRef] [PubMed]
- López-Cheda, A.; Jácome, M.A.; Cao, R.; De Salazar, P.M. Estimating lengths-of-stay of hospitalised COVID-19 patients using a non-parametric model: A case study in Galicia (Spain). Epidemiol. Infect. 2021, 149, e102. [Google Scholar] [CrossRef] [PubMed]
- Murtas, R.; Tunesi, S.; Andreano, A.; Russo, A.G. Time-series cohort study to forecast emergency department visits in the city of Milan and predict high demand: A 2-day warning system. BMJ Open 2022, 12, e056017. [Google Scholar] [CrossRef]
- Oksuz, M.K.; Satoglu, S.I. Integrated optimization of facility location, casualty allocation and medical staff planning for post-disaster emergency response. J. Humanit. Logist. Supply Chain. Manag. 2024, 14, 285–303. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, T.; Glynn, P.; Scheinker, D. The development and deployment of a model for hospital-level COVID-19 associated patient demand intervals from consistent estimators (DICE). Health Care Manag. Sci. 2021, 24, 375–401. [Google Scholar] [CrossRef]
- Slovis, B.H.; Ji, X.; Chang, A.M.; Kairys, J.; Hollander, J.E. Relationship between on-demand telehealth visits and emergency department and hospital surge during the COVID-19 pandemic. JACEP Open 2024, 5, e13128. [Google Scholar] [CrossRef]
- Soroush, F.; Nabilou, B.; Faramarzi, A.; Yusefzadeh, H. A study of the evacuation and allocation of hospital beds during the Covid-19 epidemic: A case study in Iran. BMC Health Serv. Res. 2022, 22, 864. [Google Scholar] [CrossRef]
- McRae, S. Long-term forecasting of regional demand for hospital services. Oper. Res. Health Care 2021, 28, 100289. [Google Scholar] [CrossRef]
- Self, S.C.W.; Huang, R.; Amin, S.; Ewing, J.; Rudisill, C.; McLain, A.C. A Bayesian susceptible-infectious-hospitalized-ventilated-recovered model to predict demand for COVID-19 inpatient care in a large healthcare system. PLoS ONE 2022, 17, e0260595. [Google Scholar] [CrossRef]
- Yoo, K.J.; Mannan, M.; Weerasinghe, I.; Borse, N.N.; Bishai, D. Illustrating the Anticipate, Recruit, Retain, Adapt, Sustain (ARRAS) Framework for Surge Capacity. How Bangladesh, Sri Lanka, and Nepal Maintained Their Health Workforce During COVID-19. Disaster Med. Public Health Prep. 2024, 18, e217. [Google Scholar] [CrossRef]
- Litton, E.; Huckson, S.; Chavan, S.; Bucci, T.; Holley, A.; Everest, E.; Kelly, S.; McGloughlin, S.; Millar, J.; Nguyen, N.; et al. Increasing ICU capacity to accommodate higher demand during the COVID-19 pandemic. Med. J. Aust. 2021, 215, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.; Leggett, N.; Miller, J.; McKinlay, L.; May, K.; Haines, K. Implementation of a novel team-based model of care using expert intensive care unit physiotherapists to supplement critical care surge demand. Aust. Crit. Care 2023, 36, 159–166. [Google Scholar] [CrossRef]
- Kerlin, M.P.; Costa, D.K.; Davis, B.S.; Admon, A.J.; Vranas, K.C.; Kahn, J.M. Actions Taken by US Hospitals to Prepare for Increased Demand for Intensive Care During the First Wave of COVID-19: A National Survey. Chest 2021, 160, 519–528. [Google Scholar] [CrossRef] [PubMed]
- McGillis Hall, L.; Reali, V.; Canzian, S.; Johnston, L.; Hatcher, C.; Hayward-Murray, K.; Layton, M.; Merkley, J.; Richards, J.; Taggar, R.; et al. Examining adaptive models of care implemented in hospital ICUs during the COVID-19 pandemic: A qualitative study. BMJ Open Qual. 2023, 12, e002353. [Google Scholar] [CrossRef]
- Yamamoto, T.; Ozaki, M.; Kasugai, D.; Burnham, G. Assessment of Critical Care Surge Capacity During the COVID-19 Pandemic in Japan. Health Secur. 2021, 19, 479–487. [Google Scholar] [CrossRef]
- Rosenback, R.G.; Svensson, A. Resilience in keeping the balance between demand and capacity in the COVID-19 pandemic, a case study at a Swedish middle-sized hospital. BMC Health Serv. Res. 2023, 23, 202. [Google Scholar] [CrossRef]
- Amaral, N.; Merkley, J.; Ronald, K.; Farquharson, C.; Ginty, L.; Heng, D.; Jeffs, L. Focusing on fundamentals of care in an ICU setting during a pandemic. J. Adv. Nurs. 2023, 79, 970–979. [Google Scholar] [CrossRef]
- Dutzmann, J.; Nuding, S. Allocation of limited resources in intensive and emergency medical care. Med. Klin. Intensivmed. Notfallmedizin 2021, 116, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Warr, D.; Storey, E.; Denys, M.; Brown, S.; Rose, C. Providing pharmacy services in a basketball arena: Reflections on building a pharmacy in a COVID-19 surge facility. Am. J. Health Syst. Pharm. 2021, 78, 416–425. [Google Scholar] [CrossRef]
- Sardesai, I.; Grover, J.; Garg, M.; Nanayakkara, P.W.B.; Di Somma, S.; Paladino, L.; Anderson, H.L., III; Gaieski, D.; Galwankar, S.C.; Stawicki, S.P. Short Term Home Oxygen Therapy for COVID-19 patients: The COVID-HOT algorithm. J. Fam. Med. Prim. Care 2020, 9, 3209–3219. [Google Scholar] [CrossRef] [PubMed]
- Staribacher, D.; Rauner, M.S.; Niessner, H. Hospital Resource Planning for Mass Casualty Incidents: Limitations for Coping with Multiple Injured Patients. Healthcare 2023, 11, 2713. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.J.; Adamski, J. Mass Casualties and Disaster Implications for the Critical Care Team. Aacn Adv. Crit. Care 2021, 32, 76–88. [Google Scholar] [CrossRef]
- Appel, J.M. When Scarcity Meets Disparity: “Resources Allocation and COVID-19 Patients with Diabetes”. J. Diabetes Sci. Technol. 2021, 15, 1005–1009. [Google Scholar] [CrossRef]
- Caro, J.J.; Möller, J.; Santhirapala, V.; Gill, H.; Johnston, J.; El-Boghdadly, K.; Santhirapala, R.; Kelly, P.; McGuire, A. Predicting Hospital Resource Use During COVID-19 Surges: A Simple but Flexible Discretely Integrated Condition Event Simulation of Individual Patient-Hospital Trajectories. Value Health 2021, 24, 1570–1577. [Google Scholar] [CrossRef]
- Kamar, A.; Maalouf, N.; Hitti, E.; El Eid, G.; Isma’eel, H.; Elhajj, I.H. Challenge of forecasting demand of medical resources and supplies during a pandemic: A comparative evaluation of three surge calculators for COVID-19. Epidemiol. Infect. 2021, 149, e51. [Google Scholar] [CrossRef]
- Melman, G.J.; Parlikad, A.K.; Cameron, E.A.B. Balancing scarce hospital resources during the COVID-19 pandemic using discrete-event simulation. Health Care Manag. Sci. 2021, 24, 356–374. [Google Scholar] [CrossRef] [PubMed]
- Ghayoomi, H.; Miller-Hooks, E.; Tariverdi, M.; Shortle, J.; Kirsch, T.D. Maximizing hospital capacity to serve pandemic patient surge in hot spots via queueing theory and microsimulation. IISE Trans. Healthc. Syst. Eng. 2023, 13, 314–332. [Google Scholar] [CrossRef]
- Batista, A.; Vera, J.; Pozo, D. Multi-objective admission planning problem: A two-stage stochastic approach. Health Care Manag. Sci. 2020, 23, 51–65. [Google Scholar] [CrossRef]
- Curry, G.L.; Moya, H.; Erraguntla, M.; Banerjee, A. Transient queueing analysis for emergency hospital management. IISE Trans. Healthc. Syst. Eng. 2022, 12, 36–51. [Google Scholar] [CrossRef]
- Amato, S.S.; Benson, J.S.; Murphy, S.; Osler, T.M.; Hosmer, D.; Cook, A.D.; Wolfson, D.L.; Erb, A.; Malhotra, A.; An, G. Geographic Coverage and Verification of Trauma Centers in a Rural State: Highlighting the Utility of Location Allocationfor Trauma System Planning. J. Am. Coll. Surg. 2021, 232, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ahumada-Canale, A.; Jeet, V.; Bilgrami, A.; Seil, E.; Gu, Y.; Cutler, H. Barriers and facilitators to implementing priority setting and resource allocation tools in hospital decisions: A systematic review. Soc. Sci. Med. 2023, 322, 115790. [Google Scholar] [CrossRef]
- Daldoul, D.; Nouaouri, I.; Bouchriba, H.; Allaoui, H. Impact of an approach combining optimization and simulation to improve the service quality of an emergency department. Tunis. Med. 2023, 101, 404–409. [Google Scholar]
- Yao, X.; Shehadeh, K.S.; Padman, R. Multi-resource allocation and care sequence assignment in patient management: A stochastic programming approach. Health Care Manag. Sci. 2024, 27, 352–369. [Google Scholar] [CrossRef]
- Garcia-Vicuña, D.; López-Cheda, A.; Jácome, M.A.; Mallor, F. Estimation of patient flow in hospitals using up-to-date data. Application to bed demand prediction during pandemic waves. PLoS ONE 2023, 18, e0282331. [Google Scholar] [CrossRef]
- Tello, M.; Reich, E.S.; Puckey, J.; Maff, R.; Garcia-Arce, A.; Bhattacharya, B.S.; Feijoo, F. Machine learning based forecast for the prediction of inpatient bed demand. BMC Med. Inform. Decis. Mak. 2022, 22, 55. [Google Scholar] [CrossRef]
- Li, J.; Luo, L.; Zhu, G. Patient Mix Optimization in Admission Planning under Multitype Patients and Priority Constraints. Comput. Math. Methods Med. 2021, 2021, 5588241. [Google Scholar] [CrossRef]
- Silva, E.; Pereira, M.F.; Vieira, J.T.; Ferreira-Coimbra, J.; Henriques, M.; Rodrigues, N.F. Predicting hospital emergency department visits accurately: A systematic review. Int. J. Health Plan. Manag. 2023, 38, 904–917. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, C.; Ji, M.; Xiang, W.; He, D. Medical service demand forecasting using a hybrid model based on ARIMA and self-adaptive filtering method. BMC Med. Inform. Decis. Mak. 2020, 20, 237. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, M.A.C.; Glampson, B.; Mellan, T.; Mishra, S.; Mercuri, L.; Costello, C.; Klaber, R.; Cooke, G.; Flaxman, S.; Bhatt, S. A unified machine learning approach to time series forecasting applied to demand at emergency departments. BMC Emerg. Med. 2021, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, M.R.; Zink, E.K.; Levin, A.B.; Suarez, J.I.; Belcher, H.M.E.; Daugherty Biddison, E.L.; Doberman, D.J.; D’Souza, K.; Fine, D.M.; Garibaldi, B.T.; et al. Operational Recommendations for Scarce Resource Allocation in a Public Health Crisis. Chest 2021, 159, 1076–1083. [Google Scholar] [CrossRef]
- Dees, R.H.; Herington, J.; Chiafery, M.; Shand, J.C.; D’Angio, C.T.; Ching, C.L.; Shaw, M.H. The Ethics of Implementing Emergency Resource Allocation Protocols. J. Clin. Ethics 2023, 34, 58–68. [Google Scholar] [CrossRef]
- Gershengorn, H.B.; Holt, G.E.; Rezk, A.; Delgado, S.; Shah, N.; Arora, A.; Colucci, L.B.; Mora, B.; Iyengar, R.S.; Lopez, A.; et al. Assessment of Disparities Associated with a Crisis Standards of Care Resource Allocation Algorithm for Patients in 2 US Hospitals During the COVID-19 Pandemic. JAMA Netw. Open 2021, 4, e214149. [Google Scholar] [CrossRef]
- Wilkinson, D.J.C. POINT: Is It Ethically Permissible to Use Frailty Scoring to Determine the Allocation of Medical Resources Under Conditions of Scarcity in the Medical ICU? Yes. Chest 2024, 166, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Dao, B.; Savulescu, J.; Suen, J.Y.; Fraser, J.F.; Wilkinson, D.J.C. Ethical factors determining ECMO allocation during the COVID-19 pandemic. BMC Med. Ethics 2021, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Satomi, E.; Souza, P.M.R.; Thomé, B.D.C.; Reingenheim, C.; Werebe, E.; Troster, E.J.; Scarin, F.C.C.; Bacha, H.A.; Grunspun, H.; Ferraz, L.J.R.; et al. Fair allocation of scarce medical resources during COVID-19 pandemic: Ethical considerations. Einstein 2020, 18, eAE5775. [Google Scholar] [CrossRef]
- Riggan, K.A.; Nguyen, N.V.; Ennis, J.S.; DeBruin, D.A.; Sharp, R.R.; Tilburt, J.C.; Wolf, S.M.; DeMartino, E.S. Behind the Scenes: Facilitators and Barriers to Developing State Scarce Resource Allocation Plans for the COVID-19 Pandemic. Chest 2024, 166, 561–571. [Google Scholar] [CrossRef]
- Pathak, P.A.; Sönmez, T.; Ünver, M.U. Reserve Systems for Allocation of Scarce Medical Resources During the COVID-19 Pandemic: The Path From April 2020 to April 2021. Chest 2021, 160, 1572–1575. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, E.J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J.P. Fair Allocation of Scarce Medical Resources in the Time of COVID-19. N. Engl. J. Med. 2020, 382, 2049–2055. [Google Scholar] [CrossRef]
- Romney, D.; Fox, H.; Carlson, S.; Bachmann, D.; O’Mathuna, D.; Kman, N. Allocation of Scarce Resources in a Pandemic: A Systematic Review of US State Crisis Standards of Care Documents. Disaster Med. Public Health Prep. 2020, 14, 677–683. [Google Scholar] [CrossRef]
- Grøntved, S.; Jørgine Kirkeby, M.; Paaske Johnsen, S.; Mainz, J.; Brink Valentin, J.; Mohr Jensen, C. Towards reliable forecasting of healthcare capacity needs: A scoping review and evidence mapping. Int. J. Med. Inform. 2024, 189, 105527. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, M.D.; Brazel, D.M.; Dowd, J.B.; Kashnitsky, I.; Mills, M.C. Forecasting spatial, socioeconomic and demographic variation in COVID-19 health care demand in England and Wales. BMC Med. 2020, 18, 203. [Google Scholar] [CrossRef]
- Latruwe, T.; van der Wee, M.; Vanleenhove, P.; Devriese, J.; Verbrugge, S.; Colle, D. A long-term forecasting and simulation model for strategic planning of hospital bed capacity. Oper. Res. Health Care 2023, 36, 100375. [Google Scholar] [CrossRef]
- Monsef, N.; Suliman, E.; Ashkar, E.; Hussain, H.Y. Healthcare services gap analysis: A supply capture and demand forecast modelling, Dubai 2018–2030. BMC Health Serv. Res. 2023, 23, 468. [Google Scholar] [CrossRef]
- Ashtab, S.; Anderson, W. Differences in manufacturing and healthcare supply chain management: An overview. Int. J. Healthc. Technol. Manag. 2023, 20, 232–248. [Google Scholar] [CrossRef]
- Majeed, B.; Peng, J.; Li, A.; Lin, Y.; Delgado, I.R. Forecasting the demand of mobile clinic services at vulnerable communities based on integrated multi-source data. IISE Trans. Healthc. Syst. Eng. 2021, 11, 113–127. [Google Scholar] [CrossRef]
- Christen, P.; D’Aeth, J.C.; Løchen, A.; McCabe, R.; Rizmie, D.; Schmit, N.; Nayagam, S.; Miraldo, M.; Aylin, P.; Bottle, A.; et al. The J-IDEA Pandemic Planner: A Framework for Implementing Hospital Provision Interventions During the COVID-19 Pandemic. Med. Care 2021, 59, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.A. Stop Doing Needless Things! Saving Healthcare Resources During COVID-19 and Beyond. J. Gen. Intern. Med. 2020, 35, 2186–2188. [Google Scholar] [CrossRef]
- Klein, M.G.; Cheng, C.J.; Lii, E.; Mao, K.; Mesbahi, H.; Zhu, T.; Muckstadt, J.A.; Hupert, N. COVID-19 models for hospital surge capacity planning: A systematic review. Disaster Med. Public Health Prep. 2022, 16, 390–397. [Google Scholar] [CrossRef]
- Kutafina, E.; Bechtold, I.; Kabino, K.; Jonas, S.M. Recursive neural networks in hospital bed occupancy forecasting. BMC Med. Informatics Decis. Mak. 2019, 19, 39. [Google Scholar] [CrossRef]
- Oehring, D.; Gunasekera, P. Ethical Frameworks and Global Health: A Narrative Review of the “Leave No One Behind” Principle. INq. Health Care Organ. Provision Financ. 2024, 61, 1–12. [Google Scholar] [CrossRef]
- Wightman, A.; Freeman, M. An Organ for My Child: Public Appeals for Limited Resources. Pediatrics 2020, 146 (Suppl. S1), S42–S47. [Google Scholar] [CrossRef]
- McRae, S.; Brunner, J.O. Assessing the impact of uncertainty and the level of aggregation in case mix planning. Omega 2020, 97, 102086. [Google Scholar] [CrossRef]
- Leventhal, J.M.; Laventhal, N. Crisis standards of care and regional allocation frameworks: Lessons from the COVID-19 pandemic. Pediatrics 2020, 146, e20201243. [Google Scholar]
- Dawson, A.; Isaacs, D.; Jansen, M.; Jordens, C.; Kerridge, I.; Kihlbom, U.; Kilham, H.; Preisz, A.; Sheahan, L.; Skowronski, G. An Ethics Framework for Making Resource Allocation Decisions Within Clinical Care: Responding to COVID-19. J. Bioethical Inq. 2020, 17, 749–755. [Google Scholar] [CrossRef]
- Laventhal, N.; Basak, R.; Dell, M.; Diekema, D.; Elster, N.; Geis, G.; Webb, S. Triage and resource allocation for pediatric patients during a pandemic. Pediatrics 2020, 146, e20201243. [Google Scholar] [CrossRef] [PubMed]
- Persad, G. Against exclusive survivalism: Preventing lost life and protecting the disadvantaged in resource allocation. Hastings Cent. Rep. 2021, 51, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Petrini, C.; Cutrera, R. Ethical recommendations for triage during the COVID-19 pandemic. Chin. Med. Ethics 2021, 3, 267–275. [Google Scholar]
- Asthana, S.; Gibson, A. The National Health Service (NHS) in Crisis: The Role Played by a Shift from Horizontal to Vertical Principles of Equity. Health Econ. Policy Law 2020, 15, 1–17. [Google Scholar] [CrossRef]
- Biddison, E.L.; Gwon, H.S.; Schoch-Spana, M.; Cavalier, R.; White, D.B.; Dawson, A.; Faden, R. Scarce Resource Allocation During Disasters: A Mixed-Method Community Engagement Study. Chest 2018, 153, 187–195. [Google Scholar] [CrossRef]
- Savin, K.; Guidry-Grimes, L. Confronting disability discrimination during the pandemic. N. Engl. J. Med. 2020, 383, 411–413. Available online: https://scholarlycommons.pacific.edu/shs-all/509 (accessed on 3 November 2025).
- Davies, L.W.; Air, T.; Jorissen, R.N.; Mittinty, M.N.; Caughey, G.; Wesselingh, S.; Inacio, M.C. Historical Trends and Future Projections of Demand for Permanent Residential Aged Care for Older People in Australia, 2008–2052. J. Am. Med. Dir. Assoc. 2024, 25, 252–258.e8. [Google Scholar] [CrossRef]
- Dass, A.R.; Deber, R.; Laporte, A. Forecasting Staffing Needs for Ontario’s Long-Term Care Sector. Healthc. Policy 2022, 17, 91–106. [Google Scholar] [CrossRef]
- Benahmed, N.; Lefevre, M.; Stordeur, S. Managing uncertainty in forecasting health workforce demand using the Robust Workforce Planning Framework: The example of midwives in Belgium. Hum. Resour. Health 2023, 21, 75. [Google Scholar] [CrossRef]
- Litton, E.; Bucci, T.; Chavan, S.; Ho, Y.Y.; Holley, A.; Howard, G.; Huckson, S.; Kwong, P.; Millar, J.; Nguyen, N.; et al. Surge capacity of intensive care units in case of acute increase in demand caused by COVID-19 in Australia. Med. J. Aust. 2020, 212, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, F.W.; Johns, H.; Bishop, L.; Churilov, L. Royal Flying Doctor Service Coronavirus Disease 2019 Activity and Surge Modeling in Australia. Air Med. J. 2020, 39, 404–409. [Google Scholar] [CrossRef]
- Rykers, K.; Tacey, M.; Bowes, J.; Brown, K.; Yuen, E.; Wilson, C.; Khor, R.; Foroudi, F. Victoria (Australia) radiotherapy response to working through the first and second wave of COVID-19: Strategies and staffing. J. Med. Imaging Radiat. Oncol. 2021, 65, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.; Fuad, A.O.; Hodgson, A.; Bourgeault, I.L. Health workforce strategies in response to major health events: A rapid scoping review with lessons learned for the response to the COVID-19 pandemic. Hum. Resour. Health 2021, 19, 154. [Google Scholar] [CrossRef]
- Aftab, A.; Dus, T.; Aiken, C.; Gladstone, A.; Morgan, W.; Tomiczek, N.; Alexander, L. Academic hospitals in the Toronto region collaborate to optimize occupational health and safety. Healthc. Manag. Forum 2024, 37, 351–358. [Google Scholar] [CrossRef]
- Asamani, J.A.; Christmals, C.D.; Reitsma, G.M. Modelling the supply and need for health professionals for primary health care in Ghana: Implications for health professions education and employment planning. PLoS ONE 2021, 16, e0257957. [Google Scholar] [CrossRef] [PubMed]
- Yemeke, T.T.; Kiracho, E.E.; Mutebi, A.; Apolot, R.R.; Ssebagereka, A.; Evans, D.R.; Ozawa, S. Health versus other sectors: Multisectoral resource allocation preferences in Mukono district, Uganda. PLoS ONE 2020, 15, e0235250. [Google Scholar] [CrossRef] [PubMed]
- Kant, S. The COVID-19 Pandemic: Impact on primary and secondary healthcare in India. Natl. Med. J. India 2020, 33, 193–194. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, L.; Zhang, W.; Fan, Y.; Liu, W.; Liu, M.; Fan, Y.; Qu, X. Trend and Equity in Maternal and Child Health Resource Allocation in China Since the New Health System Reform: A Nationwide Study from 2008 to 2020. Risk Manag. Healthc. Policy 2024, 17, 1987–2005. [Google Scholar] [CrossRef]
- Iragorri, N.; Gómez-Restrepo, C.; Barrett, K.; Herrera, S.; Hurtado, I.; Khan, Y.; Mac, S.; Naimark, D.; Pechlivanoglou, P.; Rosselli, D.; et al. COVID-19: Adaptation of a model to predicting healthcare resources needs in Valle del Cauca, Colombia. Colomb. MéDica 2020, 51, e204534. [Google Scholar] [CrossRef]
- Doshmangir, L.; Iezadi, S.; Gholipour, K.; Gordeev, V.S. The future of Iran’s health workforce. Lancet 2022, 400, 883. [Google Scholar] [CrossRef]
- Alshehri, A.; Balkhi, B.; Gleeson, G.; Atassi, E. Efficiency and Resource Allocation in Government Hospitals in Saudi Arabi: A Casemix Index Approach. Healthcare 2023, 11, 2513. [Google Scholar] [CrossRef]
- Alatawi, A.D.; Niessen, L.W.; Bhardwaj, M.; Alhassan, Y.; Khan, J.A.M. Factors Influencing the Efficiency of Public Hospitals in Saudi Arabia: A Qualitative Study Exploring Stakeholders’ Perspectives and Suggestions for Improvement. Front. Public Health 2022, 10, 922597. [Google Scholar] [CrossRef] [PubMed]
- Devlin, N.; Scuffham, P. Health today versus health tomorrow: Does Australia really care less about its future health than other countries do? Aust. Health Rev. 2020, 44, 337–339. [Google Scholar] [CrossRef]
- Go, M.R.; Oslock, W.M.; Way, D.P.; Baselice, H.E.; Tamer, R.M.; Kent, K.C.; Williams, T.E.; Satiani, B. An Updated Physician Workforce Model Predicts a Shortage of Vascular Surgeons for the Next 20 Years. Ann. Vasc. Surg. 2020, 66, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Owczar, H.; Taylor, C.; Bowes, J.M.; Soodeen, R.A. Orthopedic and ophthalmology surgical service forecast modelling in Manitoba: Research approach for a data linkage study. Int. J. Popul. Data Sci. 2023, 8, 2123. [Google Scholar] [CrossRef]
- Miranda, R.; Oliveira, M.D.; Nicola, P.; Baptista, F.M.; Albuquerque, I. Towards A Framework for Implementing Remote Patient Monitoring From an Integrated Care Perspective: A Scoping Review. Int. J. Health Policy Manag. 2023, 12, 7299. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.; Mihailescu, M.; Bourgeault, I.L. Emergency responses for a health workforce under pressure: Lessons learned from system responses to the first wave of the pandemic in Canada. Int. J. Health Plan. Manag. 2024, 39, 906–916. [Google Scholar] [CrossRef]
- Cho, H.; Sagherian, K.; Steege, L.M. Hospital Nursing Staff Perceptions of Resources Provided by Their Organizations During the COVID-19 Pandemic. Workplace Health Saf. 2021, 69, 174–181. [Google Scholar] [CrossRef]
- Dichter, J.R.; Devereaux, A.V.; Sprung, C.L.; Mukherjee, V.; Persoff, J.; Baum, K.D.; Ornoff, D.; Uppal, A.; Hossain, T.; Henry, K.N.; et al. Mass Critical Care Surge Response During COVID-19: Implementation of Contingency Strategies—A Preliminary Report of Findings From the Task Force for Mass Critical Care. Chest 2022, 161, 429–447. [Google Scholar] [CrossRef]
- Bashier, H.; Ikram, A.; Khan, M.A.; Baig, M.; Al Gunaid, M.; Al Nsour, M.; Khader, Y. The Anticipated Future of Public Health Services Post COVID-19: Viewpoint. JMIR Public Health Surveill. 2021, 7, e26267. [Google Scholar] [CrossRef]
- Chen, W.; Li, J. Forecasting Teleconsultation Demand Using an Ensemble CNN Attention-Based BILSTM Model with Additional Variables. Healthcare 2021, 9, 992. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Kreif, N.; Saravanakumar, K.; Delaney, B.; Barahona, M.; Mayer, E. Formalising triage in general practice towards a more equitable, safe, and efficient allocation of resources. BMJ 2022, 377, e070757. [Google Scholar] [CrossRef]
- Benishek, L.E.; Kachalia, A.; Daugherty Biddision, L.; Wu, A.W. Mitigating Health-Care Worker Distress from Scarce Medical Resource Allocation During a Public Health Crisis. Chest 2020, 158, 2285–2287. [Google Scholar] [CrossRef] [PubMed]
- Bruno, B.; Hurwitz, H.M.; Mercer, M.; Mabel, H.; Sankary, L.; Morley, G.; Ford, P.J.; Horsburgh, C.C.; Rose, S.L. Incorporating Stakeholder Perspectives on Scarce Resource Allocation: Lessons Learned from Policymaking in a Time of Crisis. Camb. Q. Healthc. Ethics 2021, 30, 390–402. [Google Scholar] [CrossRef]
- Geuter, G.; Beiwinkel, T.; Oesterle, L.; Reyer, M.; Bödeker, M.; Haack, M.; Scriba, S.; Preuss, M. The contribution of health conferences and health regions to regional planning and management in health care: An overview at the federal states level. Gesundheitswesen 2024, 86, 67–86. [Google Scholar] [CrossRef]
- Thomas, S.; Sagan, A.; Larkin, J.; Cylus, J.; Figueras, J.; Karanikolos, M. European Observatory Policy Briefs. In Strengthening Health Systems Resilience: Key Concepts and Strategies; European Observatory on Health Systems and Policies © World Health Organization: Copenhagen, Denmark, 2020. [Google Scholar]
- Fairley, M.; Cipriano, L.E.; Goldhaber-Fiebert, J.D. Optimal Allocation of Research Funds under a Budget Constraint. Med. Decis. Mak. 2020, 40, 797–814. [Google Scholar] [CrossRef] [PubMed]


| Thematic Focus Area | Research Questions | Investigation Scope |
|---|---|---|
| Hospital Resource Management | RQ1: How do demand forecasting models optimize allocation of beds, staff, and equipment during surge events? | Effectiveness of predictive algorithms, inventory management systems, and real-time resource tracking |
| IT & Algorithmic Solutions | RQ2: What role do IT and AI/ML algorithms play in predicting patient surges and automating emergency responses? | Evaluation of decision-support systems, predictive modeling accuracy, and integration with hospital workflows |
| Ethical Considerations | RQ3: What ethical challenges emerge in resource rationing and priority-setting during hospital crises? | Analysis of protocols, equity in access to care, and staff moral distress |
| Policy & Lessons | RQ4: How effective are current emergency management policies in ensuring healthcare system resilience? | Comparative evaluation of national/institutional policies, regulatory frameworks, and compliance measures |
| Criterion | Description | Score Range | Evaluation Guidance |
|---|---|---|---|
| Relevance to research questions | Degree to which the study addressed at least one of the predefined RQs | 1–5 | 1 = marginal relevance, 5 = highly relevant |
| Methodological rigor | Quality of design (e.g., empirical data, systematic methodology) | 1–5 | 1 = low rigor, 5 = high rigor |
| Contextual applicability | Extent to which findings are applicable to hospital surge/emergency settings | 1–5 | 1 = limited relevance, 5 = direct relevance |
| Contribution to thematic domain | Fit within surge capacity, resource allocation, ethics, or policy | 1–5 | 1 = minor contribution, 5 = substantial contribution |
| Clarity of reporting | Transparency and completeness of study reporting | 1–5 | 1 = poorly reported, 5 = well-reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petanidis, S.; Chandramouli, K.; Floros, G.; Nifakos, S.; Kolomvatsos, K.; Tsekeridou, S.; Magalini, S.; Gui, D.; Kosmidis, C. Optimizing Emergency Response in Hospitals: A Systematic Review of Surge Capacity Planning and Crisis Resource Management. Healthcare 2025, 13, 2819. https://doi.org/10.3390/healthcare13212819
Petanidis S, Chandramouli K, Floros G, Nifakos S, Kolomvatsos K, Tsekeridou S, Magalini S, Gui D, Kosmidis C. Optimizing Emergency Response in Hospitals: A Systematic Review of Surge Capacity Planning and Crisis Resource Management. Healthcare. 2025; 13(21):2819. https://doi.org/10.3390/healthcare13212819
Chicago/Turabian StylePetanidis, Savvas, Krishna Chandramouli, George Floros, Sokratis Nifakos, Kostas Kolomvatsos, Sofia Tsekeridou, Sabina Magalini, Daniele Gui, and Christoforos Kosmidis. 2025. "Optimizing Emergency Response in Hospitals: A Systematic Review of Surge Capacity Planning and Crisis Resource Management" Healthcare 13, no. 21: 2819. https://doi.org/10.3390/healthcare13212819
APA StylePetanidis, S., Chandramouli, K., Floros, G., Nifakos, S., Kolomvatsos, K., Tsekeridou, S., Magalini, S., Gui, D., & Kosmidis, C. (2025). Optimizing Emergency Response in Hospitals: A Systematic Review of Surge Capacity Planning and Crisis Resource Management. Healthcare, 13(21), 2819. https://doi.org/10.3390/healthcare13212819

