Advancing Pediatric Cognitive Health: Psychometric Evaluation and IRT- and Regression-Based Norms for Two Neuropsychological Measures in Colombian Children and Adolescents
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.2.1. Rey-Osterrieth Complex Figure (ROCF)
2.2.2. Shortened Version of the Token Test (SVTT)
2.3. Procedure
2.4. Statistical Analysis
2.4.1. Psychometric Properties
2.4.2. The Effects of Age, Gender, and MPE on the θ-Scores
2.4.3. Normative Data Procedure
3. Results
3.1. Psychometric Properties
3.2. Demographic Variables’ Effect on Neuropsychological Performance
3.3. Normative Data Application
4. Discussion
4.1. Psychometric Properties
4.2. Demographic Variables and Normative Data
4.3. Limitations, Strengths, and Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitrushina, M.; Boone, K.B.; Razani, J.; D’Elia, L.F. Handbook of Normative Data for Neuropsychological Assessment, 2nd ed.; Mitrushina, M.N., Ed.; Oxford University Press: New York, NY, USA, 2005; ISBN 978-0-19-516930-0. [Google Scholar]
- Casaletto, K.B.; Heaton, R.K. Neuropsychological Assessment: Past and Future. J. Int. Neuropsychol. Soc. 2017, 23, 778–790. [Google Scholar] [CrossRef]
- Rivera, D.; Arango-Lasprilla, J.C. Methodology for the Development of Normative Data for Spanish-Speaking Pediatric Populations. NeuroRehabilitation 2017, 41, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Iñesta, C.; Oltra-Cucarella, J.; Bonete-López, B.; Calderón-Rubio, E.; Sitges-Maciá, E. Regression-Based Normative Data for Independent and Cognitively Active Spanish Older Adults: Digit Span, Letters and Numbers, Trail Making Test and Symbol Digit Modalities Test. Int. J. Environ. Res. Public Health 2021, 18, 9958. [Google Scholar] [CrossRef]
- Kusi-Mensah, K.; Nuamah, N.D.; Wemakor, S.; Agorinya, J.; Seidu, R.; Martyn-Dickens, C.; Bateman, A. A Systematic Review of the Validity and Reliability of Assessment Tools for Executive Function and Adaptive Function Following Brain Pathology among Children and Adolescents in Low- and Middle-Income Countries. Neuropsychol. Rev. 2022, 32, 974–1016. [Google Scholar] [CrossRef] [PubMed]
- Rey, A. Test de Copia y de Reproducción de Memoria de Figuras Geométricas Complejas: Manual, 8th ed.; revisada y ampliada; TEA: Madrid, Spain, 2003; ISBN 978-84-7174-750-1. [Google Scholar]
- De Renzi, E.; Vignolo, L.A. The Token Test: A Sensitive Test to Detect Receptive Disturbances in Aphasics. Brain 1962, 85, 665–678. [Google Scholar] [CrossRef]
- Fierro Bósquez, M.J.; Fuentes Mendoza, E.M.; Olabarrieta-Landa, L.; Abiuso Lillo, T.; Orozco-Acosta, E.; Mascialino, G.; Arango-Lasprilla, J.C.; Rivera, D. Psychometric Properties and Normative Data Using Item Response Theory Approach for Three Neuropsychological Tests in Waranka Children Population. Healthcare 2025, 13, 423. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, L.; Min, G.; Wang, Q.; Zhao, Y.; Li, Y. Overview of the Complex Figure Test and Its Clinical Application in Neuropsychiatric Disorders, Including Copying and Recall. Front. Neurol. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- De Paula, J.J.; Bertola, L.; Ávila, R.T.; Moreira, L.; Coutinho, G.; De Moraes, E.N.; Bicalho, M.A.C.; Nicolato, R.; Diniz, B.S.; Malloy-Diniz, L.F. Clinical Applicability and Cutoff Values for an Unstructured Neuropsychological Assessment Protocol for Older Adults with Low Formal Education. PLoS ONE 2013, 8, e73167. [Google Scholar] [CrossRef]
- Julio-Ramos, T.; Mora-Castelletto, V.; Conejeros-Pavez, J.; Saez-Martínez, J.; Solinas-Ivys, P.; Donoso, P.; Soler-León, B.; Martínez-Ferreiro, S.; Quezada, C.; Méndez-Orellana, C. Validation of the Abbreviated Version of the Token Test in Latin American Spanish Stroke Patients. Int. J. Lang. Commun. Disord. 2024, 59, 2815–2827. [Google Scholar] [CrossRef]
- Panuccio, F.; Rossi, G.; Nuzzo, A.; Ruotolo, I.; Cianfriglia, G.; Simeon, R.; Sellitto, G.; Berardi, A.; Galeoto, G. Quality of Assessment Tools for Aphasia: A Systematic Review. Brain Sci. 2025, 15, 271. [Google Scholar] [CrossRef]
- De Renzi, E.; Faglioni, P. Normative Data and Screening Power of a Shortened Version of the Token Test. Cortex 1978, 14, 41–49. [Google Scholar] [CrossRef]
- Olabarrieta-Landa, L.; Rivera, D.; Rodríguez-Lorenzana, A.; Pohlenz Amador, S.; García-Guerrero, C.E.; Padilla-López, A.; Sánchez-SanSegundo, M.; Velázquez-Cardoso, J.; Díaz Marante, J.P.; Caparros-Gonzalez, R.A.; et al. Shortened Version of the Token Test: Normative data for Spanish-speaking pediatric population. NeuroRehabilitation 2017, 41, 649–659. [Google Scholar] [CrossRef]
- Ayanwale, M.A.; Chere-Masopha, J.; Morena, M.C. The Classical Test or Item Response Measurement Theory: The Status of the Framework at the Examination Council of Lesotho. Int. J. Learn. Teach. Educ. Res. 2022, 21, 384–406. [Google Scholar] [CrossRef]
- Reise, S.P.; Moore, T.M. Item Response Theory. In APA Handbook of Research Methods in Psychology: Foundations, Planning, Measures, and Psychometrics, 2nd ed.; American Psychological Association: Washington, DC, USA, 2023; Volume 1. [Google Scholar]
- Thomas, M.L. Advances in Applications of Item Response Theory to Clinical Assessment. Psychol. Assess. 2019, 31, 1442–1455. [Google Scholar] [CrossRef]
- Wang, M.; Reeve, B.B. Evaluations of the Sum-Score-Based and Item Response Theory-Based Tests of Group Mean Differences under Various Simulation Conditions. Stat. Methods Med. Res. 2021, 30, 2604–2618. [Google Scholar] [CrossRef] [PubMed]
- Sébille, V.; Hardouin, J.-B.; Le Néel, T.; Kubis, G.; Boyer, F.; Guillemin, F.; Falissard, B. Methodological Issues Regarding Power of Classical Test Theory (CTT) and Item Response Theory (IRT)-Based Approaches for the Comparison of Patient-Reported Outcomes in Two Groups of Patients—A Simulation Study. BMC Med. Res. Methodol. 2010, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Jabrayilov, R.; Emons, W.H.M.; Sijtsma, K. Comparison of Classical Test Theory and Item Response Theory in Individual Change Assessment. Appl. Psychol. Meas. 2016, 40, 559–572. [Google Scholar] [CrossRef]
- Li, D.; Liu, X.; Yu, J.; Zhang, Y.; Hu, N.; Lu, Y.; Sun, F.; Zhang, M.; Ma, X.; Wang, F. Item Response Theory for the Color-Picture Version of Boston Naming Test in a Chinese Sample with Neurodegenerative Diseases. J. Alzheimer’s Dis. 2025, 103, 775–784. [Google Scholar] [CrossRef]
- Martins, P.S.R.; Barbosa-Pereira, D.; Valgas-Costa, M.; Mansur-Alves, M. Item Analysis of the Child Neuropsychological Assessment Test (TENI): Classical Test Theory and Item Response Theory. Appl. Neuropsychol. Child 2022, 11, 339–349. [Google Scholar] [CrossRef]
- Kusi-Mensah, K.; Nuamah, N.D.; Wemakor, S.; Agorinya, J.; Seidu, R.; Martyn-Dickens, C.; Bateman, A. Assessment Tools for Executive Function and Adaptive Function Following Brain Pathology Among Children in Developing Country Contexts: A Scoping Review of Current Tools. Neuropsychol. Rev. 2022, 32, 459–482. [Google Scholar] [CrossRef]
- Van Noort-van Der Spek, I.L.; Stipdonk, L.W.; Goedegebure, A.; Dudink, J.; Willemsen, S.; Reiss, I.K.M.; Franken, M.-C.J.P. Are Multidisciplinary Neurodevelopmental Profiles of Children Born Very Preterm at Age 2 Relevant to Their Long-Term Development? A Preliminary Study. Child Neuropsychol. 2022, 28, 437–457. [Google Scholar] [CrossRef]
- Brown, L.; Sherbenou, R.J.; Johnsen, S.K. Toni 2 Test de Inteligencia no Verbal: Apreciación de la Habilidad Cognitiva Sin Influencia del Lenguaje: Manual, Tercera Edición; TEA Ediciones: Madrid, Spain, 2009; ISBN 978-84-7174-980-2. [Google Scholar]
- Kovacs, M. Children’s Depression Inventory (CDI) Manual; Multi-Health Systems: Toronto, ON, Canada, 1992. [Google Scholar]
- Bush, K. The AUDIT Alcohol Consumption Questions (AUDIT-C): An Effective Brief Screening Test for Problem Drinking. Arch. Intern. Med. 1998, 158, 1789. [Google Scholar] [CrossRef] [PubMed]
- Kline, R.B. Principles and Practice of Structural Equation Modeling. In Methodology in the Social Sciences, 3rd ed.; Guilford Press: New York, NY, USA, 2011; ISBN 978-1-60623-877-6. [Google Scholar]
- Schreiber, J.B.; Nora, A.; Stage, F.K.; Barlow, E.A.; King, J. Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review. J. Educ. Res. 2006, 99, 323–338. [Google Scholar] [CrossRef]
- Mair, P. Modern Psychometrics with R. In Use R! Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-93175-3. [Google Scholar]
- Sethar, W.A.; Pitafi, A.; Bhutto, A.; Nassani, A.A.; Haffar, M.; Kamran, S.M. Application of Item Response Theory (IRT)-Graded Response Model (GRM) to Entrepreneurial Ecosystem Scale. Sustainability 2022, 14, 5532. [Google Scholar] [CrossRef]
- Abad, F.J.; Olea, J.; Ponsoda, V. García Medición en Ciencias Sociales y de la Salud; Síntesis: Madrid, Spain, 2014; ISBN 978-84-9958-614-4. [Google Scholar]
- Choi, S.W.; Gibbons, L.E.; Crane, P.K. Lordif: An R Package for Detecting Differential Item Functioning Using Iterative Hybrid Ordinal Logistic Regression/Item Response Theory and Monte Carlo Simulations. J. Stat. Soft. 2011, 39, 1–30. [Google Scholar] [CrossRef]
- Arango-Lasprilla, J.C.; Rivera, D.; Ertl, M.M.; Muñoz Mancilla, J.M.; García-Guerrero, C.E.; Rodriguez-Irizarry, W.; Aguayo Arelis, A.; Rodríguez-Agudelo, Y.; Barrios Nevado, M.D.; Vélez-Coto, M.; et al. Rey–Osterrieth Complex Figure—Copy and Immediate Recall (3 Minutes): Normative Data for Spanish-Speaking Pediatric Populations. NeuroRehabilitation 2017, 41, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Van Der Elst, W.; Hurks, P.; Wassenberg, R.; Meijs, C.; Jolles, J. Animal Verbal Fluency and Design Fluency in School-Aged Children: Effects of Age, Sex, and Mean Level of Parental Education, and Regression-Based Normative Data. J. Clin. Exp. Neuropsychol. 2011, 33, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer Texts in Statistics; Springer New York: New York, NY, USA, 2013; Volume 103, ISBN 978-1-4614-7137-0. [Google Scholar]
- Cook, R.D. Detection of Influential Observation in Linear Regression. Technometrics 1977, 19, 15. [Google Scholar] [CrossRef]
- Rosseel, Y. Lavaan: An R Package for Structural Equation Modeling. J. Stat. Soft. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Chalmers, R.P. Mirt: A Multidimensional Item Response Theory Package for the R Environment. J. Stat. Soft. 2012, 48, 1–29. [Google Scholar] [CrossRef]
- Rizopoulos, D. Ltm: An R Package for Latent Variable Modeling and Item Response Theory Analyses. J. Stat. Soft. 2006, 17, 1–25. [Google Scholar] [CrossRef]
- Rivera, D.; Forte, A.; Olabarrieta-Landa, L.; Perrin, P.B.; Arango-Lasprilla, J.C. Methodology for the Generation of Normative Data for the U.S. Adult Spanish-Speaking Population: A Bayesian Approach. NeuroRehabilitation 2024, 55, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Quintana, M.; Salinas González, I.; Gallardo, G.; McNeil, M.R. An Item Response Theory Analysis of the Revised Token Test in Normally Developing Native Spanish Speaking Children. Anu. Psicol. UB J. Psychol. 2015, 45, 147–160. [Google Scholar]
- Willmes, K. A New Look at the Token Test Using Probabilistic Test Models. Neuropsychologia 1981, 19, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Prieto, G.; Delgado, A.R.; Perea, M.V.; Ladera, V. Scoring Neuropsychological Tests Using the Rasch Model: An Illustrative Example with the Rey-Osterrieth Complex Figure. Clin. Neuropsychol. 2010, 24, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hambleton, R.K. Practical Consequences of Item Response Theory Model Misfit in the Context of Test Equating with Mixed-Format Test Data. Front. Psychol. 2017, 8, 484. [Google Scholar] [CrossRef]
- Scott, N.W.; Fayers, P.M.; Aaronson, N.K.; Bottomley, A.; De Graeff, A.; Groenvold, M.; Gundy, C.; Koller, M.; Petersen, M.A.; Sprangers, M.A. Differential Item Functioning (DIF) Analyses of Health-Related Quality of Life Instruments Using Logistic Regression. Health Qual Life Outcomes 2010, 8, 81. [Google Scholar] [CrossRef]
- Sultana, N.; Purdy, S.C. Supporting Children’s Communication Development through Parental Education. In Education and Human Development; Cristina Richaud, M., Vargas Rubilar, J., Noemí Lemos, V., Eds.; IntechOpen: London, UK, 2024; Volume 32, ISBN 978-1-83769-425-9. [Google Scholar]
- Zappullo, I.; Senese, V.P.; Trojano, L.; Cecere, R.; Conson, M. Specific and Shared Cognitive Predictors of Drawing and Block Building in Typically Developing Children. Front. Hum. Neurosci. 2024, 18, 1436362. [Google Scholar] [CrossRef]
- Li, Y.; Geary, D.C. Children’s Visuospatial Memory Predicts Mathematics Achievement through Early Adolescence. PLoS ONE 2017, 12, e0172046. [Google Scholar] [CrossRef]
- Ross, C.E.; Mirowsky, J. The interaction of personal and parental education on health. Soc. Sci. Med. 2011, 72, 591–599. [Google Scholar] [CrossRef]
- Tamayo Martinez, N.; Xerxa, Y.; Law, J.; Serdarevic, F.; Jansen, P.W.; Tiemeier, H. Double Advantage of Parental Education for Child Educational Achievement: The Role of Parenting and Child Intelligence. Eur. J. Public Health 2022, 32, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Merz, E.C.; Landry, S.H.; Williams, J.M.; Barnes, M.A.; Eisenberg, N.; Spinrad, T.L.; Valiente, C.; Assel, M.; Taylor, H.B.; Lonigan, C.J.; et al. Associations among Parental Education, Home Environment Quality, Effortful Control, and Preacademic Knowledge. J. Appl. Dev. Psychol. 2014, 35, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Rakesh, D.; Lee, P.A.; Gaikwad, A.; McLaughlin, K.A. Annual Research Review: Associations of Socioeconomic Status with Cognitive Function, Language Ability, and Academic Achievement in Youth: A Systematic Review of Mechanisms and Protective Factors. J. Child Psychol. Psychiatry 2025, 66, 417–439. [Google Scholar] [CrossRef] [PubMed]
- Borchers, J.; da Cunha, M.S. School Performance and Inequality of Opportunities in Latin America. Stud. Educ. Eval. 2025, 86, 101497. [Google Scholar] [CrossRef]
- Van Der Elst, W.; Reed, H.; Jolles, J. The Logical Grammatical Structures Test: Psychometric Properties and Normative Data in Dutch-Speaking Children and Adolescents. Clin. Neuropsychol. 2013, 27, 396–409. [Google Scholar] [CrossRef]
- Little, M.A.; Varoquaux, G.; Saeb, S.; Lonini, L.; Jayaraman, A.; Mohr, D.C.; Kording, K.P. Using and Understanding Cross-Validation Strategies. Perspectives on Saeb et Al. GigaScience 2017, 6, gix020. [Google Scholar] [CrossRef]
- Embretson, S.E.; Reise, S.P. Item Response Theory; Psychology Press: London, UK, 2013; ISBN 978-1-4106-0526-9. [Google Scholar]
Items | ROCF-Copy | ROCF-Immediate Recall | ||||||
---|---|---|---|---|---|---|---|---|
Boundary 1 | Boundary 2 | Boundary 3 | a | Boundary 1 | Boundary 2 | Boundary 3 | a | |
Item 1 | −2.506 | −1.542 | 2.292 | 1.824 | −1.89 | 1.059 | 6.951 | 0.934 |
Item 2 | −2.428 | −1.186 | 2.262 | 2.547 | −1.759 | −0.395 | 6.382 | 1.717 |
Item 3 | −1.994 | −1.2 | 1.431 | 3.958 | −0.416 | 0.434 | 4.11 | 1.853 |
Item 4 | −2.25 | −1.389 | 1.583 | 3.125 | −1.023 | −0.443 | 5.823 | 1.833 |
Item 5 | −2.666 | −1.605 | 2.155 | 2.241 | −0.953 | −0.378 | 5.592 | 1.661 |
Item 6 | −2.746 | −1.121 | 2.496 | 2.125 | −0.531 | 1.128 | 4.842 | 1.381 |
Item 7 | −1.789 | −1.412 | 1.869 | 2.146 | 0.637 | 0.951 | 4.397 | 1.621 |
Item 8 | −2.355 | −0.972 | 1.91 | 2.832 | −0.451 | 0.781 | 4.033 | 1.833 |
Item 9 | −2.355 | −1.424 | 1.791 | 2.726 | −0.033 | 1.051 | 6.667 | 0.965 |
Item 10 | −2.44 | −1.595 | 2.096 | 2.002 | 2.139 | 2.804 | 6.293 | 0.887 |
Item 11 | −2.868 | −1.579 | 2.032 | 1.913 | −1.4 | 0.15 | 4.976 | 1.413 |
Item 12 | −2.356 | −1.415 | 1.773 | 2.705 | 0.385 | 1.292 | 6.168 | 1.038 |
Item 13 | −2.882 | −1.543 | 2.855 | 1.837 | −1.898 | −0.633 | 10.005 | 1.214 |
Item 14 | −2.917 | −1.434 | 2.552 | 1.592 | −1.514 | 0.342 | 8.378 | 0.777 |
Item 15 | −2.744 | −1.595 | 2.723 | 1.516 | 0.124 | 0.991 | 8.911 | 0.708 |
Item 16 | −3.064 | −2.059 | 7.59 | 1.293 | −0.734 | −0.249 | 8.532 | 0.852 |
Item 17 | −2.455 | −1.323 | 1.937 | 2.6 | −1.456 | 1.252 | 5.609 | 1.145 |
Item 18 | −3.009 | −1.387 | 2.604 | 1.587 | −1.282 | 1.785 | 7.766 | 0.779 |
Boys | Girls | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Subtest | Item | ΔR2 | C1 | C2 | C3 | C4 | C1 | C2 | C3 | C4 |
ROCF copy | 6 | 0.012 | 2.16 | −2.28 | −1.59 | −0.09 | 1.52 | −3.28 | −2.59 | −0.28 |
ROCF Immediate Recall | 2 | 0.002 | 1.64 | −2.18 | −1.53 | −0.15 | 2.61 | −1.52 | −0.94 | −0.03 |
4 | 0.011 | 2.3 | −1.04 | −0.69 | −0.26 | 2.33 | −0.81 | −0.58 | 0.02 | |
Subtest | Item | ΔR2 | b | a | b | a | ||||
SVTT | 2 | 0.002 | 14.08 | −2.55 | 1.03 | −6.06 | ||||
4 | <0.001 | 14.08 | −2.55 | 0.2 | −29.12 | |||||
8 | 0.046 | 0.92 | −4.12 | 4 | −2.38 | |||||
15 | 0.042 | 2.02 | −1.61 | 1.44 | −2.25 | |||||
16 | 0.007 | 1.01 | −1.8 | 1.91 | −0.99 |
a | b | a | b | ||
---|---|---|---|---|---|
Item 1 | 2.130 | −3.081 | Item 19 | 1.656 | −1.918 |
Item 2 | 3.027 | −3.094 | Item 20 | 1.419 | −1.286 |
Item 3 | 1.094 | −4.799 | Item 21 | 1.375 | −1.782 |
Item 4 | 2.405 | −3.41 | Item 22 | 1.435 | −2.303 |
Item 5 | 14.644 | −2.715 | Item 23 | 1.455 | −2.005 |
Item 6 | 14.644 | −2.715 | Item 24 | 1.134 | −2.585 |
Item 7 | 14.644 | −2.715 | Item 25 | 0.575 | 0.131 |
Item 8 | 1.778 | −3.404 | Item 26 | 0.829 | −2.049 |
Item 9 | 3.435 | −3.196 | Item 27 | 1.43 | −1.39 |
Item 10 | 1.297 | −3.361 | Item 28 | 0.917 | −2.242 |
Item 11 | 1.952 | −3.326 | Item 29 | 0.911 | −1.503 |
Item 12 | 1.296 | −3.468 | Item 30 | 1.288 | −1.655 |
Item 13 | 1.266 | −3.584 | Item 31 | 0.765 | −2.764 |
Item 14 | 1.405 | −3.39 | Item 32 | 1.288 | −1.193 |
Item 15 | 1.996 | −2.566 | Item 33 | 0.918 | −3.312 |
Item 16 | 1.039 | −2.864 | Item 34 | 0.662 | −3.207 |
Item 17 | 1.388 | −2.033 | Item 35 | 0.833 | −3.143 |
Item 18 | 1.823 | −2.423 | Item 36 | 1.144 | −0.330 |
Score | Predictor | B | Std. Error | t | Sig. | Adjusted R2 | |
---|---|---|---|---|---|---|---|
ROCF-copy | Intercept | −1.153 | 0.104 | −11.128 | <2 × 10−16 | 0.4861 | 0.586 |
Age | 10.398 | 0.586 | 17.736 | <2 × 10−16 | |||
Age2 | −2.912 | 0.587 | −4.964 | 1.07 × 10−6 | |||
MPE | 0.019 | 0.008 | 2.361 | 0.018 | |||
ROCF-immediate recall | Intercept | −4.640 | 1.023 | −4.538 | 7.77 × 10−6 | 0.414 | 0.790 |
ln(Age) | 1.742 | 0.425 | 4.093 | 5.25 × 10−5 | |||
MPE | −0.040 | 0.080 | −0.494 | 0.622 | |||
ln(Age) × MPE | 0.025 | 0.033 | 0.759 | 0.448 | |||
SVTT | Intercept | −3.870 | 0.258 | −15.004 | <2 × 10−16 | 0.2971 | 0.702 |
ln(Age) | 1.352 | 0.098 | 13.826 | <2 × 10−16 | |||
MPE | 0.053 | 0.008 | 6.467 | 2.26 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes Mendoza, E.M.; Olabarrieta-Landa, L.; Sancho-Domingo, C.; Teijido, O.; Arango-Lasprilla, J.C.; Rivera, D. Advancing Pediatric Cognitive Health: Psychometric Evaluation and IRT- and Regression-Based Norms for Two Neuropsychological Measures in Colombian Children and Adolescents. Healthcare 2025, 13, 2683. https://doi.org/10.3390/healthcare13212683
Fuentes Mendoza EM, Olabarrieta-Landa L, Sancho-Domingo C, Teijido O, Arango-Lasprilla JC, Rivera D. Advancing Pediatric Cognitive Health: Psychometric Evaluation and IRT- and Regression-Based Norms for Two Neuropsychological Measures in Colombian Children and Adolescents. Healthcare. 2025; 13(21):2683. https://doi.org/10.3390/healthcare13212683
Chicago/Turabian StyleFuentes Mendoza, Eliana María, Laiene Olabarrieta-Landa, Clara Sancho-Domingo, Oscar Teijido, Juan Carlos Arango-Lasprilla, and Diego Rivera. 2025. "Advancing Pediatric Cognitive Health: Psychometric Evaluation and IRT- and Regression-Based Norms for Two Neuropsychological Measures in Colombian Children and Adolescents" Healthcare 13, no. 21: 2683. https://doi.org/10.3390/healthcare13212683
APA StyleFuentes Mendoza, E. M., Olabarrieta-Landa, L., Sancho-Domingo, C., Teijido, O., Arango-Lasprilla, J. C., & Rivera, D. (2025). Advancing Pediatric Cognitive Health: Psychometric Evaluation and IRT- and Regression-Based Norms for Two Neuropsychological Measures in Colombian Children and Adolescents. Healthcare, 13(21), 2683. https://doi.org/10.3390/healthcare13212683