The Relationship Between Diet and the Neuropathological Hallmarks of Alzheimer’s Disease in Cognitively Normal Adults: A Systematic Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Search Strategy
2.3. Inclusion/Exclusion Criteria
2.4. Study Selection and Data Extraction and Synthesis
3. Results
3.1. Cross-Sectional
3.2. Cohort
3.3. Intervention
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
APOE | Apolipoprotein E |
ε4 | Epsilon 4 |
ACh | Acetylcholine |
AChE | Acetylcholinesterase |
APP | Amyloid Precursor Protein |
ROS | Reactive Oxygen Species |
NIA-AA | National Institute on Aging and Alzheimer’s Association |
CSF | Cerebrospinal Fluid |
PET | Positron Emission Tomography |
MRI | Magnetic Resonance Imaging |
NfL | Neurofilament Light Chain |
GFAP | Glial Fibrillary Acidic Protein |
DASH | Dietary Approaches to Stop Hypertension |
MIND | Mediterranean-DASH Intervention for Neurodegenerative Delay |
SQ-FFQ | Semi-Quantitative Food Frequency Questionnaire |
SFA | Saturated Fatty Acid |
MUFA | Monounsaturated Fatty Acid |
EPA | Eicosapentaenoic Acid |
ROI | Region of Interest |
PUFA | Polyunsaturated Fatty Acid |
DF | Dietary Fiber |
BMI | Body Mass Index |
F/U | Follow-Up |
MCI | Mild Cognitive Impairment |
References
- Huang, J.; Levin, M.C. Alzheimer Disease. 2025. Available online: https://www.merckmanuals.com/professional/neurologic-disorders/delirium-and-dementia/alzheimer-disease (accessed on 26 June 2025).
- Kumar, A.; Sidhu, J.; Lui, F.; Tsao, J.W. Alzheimer Disease [Updated 12 February 2024]. In StatPearls [Internet]; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499922/ (accessed on 27 August 2025).
- World Health Organization. Dementia. 2025. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 26 June 2025).
- Hsu, D.; Marshall, G.A. Primary and Secondary Prevention Trials in Alzheimer Disease: Looking Back, Moving Forward. Curr. Alzheimer Res. 2017, 14, 426–440. [Google Scholar] [CrossRef]
- Godos, J.; Micek, A.; Currenti, W.; Franchi, C.; Poli, A.; Battino, M.; Dolci, A.; Ricci, C.; Ungvari, Z.; Grosso, G. Fish consumption, cognitive impairment and dementia: An updated dose-response meta-analysis of observational studies. Aging Clin. Exp. Res. 2024, 36, 171. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Ding, Y.; Wu, F.; Li, R.; Hou, J.; Mao, P. Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: A meta-analysis. Neurosci. Biobehav. Rev. 2015, 48, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Talebi, S.; Asoudeh, F.; Naeini, F.; Sadeghi, E.; Travica, N.; Mohammadi, H. Association between animal protein sources and risk of neurodegenerative diseases: A systematic review and dose-response meta-analysis. Nutr. Rev. 2023, 81, 1131–1143. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, J.; Sun, Y.; Wang, Z. Association of antioxidants intake in diet and supplements with risk of Alzheimer’s disease: A systematic review and dose-response meta-analysis of prospective cohort studies. Aging Clin. Exp. Res. 2025, 37, 166. [Google Scholar] [CrossRef]
- Zhao, R.; Han, X.; Jiang, S.; Zhao, W.; Liu, J.; Zhang, H.; Mao, X.; Zhang, M.; Lei, L.; You, H. Association of Dietary and Supplement Intake of Antioxidants with Risk of Dementia: A Meta-Analysis of Cohort Studies. J. Alzheimers Dis. 2024, 99, S35–S50. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, X.; Cheng, L.; Cheng, X.; He, J.; Xia, S. Dietary Patterns and Risk of Dementia in Elderly Individuals: A Systematic Review and Meta-analysis of Cohort Studies. Nutr. Rev. 2025. [Google Scholar] [CrossRef]
- Baker, L.D.; Espeland, M.A.; Whitmer, R.A.; Snyder, H.M.; Leng, X.; Lovato, L.; Papp, K.V.; Yu, M.; Kivipelto, M.; Alexander, A.S.; et al. Structured vs Self-Guided Multidomain Lifestyle Interventions for Global Cognitive Function: The US POINTER Randomized Clinical Trial. JAMA 2025, 334, 681–691. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- Barnes, L.L.; Dhana, K.; Liu, X.; Carey, V.J.; Ventrelle, J.; Johnson, K.; Hollings, C.S.; Bishop, L.; Laranjo, N.; Stubbs, B.J.; et al. Trial of the MIND Diet for Prevention of Cognitive Decline in Older Persons. N. Engl. J. Med. 2023, 389, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Perl, D.P. Neuropathology of Alzheimer’s disease. Mt. Sinai J. Med. 2010, 77, 32–42. [Google Scholar] [CrossRef]
- Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomed. 2019, 14, 5541–5554. [Google Scholar] [CrossRef]
- Wattamwar, P.R.; Mathuranath, P.S. An overview of biomarkers in Alzheimer’s disease. Ann. Indian. Acad. Neurol. 2010, 13, S116–S123. [Google Scholar] [CrossRef]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011, 1, a006189. [Google Scholar] [CrossRef]
- Purves, D.; Augustine, G.; Fitzpatrick, D.; Katz, L.; LaMantia, A.; McNamara, J.; Williams, S. Types of Eye Movements and Their Functions. In Neuroscience, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2001; Volume 3. [Google Scholar]
- Kumar, A.; Sidhu, J.; Lui, F.; Tsao, J.W.; Doerr, C. Alzheimer Disease (Nursing) [Updated 12 February 2024]. In StatPearls [Internet]; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK568805/ (accessed on 27 August 2025).
- Liu, P.P.; Xie, Y.; Meng, X.Y.; Kang, J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther. 2019, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef]
- Ju, Y.; Tam, K.Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res. 2022, 17, 543–549. [Google Scholar] [CrossRef]
- Armstrong, R.A. The pathogenesis of Alzheimer’s disease: A reevaluation of the “amyloid cascade hypothesis”. Int. J. Alzheimers Dis. 2011, 2011, 630865. [Google Scholar] [CrossRef] [PubMed]
- Gouveia Roque, C.; Chung, K.M.; McCurdy, E.P.; Jagannathan, R.; Randolph, L.K.; Herline-Killian, K.; Baleriola, J.; Hengst, U. CREB3L2-ATF4 heterodimerization defines a transcriptional hub of Alzheimer’s disease gene expression linked to neuropathology. Sci. Adv. 2023, 9, eadd2671. [Google Scholar] [CrossRef]
- Swerdlow, R.H.; Khan, S.M. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses 2004, 63, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol. Neurodegener. 2020, 15, 30. [Google Scholar] [CrossRef]
- Swerdlow, R.H.; Burns, J.M.; Khan, S.M. The Alzheimer’s disease mitochondrial cascade hypothesis. J. Alzheimers Dis. 2010, 20 (Suppl. 2), S265–S279. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Andrews, S.J.; Beach, T.G.; Buracchio, T.; Dunn, B.; Graf, A.; Hansson, O.; Ho, C.; Jagust, W.; McDade, E.; et al. Revised criteria for the diagnosis and staging of Alzheimer’s disease. Nat. Med. 2024, 30, 2121–2124. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.; Goodwill, A.M.; Gorelik, A.; Szoeke, C. Diet and biomarkers of Alzheimer’s disease: A systematic review and meta-analysis. Neurobiol. Aging 2019, 76, 45–52. [Google Scholar] [CrossRef]
- Drouka, A.; Mamalaki, E.; Karavasilis, E.; Scarmeas, N.; Yannakoulia, M. Dietary and Nutrient Patterns and Brain MRI Biomarkers in Dementia-Free Adults. Nutrients 2022, 14, 2345. [Google Scholar] [CrossRef]
- Gregory, S.; Pullen, H.; Ritchie, C.W.; Shannon, O.M.; Stevenson, E.J.; Muniz-Terrera, G. Mediterranean diet and structural neuroimaging biomarkers of Alzheimer’s and cerebrovascular disease: A systematic review. Exp. Gerontol. 2023, 172, 112065. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Mosconi, L.; Murray, J.; Davies, M.; Williams, S.; Pirraglia, E.; Spector, N.; Tsui, W.H.; Li, Y.; Butler, T.; Osorio, R.S.; et al. Nutrient intake and brain biomarkers of Alzheimer’s disease in at-risk cognitively normal individuals: A cross-sectional neuroimaging pilot study. BMJ Open 2014, 4, e004850. [Google Scholar] [CrossRef]
- Berti, V.; Murray, J.; Davies, M.; Spector, N.; Tsui, W.H.; Li, Y.; Williams, S.; Pirraglia, E.; Vallabhajosula, S.; McHugh, P.; et al. Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals. J. Nutr. Health Aging 2015, 19, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Fernando, W.; Rainey-Smith, S.R.; Gardener, S.L.; Villemagne, V.L.; Burnham, S.C.; Macaulay, S.L.; Brown, B.M.; Gupta, V.B.; Sohrabi, H.R.; Weinborn, M.; et al. Associations of Dietary Protein and Fiber Intake with Brain and Blood Amyloid-β. J. Alzheimers Dis. 2018, 61, 1589–1598. [Google Scholar] [CrossRef]
- Vassilaki, M.; Aakre, J.A.; Syrjanen, J.A.; Mielke, M.M.; Geda, Y.E.; Kremers, W.K.; Machulda, M.M.; Alhurani, R.E.; Staubo, S.C.; Knopman, D.S.; et al. Mediterranean Diet, Its Components, and Amyloid Imaging Biomarkers. J. Alzheimers Dis. 2018, 64, 281–290. [Google Scholar] [CrossRef]
- Ma, Y.H.; Wu, J.H.; Xu, W.; Shen, X.N.; Wang, H.F.; Hou, X.H.; Cao, X.P.; Bi, Y.L.; Dong, Q.; Feng, L.; et al. Associations of Green Tea Consumption and Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J. Alzheimers Dis. 2020, 77, 411–421. [Google Scholar] [CrossRef]
- Samuelsson, J.; Kern, S.; Zetterberg, H.; Blennow, K.; Rothenberg, E.; Wallengren, O.; Skoog, I.; Zettergren, A. A Western-style dietary pattern is associated with cerebrospinal fluid biomarker levels for preclinical Alzheimer’s disease-A population-based cross-sectional study among 70-year-olds. Alzheimers Dement. 2021, 7, e12183. [Google Scholar] [CrossRef]
- Tian, D.Y.; Wang, J.; Sun, B.L.; Wang, Z.; Xu, W.; Chen, Y.; Shen, Y.Y.; Li, H.Y.; Chen, D.W.; Zhou, F.Y.; et al. Spicy food consumption is associated with cognition and cerebrospinal fluid biomarkers of Alzheimer disease. Chin. Med. J. 2020, 134, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Huang, C.; Xie, F.; Guo, Q. The associations between fresh vegetable and fruit consumption and plasma and PET biomarkers in preclinical Alzheimer’s disease: A cross-sectional and longitudinal study of Chinese population. J. Prev. Alzheimers Dis. 2025, 12, 100076. [Google Scholar] [CrossRef] [PubMed]
- Mrhar, A.; Carballo-Casla, A.; Grande, G.; Valletta, M.; Fredolini, C.; Fratiglioni, L.; Gregorič Kramberger, M.; Kuhar, A.; Winblad, B.; Calderón-Larrañaga, A.; et al. Dietary patterns and blood-based biomarkers of Alzheimer’s disease in cognitively intact older adults: Findings from a population-based study. J. Prev. Alzheimers Dis. 2025, 12, 100124. [Google Scholar] [CrossRef]
- Berti, V.; Walters, M.; Sterling, J.; Quinn, C.G.; Logue, M.; Andrews, R.; Matthews, D.C.; Osorio, R.S.; Pupi, A.; Vallabhajosula, S.; et al. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology 2018, 90, e1789–e1798. [Google Scholar] [CrossRef]
- Rainey-Smith, S.R.; Gu, Y.; Gardener, S.L.; Doecke, J.D.; Villemagne, V.L.; Brown, B.M.; Taddei, K.; Laws, S.M.; Sohrabi, H.R.; Weinborn, M.; et al. Mediterranean diet adherence and rate of cerebral Aβ-amyloid accumulation: Data from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Transl. Psychiatry 2018, 8, 238. [Google Scholar] [CrossRef]
- Hoost, S.S.; Honig, L.S.; Kang, M.S.; Bahl, A.; Lee, A.J.; Sanchez, D.; Reyes-Dumeyer, D.; Lantigua, R.A.; Dage, J.L.; Brickman, A.M.; et al. Association of dietary fatty acids with longitudinal change in plasma-based biomarkers of Alzheimer’s disease. J. Prev. Alzheimers Dis. 2025, 12, 100117. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, A.; Bondonno, N.P.; Murray, K.; Zhong, L.; Rainey-Smith, S.R.; Gardener, S.L.; Blekkenhorst, L.C.; Doré, V.; Villemagne, V.L.; Laws, S.M.; et al. Baseline habitual dietary nitrate intake and Alzheimer’s Disease related neuroimaging biomarkers in the Australian Imaging, Biomarkers and Lifestyle study of ageing. J. Prev. Alzheimers Dis. 2025, 12, 100161. [Google Scholar] [CrossRef]
- Hoscheidt, S.; Sanderlin, A.H.; Baker, L.D.; Jung, Y.; Lockhart, S.; Kellar, D.; Whitlow, C.T.; Hanson, A.J.; Friedman, S.; Register, T.; et al. Mediterranean and Western diet effects on Alzheimer’s disease biomarkers, cerebral perfusion, and cognition in mid-life: A randomized trial. Alzheimers Dement. 2022, 18, 457–468. [Google Scholar] [CrossRef]
- Liu, Y.H.; Gao, X.; Na, M.; Kris-Etherton, P.M.; Mitchell, D.C.; Jensen, G.L. Dietary Pattern, Diet Quality, and Dementia: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Alzheimers Dis. 2020, 78, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Li, F.J.; Shen, L.; Ji, H.F. Dietary intakes of vitamin E, vitamin C, and β-carotene and risk of Alzheimer’s disease: A meta-analysis. J. Alzheimers Dis. 2012, 31, 253–258. [Google Scholar] [CrossRef]
- Bakre, A.T.; Chen, R.; Khutan, R.; Wei, L.; Smith, T.; Qin, G.; Danat, I.M.; Zhou, W.; Schofield, P.; Clifford, A.; et al. Association between fish consumption and risk of dementia: A new study from China and a systematic literature review and meta-analysis. Public. Health Nutr. 2018, 21, 1921–1932. [Google Scholar] [CrossRef] [PubMed]
- Nucci, D.; Sommariva, A.; Degoni, L.M.; Gallo, G.; Mancarella, M.; Natarelli, F.; Savoia, A.; Catalini, A.; Ferranti, R.; Pregliasco, F.E.; et al. Association between Mediterranean diet and dementia and Alzheimer disease: A systematic review with meta-analysis. Aging Clin. Exp. Res. 2024, 36, 77. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Varga, P.; Ungvari, Z.; Fekete, J.T.; Buda, A.; Szappanos, Á.; Lehoczki, A.; Mózes, N.; Grosso, G.; Godos, J.; et al. The role of the Mediterranean diet in reducing the risk of cognitive impairement, dementia, and Alzheimer’s disease: A meta-analysis. Geroscience 2025, 47, 3111–3130. [Google Scholar] [CrossRef]
- Burt, K. The whiteness of the Mediterranean Diet: A historical, sociopolitical, and dietary analysis using Critical Race Theory. J. Crit. Diet. 2021, 5, 41–52. [Google Scholar] [CrossRef]
- Martínez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; San Julián, B.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M. Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1318–1325. [Google Scholar] [CrossRef]
- Liu, X.; Yang, B.; Liu, Q.; Gao, M.; Luo, M. The long-term neuroprotective effect of MIND and Mediterranean diet on patients with Alzheimer’s disease. Sci. Rep. 2025, 15, 32725. [Google Scholar] [CrossRef]
- Mafe, A.N.; Büsselberg, D. Could a Mediterranean Diet Modulate Alzheimer’s Disease Progression? The Role of Gut Microbiota and Metabolite Signatures in Neurodegeneration. Foods 2025, 14, 1559. [Google Scholar] [CrossRef]
- Bukhari, S.N.A. Dietary Polyphenols as Therapeutic Intervention for Alzheimer’s Disease: A Mechanistic Insight. Antioxidants 2022, 11, 554. [Google Scholar] [CrossRef] [PubMed]
- Abuznait, A.H.; Qosa, H.; Busnena, B.A.; El Sayed, K.A.; Kaddoumi, A. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: In vitro and in vivo studies. ACS Chem. Neurosci. 2013, 4, 973–982. [Google Scholar] [CrossRef]
- Papadaki, A.; Nolen-Doerr, E.; Mantzoros, C.S. The Effect of the Mediterranean Diet on Metabolic Health: A Systematic Review and Meta-Analysis of Controlled Trials in Adults. Nutrients 2020, 12, 3342. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef]
- Atabi, F.; Moassesfar, M.; Nakhaie, T.; Bagherian, M.; Hosseinpour, N.; Hashemi, M. A systematic review on type 3 diabetes: Bridging the gap between metabolic dysfunction and Alzheimer’s disease. Diabetol. Metab. Syndr. 2025, 17, 356. [Google Scholar] [CrossRef]
- Jia, J.; Ning, Y.; Chen, M.; Wang, S.; Yang, H.; Li, F.; Ding, J.; Li, Y.; Zhao, B.; Lyu, J.; et al. Biomarker Changes during 20 Years Preceding Alzheimer’s Disease. N. Engl. J. Med. 2024, 390, 712–722. [Google Scholar] [CrossRef]
- Yu, J.T.; Xu, W.; Tan, C.C.; Andrieu, S.; Suckling, J.; Evangelou, E.; Pan, A.; Zhang, C.; Jia, J.; Feng, L.; et al. Evidence-based prevention of Alzheimer’s disease: Systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1201–1209. [Google Scholar] [CrossRef]
- Mervosh, N.; Devi, G. Estrogen, menopause, and Alzheimer’s disease: Understanding the link to cognitive decline in women. Front. Mol. Biosci. 2025, 12, 1634302. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
Group | Biomarkers |
---|---|
A | Low Aβ42 or Aβ42/Aβ40 in CSF Cortical amyloid in PET |
T | High hyperphosphorylated tau (p-tau) in CSF Cortical tau in PET |
(N) | High total tau (t-tau) in CSF Hypometabolism in FDG-PET Atrophy in MRI |
Group | Biomarkers |
---|---|
A | Low Aβ42/Aβ40 in CSF Cortical amyloid in PET |
T1 | High p-tau181/Aβ42, t-tau/Aβ42 in CSF High p-tau217 in plasma |
T2 | High MTBR-tau243, other p-tau, mid-region tau fragments * in CSF Cortical tau in PET High MTBR-tau243, other p-tau in plasma |
(N) | High neurofilament light chain (NfL) in CSF or plasma Hypometabolism in FDG-PET Atrophy in MRI |
(I) | High glial fibrillary acidic protein (GFAP) in CSF or plasma |
(V) | Infarction White matter hyperintensity |
(S) | Synuclein seeding |
Author (Year) | Sample | Exposure (Instrument) | Outcomes (Modality) | Limitations |
---|---|---|---|---|
Mosconi et al. (2014) [34] | NYC n = 49 mean age = 54 69% female 39% APOE ε4 + | SFAs, MUFAs, ω-3, ω-6, β-carotene, B12, C, D, E, folate (SQ-FFQ) | ↑ B12, ↑ EPA → ↓ amyloid (imaging) | Temporality, residual confounding, recall bias, sample size, generalizability |
Berti et al. (2015) [35] | NYC n = 52 mean age = 54 71% female 47% APOE ε4 + | B + minerals, MUFAs + PUFAs + E, A + C + carotenoids + DF, B12 + D + Zn, SFA + trans-fat + chol + Na (SQ-FFQ) | ↑ B12 + D + Zn → ↓ amyloid (imaging) | Temporality, residual confounding, recall bias, sample size, generalizability |
Fernando et al. (2018) [36] | Australia n = 541 mean age = 70 59% female 26% APOE ε4 + | Protein, DF (SQ-FFQ) | ↓ protein → ↑ amyloid (imaging) No significant findings for AD hallmarks (plasma) | Temporality, residual confounding, recall bias, generalizability |
Vassilaki et al. (2018) [37] | Minnesota n = 278 mean age = 78 44% female 27% APOE ε4 + | Mediterranean diet (SQ-FFQ) | ↑ Mediterranean diet → ↓ amyloid (imaging) | Temporality, residual confounding, recall bias, generalizability |
Ma et al. (2020) [38] | China n = 722 mean age = 62 40% female 15% APOE ε4 + | Green tea (single question) | No significant findings for AD hallmarks (CSF) | Temporality, residual confounding, exposure assessed as frequency only, recall bias, generalizability |
Samuelsson et al. (2020) [39] | Sweden n = 269 age = 70 49% female 37% APOE ε4 + | Western diet, Mediterranean diet, High protein + alcohol, High total fat + SFA (diet history) | No significant findings for AD hallmarks (CSF) | Temporality, residual confounding, recall bias, generalizability |
Tian et al. (2020) [40] | China n = 131 mean age = ? ? % female ? % APOE ε4 + | Spicy foods (SQ-FFQ) | ↑ spicy food → ↑ Aβ42, ↓ t-tau/Aβ42, ↓ p-tau181/Aβ42 (CSF) | Temporality, residual confounding, sample size, recall bias, generalizability, Aβ42 is not in 2024 framework |
Chu et al. (2025) [41] | China n = 177 mean age = 65 56% female 28% APOE ε4 + | Daily fresh fruit, vegetables (SQ-questionnaire) | ↑ dark vegetables, ↑ grapes → ↓ p-tau181 (plasma) ↑ vegetables, ↑ berries, ↑ grapes → ↓ amyloid (imaging) ↑ fruit, ↑ grapes → ↓ tau (imaging) | Temporality, residual confounding, sample size, recall bias, generalizability |
Mrhar et al. (2025) [42] | Sweden n = 1907 age = 60+ 60% female 43% APOE ε4 + | Mediterranean diet, inflammatory level of the diet (SQ-FFQ) | ↑ Mediterranean diet → ↓ p-tau181 (plasma) | Temporality, residual confounding, sample size, recall bias, generalizability |
Author (Year) | ROIs |
---|---|
Mosconi et al. (2014) [34] | Inferior parietal lobe, lateral temporal lobe, medial frontal gyrus, posterior cingulate cortex, prefrontal cortex |
Berti et al. (2015) [35] | Inferior parietal, superior parietal, lateral temporal, medial temporal, posterior cingulate cortex, prefrontal cortex, striatum |
Fernando et al. (2018) [36] | Frontal, superior parietal, lateral temporal, and lateral occipital lobes; anterior and posterior cingulate cortex |
Vassilaki et al. (2018) [37] | Parietal and temporal lobes, prefrontal and orbitofrontal cortices, posterior cingulate cortex, precuneus |
Chu et al. (2025) [41] | Frontal gyrus, lateral parietal gyrus, lateral temporal gyrus, medial temporal gyrus, posterior cingulate gyrus, precuneus |
Author (Year) | Controlled Variables |
---|---|
Mosconi et al. (2014) [34] | Age, energy intake |
Berti et al. (2015) [35] | Sex, education, APOE ε4, ethnicity, BMI, family history, alcohol intake |
Fernando et al. (2018) [36] | Age, sex, education, APOE ε4, Australia vs. another country, BMI, energy intake |
Vassilaki et al. (2018) [37] | Age, sex, education, APOE ε4, time from FFQ to PET, energy intake |
Ma et al. (2020) [38] | Age, sex, education, APOE ε4, cognitive scores |
Samuelsson et al. (2020) [39] | Sex, education, BMI, energy intake, physical activity |
Tian et al. (2020) [40] | Age, sex, education |
Chu et al. (2025) [41] | Age, sex, education, APOE ε4 status, cognitive scores, BMI, smoking, alcohol intake, and history of hypertension, diabetes mellitus, hyperlipidemia, and coronary heart disease |
Mrhar et al. (2025) [42] | Age, sex, occupation, education, BMI, energy intake, physical activity level, smoking, and diagnosis with diabetes, hypertension, heart diseases, cerebrovascular disease, chronic lung disease, chronic kidney disease, anemia, cancer, depression and mood diseases |
Author (Year) | Sample | Exposure (Instrument) | Outcomes (Modality) | Limitations |
---|---|---|---|---|
Berti et al. (2018) [43] | NYC n = 70 mean age = 50 67% female 39% APOE ε4 + f/u = 3 years | Mediterranean diet (SQ-FFQ) | ↓ Mediterranean diet → ↑ amyloid (imaging) | Residual confounding, recall bias, sample size, duration of f/u, generalizability |
Rainey-Smith et al. (2018) [44] | Australia n = 77 mean age = 71 49% female 42% APOE ε4 + f/u = 3 years | Mediterranean diet (SQ-FFQ) | ↑ Mediterranean diet → ↓ amyloid (imaging) | Residual confounding, recall bias, sample size, duration of f/u, generalizability |
Chu et al. (2025) [41] | China n = 24 mean age = ? ? % female ? % APOE ε4 + f/u = 2.5 years | Daily fresh fruit, vegetables (SQ-questionnaire) | ↑ vegetables, ↑ berries → ↓ amyloid (imaging) No significant findings for AD hallmarks (plasma) | Residual confounding, recall bias, sample size, duration of f/u, generalizability |
Hoost et al. (2025) [45] | NYC n = 599 mean age = 74 70% female 25% APOE ε4 + f/u = 7 years | MUFAs, ω-3, ω-6 (SQ-FFQ) | Highest tertile for ω-3, ω-6 → ↓ p-tau181 (plasma) | Residual confounding, recall bias, duration of f/u, generalizability |
Rajendra et al. (2025) [46] | Australia n = 554 median age = 71 f/u = 10.5 years | Plant nitrate intake (SQ-FFQ) | Highest tertile for nitrate → ↓ amyloid among female APOE ε4 carriers (imaging) | Residual confounding, recall bias, loss of power due to stratification, duration of f/u, generalizability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harb, A.A.; Brock-Spano, K.A.; Silverman, J.R.; Thomas, J.R.; Pothen, A.S. The Relationship Between Diet and the Neuropathological Hallmarks of Alzheimer’s Disease in Cognitively Normal Adults: A Systematic Narrative Review. Healthcare 2025, 13, 2628. https://doi.org/10.3390/healthcare13202628
Harb AA, Brock-Spano KA, Silverman JR, Thomas JR, Pothen AS. The Relationship Between Diet and the Neuropathological Hallmarks of Alzheimer’s Disease in Cognitively Normal Adults: A Systematic Narrative Review. Healthcare. 2025; 13(20):2628. https://doi.org/10.3390/healthcare13202628
Chicago/Turabian StyleHarb, Amanda A., Kelly A. Brock-Spano, Jill R. Silverman, Jack R. Thomas, and Ashley S. Pothen. 2025. "The Relationship Between Diet and the Neuropathological Hallmarks of Alzheimer’s Disease in Cognitively Normal Adults: A Systematic Narrative Review" Healthcare 13, no. 20: 2628. https://doi.org/10.3390/healthcare13202628
APA StyleHarb, A. A., Brock-Spano, K. A., Silverman, J. R., Thomas, J. R., & Pothen, A. S. (2025). The Relationship Between Diet and the Neuropathological Hallmarks of Alzheimer’s Disease in Cognitively Normal Adults: A Systematic Narrative Review. Healthcare, 13(20), 2628. https://doi.org/10.3390/healthcare13202628