Computer Vision Syndrome Among Saudi University Students: A Cross-Sectional Analysis of Risks and Discipline Variations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection Tool
2.3. Measures
2.4. Statistical Analysis
2.5. Ethical Approval
3. Results
3.1. Demographic Characteristics
3.2. Computer Vision Syndrome Prevalence by Academic Discipline
3.3. Electronic Device Usage Patterns and Dose–Response Relationship
3.4. Device Usage Practices and Protective Behaviors
3.5. Determinants of CVS Among Participants
4. Discussion
4.1. Dose–Response Relationship and Causal Evidence
4.2. Academic Discipline Variations: Novel Risk Patterns
4.3. Age-Related Risk Factors
4.4. Symptom Profile and Clinical Associations
4.5. Protective Measures and Intervention Insights
4.6. Public Health Implications and Clinical Applications
4.7. Study Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CVS | Computer Vision Syndrome |
| ED | Electronic Device |
| GPA | Grade Point Average |
| OR | Odds Ratio |
| CI | Confidence Interval |
| ICC | Intraclass Correlation Coefficient |
| STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
| DES | Digital Eye Strain |
| ADHD | Attention Deficit Hyperactivity Disorder |
| MSDs | Musculoskeletal Disorders |
References
- Bröhl, C.; Rasche, P.; Jablonski, J.; Theis, S.; Wille, M.; Mertens, A. Desktop PC, Tablet PC, or Smartphone? An Analysis of Use Preferences in Daily Activities for Different Technology Generations of a Worldwide Sample. In Human Aspects of IT for the Aged Population. Acceptance, Communication and Participation. ITAP 2018. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10926, pp. 3–20. [Google Scholar]
- McNeill, J.; Howard, S.J.; Vella, S.A.; Cliff, D.P. Longitudinal Associations of Electronic Application Use and Media Program Viewing with Cognitive and Psychosocial Development in Preschoolers. Acad. Pediatr. 2019, 19, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.M.M.; Mawah, J.; Banik, E.; Akter, Y.; Deen, J.I.; Jahan, A.; Khan, N.M.; Rahman, M.M.; Lipi, N.; Akter, F.; et al. Prevalence and impact of the use of electronic gadgets on the health of children in secondary schools in Bangladesh: A cross-sectional study. Health Sci. Rep. 2021, 4, e388. [Google Scholar] [CrossRef]
- Tsang, S.M.H.; Cheing, G.L.Y.; Lam, A.K.C.; Siu, A.M.H.; Pang, P.C.K.; Yip, K.-C.; Chan, J.W.K.; Jensen, M.P. Excessive use of electronic devices among children and adolescents is associated with musculoskeletal symptoms, visual symptoms, psychosocial health, and quality of life: A cross-sectional study. Front. Public Health 2023, 11, 1178769. [Google Scholar] [CrossRef]
- Bustamante, J.C.; Fernández-Castilla, B.; Alcaraz-Iborra, M. Relation between executive functions and screen time exposure in under 6 year-olds: A meta-analysis. Comput. Hum. Behav. 2023, 145, 107739. [Google Scholar] [CrossRef]
- Alamri, A.; Amer, K.A.; Aldosari, A.A.; Althubait, B.M.S.; Alqahtani, M.S.; AL Mudawi, A.A.M.; AL Mudawi, B.A.M.; Alqahtani, F.A.M.; Alhamoud, N.S.Y. Computer vision syndrome: Symptoms, risk factors, and practices. J. Fam. Med. Prim. Care 2022, 11, 5110–5115. [Google Scholar] [CrossRef]
- Kahal, F.; Ahmad, A.D.; Torbey, A. Computer vision syndrome: A comprehensive literature review. Future Sci. OA 2025, 11, 2476923. [Google Scholar] [CrossRef] [PubMed]
- Mylona, I.; Deres, E.S.; Dere, G.-D.S.; Tsinopoulos, I.; Glynatsis, M. The Impact of Internet and Videogaming Addiction on Adolescent Vision: A Review of the Literature. Front. Public Health 2020, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Akiki, M.; Obeid, S.; Salameh, P.; Malaeb, D.; Akel, M.; Hallit, R.; Hallit, S. Association between computer vision syndrome, insomnia, and migraine among Lebanese adults: The mediating effect of stress. Prim. Care Companion CNS Disord. 2022, 24, 42261. [Google Scholar] [CrossRef]
- Kaur, K.; Gurnani, B.; Nayak, S.; Deori, N.; Kaur, S.; Jethani, J.; Singh, D.; Agarkar, S.; Hussaindeen, J.R.; Sukhija, J.; et al. Digital Eye Strain- A Comprehensive Review. Ophthalmol. Ther. 2022, 11, 1655–1680. [Google Scholar] [CrossRef]
- Bali, J.; Neeraj, N.; Bali, R.T. Computer vision syndrome: A review. J. Clin. Ophthalmol. Res. 2014, 2, 61–68. [Google Scholar] [CrossRef]
- Gowrisankaran, S.; Sheedy, J.E. Computer vision syndrome: A review. Work 2015, 52, 303–314. [Google Scholar] [CrossRef]
- Anbesu, E.W.; Lema, A.K. Prevalence of computer vision syndrome: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 1801. [Google Scholar] [CrossRef]
- Turkistani, A.N.; Al-Romaih, A.; Alrayes, M.M.; Al Ojan, A.; Al-Issawi, W. Computer vision syndrome among Saudi population: An evaluation of prevalence and risk factors. J. Fam. Med. Prim. Care 2021, 10, 2313–2318. [Google Scholar] [CrossRef]
- Al Tawil, L.; Aldokhayel, S.; Zeitouni, L.; Qadoumi, T.; Hussein, S.; Ahamed, S.S. Prevalence of self-reported computer vision syndrome symptoms and its associated factors among university students. Eur. J. Ophthalmol. 2020, 30, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Joltikov, K.A.; Kravets, S.; Edward, D.P. Computer Vision Syndrome in Undergraduate and Medical Students During the COVID-19 Pandemic. Clin. Ophthalmol. 2023, 17, 1087–1096. [Google Scholar] [CrossRef]
- Zablotsky, B.; Arockiaraj, B.; Haile, G.; Ng, A.E. Daily Screen Time Among Teenagers: United States, July 2021–December 2023. NCHS Data Brief 2024, 513, CS354544. [Google Scholar]
- Akowuah, P.K.; Nti, A.N.; Ankamah-Lomotey, S.; Frimpong, A.A.; Fummey, J.; Boadi, P.; Osei-Poku, K.; Adjei-Anang, J. Digital Device Use, Computer Vision Syndrome, and Sleep Quality among an African Undergraduate Population. Adv. Public Health 2021, 2021, 6611348. [Google Scholar] [CrossRef]
- Ccami-Bernal, F.; Soriano-Moreno, D.R.; Romero-Robles, M.A.; Barriga-Chambi, F.; Tuco, K.G.; Castro-Diaz, S.D.; Nuñez-Lupaca, J.N.; Pacheco-Mendoza, J.; Galvez-Olortegui, T.; Benites-Zapata, V.A. Prevalence of computer vision syndrome: A systematic review and meta-analysis. J. Optom. 2024, 17, 100482. [Google Scholar] [CrossRef] [PubMed]
- Wajuihian, S.O. Exploring Correlations between Headaches and Refractive Errors in an Optometry Clinic Sample. Br. Ir. Orthopt. J. 2024, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Oluwarinde, B.; Tlotleng, N.; Nkosi, V. Prevalence and Risk Factors of Computer Vision Syndrome Among University Students During the COVID-19 Pandemic: A CROSS-Sectional Study. Proc. Int. Conf. Public Health 2025, 9, 146–159. [Google Scholar] [CrossRef]
- Alhibshi, N.M.; Aljaid, A.M.; Alharbi, A.S.; Alharazi, A.A.; Alghamdi, B.S.; Tashkandi, Z.M. Prevalence, knowledge and associated factors of computer vision syndrome among electronic devices users in Western Region, Kingdom of Saudi Arabia. Int. J. Med. Dev. Ctries. 2021, 5, 1296. [Google Scholar] [CrossRef]
- Noreen, K.; Batool, Z.; Fatima, T.; Zamir, T. Prevalence of computer vision syndrome and its associated risk factors among under graduate medical students of urban karachi. Pak. J. Ophthalmol. 2016, 32, 295–301. [Google Scholar] [CrossRef]
- Abed Alah, M.; Abdeen, S.; Selim, N.; AlDahnaim, L.; Bougmiza, I. Computer vision syndrome among students during remote learning periods: Harnessing digital solutions for clear vision. Front. Public Health 2023, 11, 1273886. [Google Scholar] [CrossRef]
- Abudawood, G.A.; Ashi, H.M.; Almarzouki, N.K. Computer Vision Syndrome among Undergraduate Medical Students in King Abdulaziz University, Jeddah, Saudi Arabia. J. Ophthalmol. 2020, 2020, 2789376. [Google Scholar] [CrossRef]
- Sengo, D.B.; da Deolinda Bernardo Pica, A.; Dos Santos, I.I.d.A.B.; Mate, L.M.; Mazuze, A.N.; Caballero, P.; López-Izquierdo, I. Computer vision syndrome and associated factors in university students and teachers in Nampula, Mozambique. BMC Ophthalmol. 2023, 23, 508. [Google Scholar] [CrossRef]
- Altalhi, A.; Khayyat, W.; Khojah, O.; Alsalmi, M.; Almarzouki, H. Computer Vision Syndrome Among Health Sciences Students in Saudi Arabia: Prevalence and Risk Factors. Cureus 2020, 12, e7060. [Google Scholar] [CrossRef]
- Singh, S.; Keller, P.R.; Busija, L.; McMillan, P.; Makrai, E.; Lawrenson, J.G.; Hull, C.C.; Downie, L.E. Blue-light filtering spectacle lenses for visual performance, sleep, and macular health in adults. Cochrane Database Syst. Rev. 2023, 8, CD013244. [Google Scholar] [CrossRef]
- Dabrowiecki, A.; Villalobos, A.; Krupinski, E.A. Impact of blue light filtering glasses on computer vision syndrome in radiology residents: A pilot study. J. Med. Imaging 2019, 7, 022402. [Google Scholar] [CrossRef] [PubMed]


| Characteristics | Frequency (%) | 95% CI |
|---|---|---|
| Age Groups | ||
| 18–20 years | 149 (34.9%) | 30.4–39.4 |
| 21–23 years | 251 (58.8%) | 54.2–63.4 |
| ≥24 years | 27 (6.3%) | 4.1–8.5 |
| Sex | ||
| Female | 215 (50.4%) | 45.7–55.1 |
| Male | 212 (49.6%) | 44.9–54.3 |
| Academic Discipline | ||
| Computer Sciences IT | 86 (20.1%) | 16.3–23.9 |
| Business Administration | 81 (19.0%) | 15.3–22.7 |
| Medicine | 77 (18.0%) | 14.4–21.6 |
| Applied Medical Sciences | 63 (14.8%) | 11.4–18.2 |
| Arts and Humanities | 61 (14.3%) | 10.9–17.7 |
| Engineering | 59 (13.8%) | 10.5–17.1 |
| Academic Performance (GPA) | ||
| High (≥4.0) | 295 (69.1%) | 64.7–73.5 |
| Moderate (3.0–3.99) | 114 (26.7%) | 22.5–30.9 |
| Low (<3.0) | 18 (4.2%) | 2.4–6.0 |
| Academic Discipline | Total Students | CVS Cases | CVS Prevalence | 95% CI | p-Value * |
|---|---|---|---|---|---|
| Computer Sciences IT | 86 | 82 | 95.3% | 89.1–99.5 | |
| Medicine | 77 | 73 | 94.8% | 88.2–100.0 | |
| Applied Medical Sciences | 63 | 59 | 93.7% | 86.8–100.0 | |
| Business Administration | 81 | 71 | 87.7% | 79.8–95.6 | <0.001 |
| Engineering | 59 | 52 | 88.1% | 78.5–97.7 | |
| Arts and Humanities | 61 | 46 | 75.4% | 64.1–86.7 | |
| Overall | 427 | 383 | 89.7% | 86.8–92.6 |
| Daily Usage Duration | Total Students | CVS Cases | CVS Prevalence | 95% CI | Crude OR | 95% CI | p-Value |
|---|---|---|---|---|---|---|---|
| 1–2 h | 25 | 16 | 64.0% | 44.1–83.9 | 1.00 | Reference | |
| 3–4 h | 82 | 72 | 87.8% | 80.0–95.6 | 4.05 | 1.42–11.54 | 0.009 |
| 5–6 h | 133 | 121 | 90.9% | 85.7–96.1 | 5.68 | 2.12–15.24 | 0.001 |
| ≥7 h | 187 | 173 | 92.5% | 88.4–96.6 | 7.15 | 2.73–18.72 | <0.001 |
| Usage Practices | Frequency (%) | 95% CI | CVS Association (p-Value) |
|---|---|---|---|
| Device Positioning | |||
| Below eye level | 240 (56.2%) | 51.5–60.9 | 0.847 |
| At eye level | 167 (39.1%) | 34.5–43.7 | |
| Above eye level | 20 (4.7%) | 2.7–6.7 | |
| Viewing Distance | |||
| <40 cm | 169 (39.6%) | 34.9–44.3 | 0.421 |
| 40 cm | 193 (45.2%) | 40.5–49.9 | |
| >40 cm | 65 (15.2%) | 11.8–18.6 | |
| Environmental Factors | |||
| Bright environment usage | 305 (71.4%) | 67.0–75.8 | 0.879 |
| Maximum brightness usage | 97 (22.7%) | 18.7–26.7 | 0.780 |
| Protective Measures | |||
| 20-20-20 rule adherence | 143 (33.5%) | 29.0–38.0 | 0.569 |
| Anti-glare screen usage | 98 (23.0%) | 18.9–27.1 | 0.013 |
| Blue-light glasses usage | 69 (16.2%) | 12.7–19.7 | 0.810 |
| Eye Care Practices | |||
| Headaches during usage | 273 (63.9%) | 59.4–68.4 | <0.001 |
| Artificial tear drops usage | 84 (19.7%) | 15.9–23.5 | 0.142 |
| Corrective eyewear usage | 124 (29.0%) | 24.7–33.3 | 0.025 |
| Risk Factors | Adjusted OR * | 95% CI | p-Value |
|---|---|---|---|
| Age Groups (Reference: 18–20 years) | |||
| 21–23 years | 1.47 | 0.68–3.14 | 0.321 |
| ≥24 years | 9.73 | 1.53–19.65 | 0.046 |
| Sex (Reference: Female) | |||
| Male | 0.49 | 0.22–1.08 | 0.079 |
| Academic Discipline (Reference: Applied Medical Sciences) | |||
| Arts and Humanities | 0.19 | 0.05–0.64 | 0.011 |
| Business Administration | 0.39 | 0.09–1.38 | 0.161 |
| Computer Sciences IT | 2.11 | 0.43–10.83 | 0.352 |
| Engineering | 0.57 | 0.13–2.23 | 0.430 |
| Medicine | 0.83 | 0.17–3.87 | 0.803 |
| Device Usage Duration (Reference: 1–2 h) | |||
| 3–4 h | 4.13 | 1.13–5.57 | 0.032 |
| 5–6 h | 5.31 | 1.46–9.86 | 0.011 |
| ≥7 h | 6.25 | 1.74–8.01 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albasheer, O.; Jareebi, M.A.; Alnami, R.M.; Soweedi, A.M.; Alqahtani, S.S.; Ageeli, A.M.; Arif, F.Y.; Judayba, A.H.; Hakami, A.M.; Otayf, D.A.H.; et al. Computer Vision Syndrome Among Saudi University Students: A Cross-Sectional Analysis of Risks and Discipline Variations. Healthcare 2025, 13, 2798. https://doi.org/10.3390/healthcare13212798
Albasheer O, Jareebi MA, Alnami RM, Soweedi AM, Alqahtani SS, Ageeli AM, Arif FY, Judayba AH, Hakami AM, Otayf DAH, et al. Computer Vision Syndrome Among Saudi University Students: A Cross-Sectional Analysis of Risks and Discipline Variations. Healthcare. 2025; 13(21):2798. https://doi.org/10.3390/healthcare13212798
Chicago/Turabian StyleAlbasheer, Osama, Mohammad A. Jareebi, Raghad M. Alnami, Asma M. Soweedi, Saja S. Alqahtani, Amal M. Ageeli, Fai Y. Arif, Aghadir H. Judayba, Alanood M. Hakami, Dhiyaa A. H. Otayf, and et al. 2025. "Computer Vision Syndrome Among Saudi University Students: A Cross-Sectional Analysis of Risks and Discipline Variations" Healthcare 13, no. 21: 2798. https://doi.org/10.3390/healthcare13212798
APA StyleAlbasheer, O., Jareebi, M. A., Alnami, R. M., Soweedi, A. M., Alqahtani, S. S., Ageeli, A. M., Arif, F. Y., Judayba, A. H., Hakami, A. M., Otayf, D. A. H., Almraysi, S. A., Najmi, A. Y., Alqassim, A. Y., Ryani, M. A., & Bahri, A. A. (2025). Computer Vision Syndrome Among Saudi University Students: A Cross-Sectional Analysis of Risks and Discipline Variations. Healthcare, 13(21), 2798. https://doi.org/10.3390/healthcare13212798

