Complementary Therapies of Diabetic Peripheral Neuropathy and Intermittent Claudication
Abstract
1. Introduction
2. Case Presentation
2.1. History
2.2. Examination
2.3. Intervention
2.4. Outcome and Follow-Up
3. Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Ji, Q.; Ran, X.; Li, C.; Kuang, H.; Yu, X.; Fang, H.; Yang, J.; Liu, J.; Xue, Y.; et al. Prevalence and risk factors of diabetic peripheral neuropathy: A population-based cross-sectional study in China. Diabetes/Metab. Res. Rev. 2023, 39, e3702. [Google Scholar] [CrossRef]
- Malik, R.A. Pathology of human diabetic neuropathy. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 126, pp. 249–259. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Boulton, A.J.M.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Ang, L.; Cowdin, N.; Mizokami-Stout, K.; Pop-Busui, R. Update on the management of diabetic neuropathy. Diabetes Spectr. 2018, 31, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.J.; Handsaker, J.C.; Bowling, F.L.; Boulton, A.J.; Reeves, N.D. Diabetic peripheral neuropathy compromises balance during daily activities. Diabetes Care 2015, 38, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Alam, U.; Sloan, G.; Tesfaye, S. Treating pain in diabetic neuropathy: Current and developmental drugs. Drugs 2020, 80, 363–384. [Google Scholar] [CrossRef]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 41. [Google Scholar] [CrossRef]
- Callaghan, B.C.; Little, A.A.; Feldman, E.L.; Hughes, R.A. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst. Rev. 2012, 6, CD007543. [Google Scholar] [CrossRef]
- Nukada, H. Ischemia and diabetic neuropathy. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 126, pp. 469–487. [Google Scholar] [CrossRef]
- Chandrasekaran, K.; Anjaneyulu, M.; Choi, J.; Kumar, P.; Salimian, M.; Ho, C.Y.; Russell, J.W. Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD+-dependent SIRT1-PGC-1α-TFAM pathway. Int. Rev. Neurobiol. 2019, 145, 177–209. [Google Scholar] [CrossRef]
- Lin, Q.; Li, K.; Chen, Y.; Xie, J.; Wu, C.; Cui, C.; Deng, B. Oxidative stress in diabetic peripheral neuropathy: Pathway and mechanism-based treatment. Mol. Neurobiol. 2023, 60, 4574–4594. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, Y.; Li, K.; Liu, S.; Pang, C.; Gao, L.; Xie, J.; Lv, W.; Yu, H.; Deng, B. How inflammation dictates diabetic peripheral neuropathy: An enlightening review. CNS Neurosci. Ther. 2024, 30, e14477. [Google Scholar] [CrossRef]
- Ng, S.Y. Case Report—Enhanced External Counterpulsation in the Management of Diabetic Peripheral Neuropathy. EC Orthop. 2025, 16, 1–5. [Google Scholar]
- Ellul, C.; Gatt, A. Transcutaneous calf-muscle electrostimulation: A prospective treatment for diabetic claudicants? Diabetes Vasc. Dis. Res. 2016, 13, 442–444. [Google Scholar] [CrossRef]
- Ban Frangež, H.; Rodi, Z.; Miklavčič, J.; Frangež, I. The effect of transcutaneous application of gaseous CO2 on diabetic symmetrical peripheral neuropathy—A double-blind randomized clinical trial. Appl. Sci. 2021, 11, 4911. [Google Scholar] [CrossRef]
- Xie, F.; Song, Y.; Yi, Y.; Jiang, X.; Ma, S.; Ma, C.; Li, J.; Zhanghuang, Z.; Liu, M.; Zhao, P.; et al. Therapeutic potential of molecular hydrogen in metabolic diseases from bench to bedside. Pharmaceuticals 2023, 16, 541. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, E.; Didangelos, T.; Kotzakioulafi, E.; Cegan, A.; Peter, A.; Kantartzis, K. Clinical pathobiochemistry of vitamin B12 deficiency: Improving our understanding by exploring novel mechanisms with a focus on diabetic neuropathy. Nutrients 2023, 15, 2597. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Tesfaye, S.; Spallone, V.; Gurieva, I.; Al Kaabi, J.; Mankovsky, B.; Martinka, E.; Radulian, G.; Nguyen, K.; Stirban, A.; et al. Screening, diagnosis, and management of diabetic sensorimotor polyneuropathy in clinical practice: International expert consensus recommendations. Diabetes Res. Clin. Pract. 2022, 186, 109063. [Google Scholar] [CrossRef]
- Bunner, A.E.; Wells, C.L.; Gonzales, J.; Agarwal, U.; Bayat, E.; Barnard, N.D. A dietary intervention for chronic diabetic neuropathy pain: A randomized controlled pilot study. Nutr. Diabetes 2015, 5, e158. [Google Scholar] [CrossRef]
- Crane, M.G.; Sample, C. Regression of diabetic neuropathy with total vegetarian (vegan) diet. J. Nutr. Med. 1994, 4, 431–439. [Google Scholar] [CrossRef]
- McCarty, M.F. Favorable impact of a vegan diet with exercise on hemorheology: Implications for control of diabetic neuropathy. Med. Hypotheses 2002, 58, 476–486. [Google Scholar] [CrossRef]
- Smith, A.G.; Russell, J.; Feldman, E.L.; Goldstein, J.; Peltier, A.; Smith, S.; Hamwi, J.; Pollari, D.; Bixby, B.; Howard, J.; et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 2006, 29, 1294–1299. [Google Scholar] [CrossRef]
- Kluding, P.M.; Pasnoor, M.; Singh, R.; Jernigan, S.; Farmer, K.; Rucker, J.; Sharma, N.K.; Wright, D.E. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J. Diabetes Its Complicat. 2012, 26, 424–429. [Google Scholar] [CrossRef]
- Braith, R.W.; Conti, C.R.; Nichols, W.W.; Choi, C.Y.; Khuddus, M.A.; Beck, D.T.; Casey, D.P. Enhanced external counterpulsation improves peripheral artery flow-mediated dilation in patients with chronic angina: A randomized sham-controlled study. Circulation 2010, 122, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Werner, D.; Michalk, F.; Hinz, B.; Werner, U.; Voigt, J.U.; Daniel, W.G. Impact of enhanced external counterpulsation on peripheral circulation. Angiology 2007, 58, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Zhong, C.; Wang, Y.; Wei, W.; Wu, G. Effect of enhanced external counterpulsation versus individual shear rate therapy on the peripheral artery functions. Sci. Rep. 2024, 14, 31197. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Wu, G.F.; Du, Z.M.; Zheng, Z.S.; Michaels, A.D. Effect of external counterpulsation on plasma nitric oxide and endothelin-1 levels. Am. J. Cardiol. 2006, 98, 28–30. [Google Scholar] [CrossRef]
- Thakkar, B.V.; Hirsch, A.T.; Satran, D.; Bart, B.A.; Barsness, G.; McCullough, P.A.; Kennard, E.D.; Kelsey, S.F.; Henry, T.D. The efficacy and safety of enhanced external counterpulsation in patients with peripheral arterial disease. Vasc. Med. 2010, 15, 15–20. [Google Scholar] [CrossRef]
- Yang, D.Y.; Wu, G.F. Vasculoprotective properties of enhanced external counterpulsation for coronary artery disease: Beyond the hemodynamics. Int. J. Cardiol. 2013, 166, 38–43. [Google Scholar] [CrossRef]
- Boudjenah, N. Advocacy for carbomedtherapy (carbon dioxide therapy) in the treatment of diabetic neuropathy. Int. J. Endocrinol. Metab. Disord. 2020, 6. [Google Scholar] [CrossRef]
- Dogaru, G.; Ciubean, A.D.; Marinescu, L.; Pop, B.M.; Pașca, G.S.; Ciumărnean, L. The effectiveness of balneotherapy on pain, walking, and function in patients with diabetic neuropathy: A prospective observational study. Int. J. Biometeorol. 2025, 69, 319–329. [Google Scholar] [CrossRef]
- Bulum, T.; Poljičanin, T.; Badanjak, A.; Držič, J.; Metelko, Ž. Effect of transcutaneous application of carbon dioxide on wound healing, wound recurrence rate and diabetic polyneuropathy in patients with neuropathic, ischemic and neuroischemic diabetes-related foot ulcers. Life 2025, 15, 618. [Google Scholar] [CrossRef]
- Irie, H.; Tatsumi, T.; Takamiya, M.; Zen, K.; Takahashi, T.; Azuma, A.; Tateishi, K.; Nomura, T.; Hayashi, H.; Nakajima, N.; et al. Carbon dioxide-rich water bathing enhances collateral blood flow in ischemic hindlimb via mobilization of endothelial progenitor cells and activation of NO-cGMP system. Circulation 2005, 111, 1523–1529. [Google Scholar] [CrossRef]
- Xu, Y.J.; Elimban, V.; Dhalla, N.S. Carbon dioxide water-bath treatment augments peripheral blood flow through the development of angiogenesis. Can. J. Physiol. Pharmacol. 2017, 95, 938–944. [Google Scholar] [CrossRef]
- Matsumoto, T.; Tanaka, M.; Ikeji, T.; Kondo, H.; Sonomura, T.; Sato, T. Application of transcutaneous carbon dioxide improves capillary regression of skeletal muscle in hyperglycemia. J. Physiol. Sci. 2019, 69, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Toriyama, T.; Kumada, Y.; Matsubara, T.; Murata, A.; Ogino, A.; Hayashi, H.; Nakashima, H.; Takahashi, H.; Matsuo, H.; Kawahara, H. Effect of artificial carbon dioxide foot bathing on critical limb ischemia (Fontaine IV) in peripheral arterial disease patients. Int. Angiol. 2002, 21, 367–373. [Google Scholar] [PubMed]
- Alkhawaja, S. Carbal therapy for treatment of diabetic foot (CO2 water bath). Kufa Med. J. 2012, 15, 211–212. [Google Scholar]
- Macura, M.; Ban Frangez, H.; Cankar, K.; Finžgar, M.; Frangez, I. The effect of transcutaneous application of gaseous CO2 on diabetic chronic wound healing—A double-blind randomized clinical trial. Int. Wound J. 2020, 17, 1607–1614. [Google Scholar] [CrossRef]
- Han, X.C.; Ye, Z.H.; Hu, H.J.; Sun, Q.; Fan, D.F. Hydrogen exerts neuroprotective effects by inhibiting oxidative stress in experimental diabetic peripheral neuropathy rats. Med. Gas Res. 2023, 13, 72–77. [Google Scholar] [CrossRef]
- Wang, Q.J.; Zha, X.J.; Kang, Z.M.; Liu, G.W.; Kang, Y.; Wang, K. Therapeutic effects of hydrogen saturated saline on rat diabetic model and insulin resistant model via reduction of oxidative stress. Chin. Med. J. 2012, 125, 1633–1637. [Google Scholar]
- Jiao, Y.; Yu, Y.; Li, B.; Li, J.; Guo, Y.; Ma, J.; Li, Y.; Xue, X. Protective effects of hydrogen-rich saline against experimental diabetic peripheral neuropathy via activation of the mitochondrial ATP-sensitive potassium channel channels in rats. Mol. Med. Rep. 2020, 21, 282–290. [Google Scholar] [CrossRef]
- Zhao, Z.; Ji, H.; Zhao, Y.; Liu, Z.; Sun, R.; Li, Y.; Ni, T. Effectiveness and safety of hydrogen inhalation as an adjunct treatment in Chinese type 2 diabetes patients: A retrospective, observational, double-arm, real-life clinical study. Front. Endocrinol. 2023, 13, 1114221. [Google Scholar] [CrossRef]
- Nguyen, N.; Takemoto, J.K. A case for alpha-lipoic acid as an alternative treatment for diabetic polyneuropathy. J. Pharm. Pharm. Sci. 2018, 21, 177s–191s. [Google Scholar] [CrossRef]
- Che Abdullah, C.N.A.; Mohamad, N.; Draman, N.; Mat Yudin, Z.; Ahmad, W.M.A.W.; Mohd Rosli, R.R.; Chuan, C.Y. The efficacy of alpha-lipoic acid and B vitamins in the management of diabetic patients with symptomatic distal symmetric polyneuropathy: A randomized controlled trial. medRxiv 2025. [Google Scholar] [CrossRef]
- Sulaiman, W.; Gordon, T. Neurobiology of peripheral nerve injury, regeneration, and functional recovery: From bench top research to bedside application. Ochsner J. 2013, 13, 100–108. [Google Scholar]


| Sex/Age | M/81 | |
| Years of T2DM | 26 | |
| Medications | Antihypertensives | Amlodipine, atenolol, doxazosin gits, losartan |
| Statins | Atorvastatin | |
| Anti-glycemic | Gliclazide, empagliflozin, linagliptin, insulin injection | |
| Pain Killers | NA | |
| Other Medications | Famotidine, mecobalamin | |
| Complaint | Unsteady gait; unable to walk for more than 16 m | |
| Complementary Intervention | ECP | First 35 therapies (5/weekly, for 7 wks) |
| Thereafter, twice a week | ||
| Veinoplus arterial | 1–2 h/day | |
| CO2-enriched water (pH7.21) footbath | 1/day; 20 min each time | |
| Hydrogen gas inhalation | 3–4 h/day (commenced after the first 35 ECP tx) | |
| Nutraceuticals | Prescribed by medical physicians | CoQ10, vitamin C, vitamin B complex |
| Self-prescription | NA | |
| Our advice | PEA (100 mg bid), lipoic acid (300 mg qd), vitamin K2 and D3 (K2:100 mcg, D3:10 mcg bid), nattokinase (2000 FU tid) | |
| Lifestyle | Quit Smoking | From 20 to 4 cigarettes/day |
| Low-fat WFPBD | Inconsistent (after 35 ECP tx); cannot tolerate legumes. | |
| Exercises | Walk 300–400 m/daily at present. | |
| Outcome after Intervention | Nocturnal paresthesia and pain | From 8/10 to 2/10 |
| Sleep Quality | No more insomnia. | |
| Gait | More steady; markedly improved. | |
| Walking distance | Increased from 16 m to 300–400 m | |
| Withings Nerve Score | Improved from 44 to 58 microSiemens (μS). | |
| ABI | R: 1.28 to 1.4; L: 1.25 to 1.38 | |
| TBI | R: 0.15 to 0.36; L: 0.58 to 0.31 | |
| Sudomotor Reflex Response (mv) | R: 550 to 525; L: 550 to 448 | |
| eGFR (mL/min/1.73 m2) | From 37 to 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, S.Y. Complementary Therapies of Diabetic Peripheral Neuropathy and Intermittent Claudication. Healthcare 2025, 13, 2676. https://doi.org/10.3390/healthcare13212676
Ng SY. Complementary Therapies of Diabetic Peripheral Neuropathy and Intermittent Claudication. Healthcare. 2025; 13(21):2676. https://doi.org/10.3390/healthcare13212676
Chicago/Turabian StyleNg, Shu Yan. 2025. "Complementary Therapies of Diabetic Peripheral Neuropathy and Intermittent Claudication" Healthcare 13, no. 21: 2676. https://doi.org/10.3390/healthcare13212676
APA StyleNg, S. Y. (2025). Complementary Therapies of Diabetic Peripheral Neuropathy and Intermittent Claudication. Healthcare, 13(21), 2676. https://doi.org/10.3390/healthcare13212676
