A Cluster Analysis of EPOCH Questionnaire Data from University Students in Sichuan, China: Exploring Group Differences in Psychological Well-Being and Demographic Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Questionnaire Introduction
2.3. Data Processing
3. Results
3.1. Overview of the Dataset
3.2. K-Means Clustering Results
4. Discussion
5. Conclusions
6. Limitations
7. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nahar, N.; Sheikh, M.J.; Parvin, M. Effect of Perceived Stress, Self-esteem and Loneliness, on Mental Well-being among University Students. Int. J. Indian Psychol. 2025, 13, 16–28. [Google Scholar] [CrossRef]
- Riva, E.; Freeman, R.; Schrock, L.; Jelicic, V.; Ozer, C.T.; Caleb, R. Student wellbeing in the teaching and learning environment: A study exploring student and staff perspectives. High. Educ. Stud. 2020, 10, 103. [Google Scholar] [CrossRef]
- Mancini, C.J.; Quilliam, V.; Camilleri, C.; Sammut, S. Spirituality and negative religious coping, but not positive religious coping, differentially mediate the relationship between scrupulosity and mental health: A cross-sectional study. J. Affect. Disord. Rep. 2023, 14, 100680. [Google Scholar] [CrossRef]
- Emmerton, R.W.; Camilleri, C.; Sammut, S. Continued deterioration in university student mental health: Inevitable decline or skirting around the deeper problems? J. Affect. Disord. Rep. 2024, 15, 100691. [Google Scholar] [CrossRef]
- Davis, T. What is Well-Being? Definition, Types, and Well-Being Skills. 2019. Available online: https://www.psychologytoday.com/us/blog/click-here-happiness/201901/what-is-well-being-definition-types-and-well-being-skills. (accessed on 5 June 2025).
- Zhu, J.; Liang, C.; Lucas, J.; Cheng, W.; Zhao, Z. The influence of income and social capital on the subjective well-being of elderly Chinese people, based on a panel survey. Sustainability 2020, 12, 4786. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Lu, N. Examination of the moderating role of household income in the association between cognitive social capital and subjective well-being among rural older adults in Northeast China. Res. Aging 2022, 44, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, D.; Chen, W.; Zhao, E.; Li, W.; Zhu, S.; Wu, X. Social capital, health status, and sociodemographic factors associated with subjective well-being among older adults: A comparative study of community dwellings and nursing homes. BMC Public. Health 2025, 25, 1259. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.I.; Hipp, J.R.; Butts, C.T. Does the spatial distribution of social ties impact neighborhood and city attachment? Differentials among urban/rural contexts. Soc. Netw. 2022, 68, 374–385. [Google Scholar] [CrossRef]
- Lee, R.M.; Dean, B.L.; Jung, K.R. Social connectedness, extraversion, and subjective well-being: Testing a mediation model. Pers. Individ. Differ. 2008, 45, 414–441. [Google Scholar] [CrossRef]
- Das, K.V.; Jones-Harrell, C.; Fan, Y.; Ramaswami, A.; Orlove, B.; Botchwey, N. Understanding subjective well-being: Perspectives from psychology and public health. Public. Health Rev. 2020, 41, 25. [Google Scholar] [CrossRef]
- Bhatnagar, T. Subjective Well-Being: Determinants and Correlates. In Subjective Well-Being in the Indian Context: Concept, Measure and Index; Springer: Singapore, 2023; pp. 25–53. [Google Scholar] [CrossRef]
- Kern, M.L.; Benson, L.; Steinberg, E.A.; Steinberg, L. The EPOCH Measure of Adolescent Well-Being. Psychol. Assess. 2016, 28, 586–597. [Google Scholar] [CrossRef]
- Kern, M.L.; Zeng, G.; Hou, H.; Peng, K. The chinese version of the EPOCH measure of adolescent well-being: Testing cross-cultural measurement invariance. J. Psychoeduc. Assess. 2019, 37, 757–769. [Google Scholar] [CrossRef]
- Choi, J.K.; Ryu, J.H.; Yang, Z. Validation of the engagement, perseverance, optimism, connectedness, and happiness measure in adolescents from multistressed families: Using first-and second-order confirmatory factor analysis models. J. Psychoeduc. Assess. 2021, 39, 494–507. [Google Scholar] [CrossRef]
- Buerger, S.; Holzer, J.; Yanagida, T.; Schober, B.; Spiel, C. Measuring adolescents’ well-being in schools: The adaptation and translation of the EPOCH measure of adolescent well-being—A validation study. Sch. Ment. Health 2023, 15, 611–626. [Google Scholar] [CrossRef]
- Zeng, G.; Kern, M.L. The chinese EPOCH measure of adolescent wellbeing: Further testing of the psychometrics of the measure. Front. Psychol. 2019, 10, 1457. [Google Scholar] [CrossRef]
- Illangasinghe, P.; Karunapema, P.; Jayaratne, K. Measuring adolescents’ wellbeing in Sri Lanka: Psychometric properties of the Sinhala version of EPOCH. J. Coll. Community Physicians Sri Lanka 2025, 31, 131–141. [Google Scholar] [CrossRef]
- Singh, G.K.; Shourie, S. Gender Differences in Academic Buoyancy and Well-being among Adolescents in Chandigarh. Indian J. Health Wellbeing 2025, 16, 56–62. [Google Scholar]
- Maurer, M. Well-Being Processes: Insights into Personal Growth and Adolescent Mental Health. Ph.D. Thesis, Lund University, Lund, Sweden, 2023. [Google Scholar]
- Wan, J.; Wee, L.H.; Siau, C.S.; Wong, Y.H. Psycho10.1007/s12310-023-09574-110.1007/s12310-023-09574-1logical well-being and its associated factors among university students in Sichuan, China. Front. Psychol. 2025, 6, 1473871. [Google Scholar] [CrossRef]
- Ntayagabiri, J.P.; Ndikumagenge, J.; Ndayisaba, L.; Philippe, B.K. Study on the development and implementation of different big data clustering methods. Open J. Appl. Sci. 2023, 13, 1163–1177. [Google Scholar] [CrossRef]
- Wang, F. College students’ mental health analysis based on clustering analysis algorithm. In Innovative Computing; Hung, J.C., Chang, J.-W., Pei, Y., Wu, W.-C., Eds.; Springer Nature: Singapore, 2022; pp. 1333–1341. [Google Scholar] [CrossRef]
- Ahmad, A.; Akbar, S.; Tahir, M.; Hayat, M.; Ali, F. iAFPs-EnC-GA: Identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approach. Chemom. Intell. Lab. Syst. 2022, 222, 104516. [Google Scholar] [CrossRef]
- Fang, Z.; Sim, N. Does lifelong learning matter for the subjective wellbeing of the elderly? A machine learning analysis on Singapore data. PLoS ONE 2024, 19, e0303478. [Google Scholar] [CrossRef]
- Tariq, M.U. AI-powered breakthroughs: Revolutionizing cognitive psychology and neuropsychology with machine learning. In Transforming Neuropsychology and Cognitive Psychology with AI and Machine Learning; IGI Global: Hershey, PA, USA, 2025; pp. 65–92. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Pegado-Bardayo, A.; Lorenzo-Espejo, A.; Muñuzuri, J.; Escudero-Santana, A. A review of unsupervised k-value selection techniques in clustering algorithms. J. Ind. Eng. Manag. 2024, 17, 641. [Google Scholar] [CrossRef]
- Liu, Y. Analysis and prediction of college students’ mental health based on K-means clustering algorithm. Appl. Math. Nonlinear Sci. 2022, 7, 501–512. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, Y.; Chen, J. Research on mental health education of college students based on k-means algorithm. In Proceedings of the 2025 IEEE 8th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 March 2025; Volume 8, pp. 1164–1171. [Google Scholar] [CrossRef]
- Septiadi, A.; Prasetyo, M.A.W. Clustering Sleep Patterns and Health Metrics Using K-Means Algorithm to Identify Profiles of Sleep Quality and Well-being in a Diverse Population. Int. J. Account. Inf. Manag. 2025, 5, 125–138. [Google Scholar] [CrossRef]
- Talasbek, A.; Serek, A.; Zhaparov, M.; Yoo, S.-M.; Kim, Y.-K.; Jeong, G.-H. Personality classification by applying k-means clustering. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 421–426. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, T.; Xu, J. Family socioeconomic status and internalizing problem behavior among chinese adolescents: The chain mediation effect of academic performance and peer conflict. Front. Psychol. 2022, 13, 902545. [Google Scholar] [CrossRef]
- Kang, W.; Steffens, F.; Pineda, S.; Widuch, K.; Malvaso, A. Personality traits and dimensions of mental health. Sci. Rep. 2023, 13, 7091. [Google Scholar] [CrossRef]
- Golzar, J.; Noor, S.; Tajik, O. Convenience sampling. Int. J. Educ. Lang. Stud. 2022, 1, 72–77. [Google Scholar] [CrossRef]
- Chen, M.; Liao, X.; Xie, H. Cross-sectional study of workplace violence on work engagement among Chinese nurses: The mediating role of psychological resilience. BMJ Open 2025, 15, e086006. [Google Scholar] [CrossRef]
- Alinejad, N.; Khosromanesh, F.; Bijani, M.; Taghinezhad, A.; Khiyali, Z.; Dehghan, A. Spiritual well-being, resilience, and health-promoting lifestyle among older adult hypertensive patients: A cross-sectional study. BMC Geriatr. 2025, 25, 265. [Google Scholar] [CrossRef]
- Yang, F.; Xu, K.; Huang, Y.; Pu, K.; Lin, J. Healthy lifestyle promote Chinese university students’ well-being: A cross-sectional network analysis. BMC Public Health 2025, 25, 1770. [Google Scholar] [CrossRef]
- Gu, Z.; Yang, C.; Li, M. Impact of the five-pattern personality traits of traditional Chinese medicine on workplace violence and depression among nurses. BMC Nurs. 2025, 24, 68. [Google Scholar] [CrossRef]
- Newman, A.; Bavik, Y.L.; Mount, M.; Shao, B. Data collection via online platforms: Challenges and recommendations for future research. Appl. Psychol. 2021, 70, 1380–1402. [Google Scholar] [CrossRef]
- Sreekanthaswamy, N.; Anitha, S.; Singh, A.; Jayadeva, S.M.; Gupta, S.; Manjunath, T.C.; Selvakumar, P. Digital tools and methods. In Enhancing School Counseling with Technology and Case Studies; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 25–48. [Google Scholar] [CrossRef]
- Government of the People’s Republic of China. Notice on the Issuance of the Measures for the Administration of Student Financial Assistance Funds. 2019. Available online: https://www.gov.cn/xinwen/2019-04/21/content_5384872.htm (accessed on 5 June 2025).
- Ministry of Finance of the People’s Republic of China. Notice on the Revision of the Measures for the Administration of Student Financial Assistance Funds. 2021. Available online: https://www.gov.cn/zhengce/2021-12/30/content_5665004.htm (accessed on 5 June 2025).
- National Bureau of Statistics of China. Households’ Income and Consumption Expenditure in the First Half of 2023. 2023. Available online: https://www.stats.gov.cn/sj/zxfb/202307/t20230715_1941274.html (accessed on 5 June 2025).
- Maurer, M.M.; Daukantaitė, D.; Hoff, E. Testing the psychometric properties of the Swedish version of the EPOCH measure of adolescent well-being. PLoS ONE 2021, 16, e0259191. [Google Scholar] [CrossRef]
- Bertrand, C.; Steinberg, L.; Duell, N.; Di Giunta, L.; Dodge, K.A.; Gurdal, S.; Junla, D.; Lansford, J.E.; Oburu, P.; Pastorelli, C.; et al. Physical activity and two-year change in adolescent well-being in nine countries. J. Res. Adolesc. 2025, 35, e70035. [Google Scholar] [CrossRef]
- Swanson, K.; Wu, E.; Zhang, A.; Alizadeh, A.A.; Zou, J. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 2023, 186, 1772–1791. [Google Scholar] [CrossRef]
- Guerrero, C.; Puig, N.; Cedena, M.-T.; Goicoechea, I.; Perez, C.; Garcés, J.-J.; Botta, C.; Calasanz, M.-J.; Gutierrez, N.C.; Martin-Ramos, M.-L.; et al. A machine learning model based on tumor and immune biomarkers to predict undetectable MRD and survival outcomes in multiple myeloma. Clin. Cancer Res. 2022, 28, 2598–2609. [Google Scholar] [CrossRef]
- Bagirov, A.M.; Aliguliyev, R.M.; Sultanova, N. Finding compact and well-separated clusters: Clustering using silhouette coefficients. Pattern Recognit. 2023, 135, 109144. [Google Scholar] [CrossRef]
- Xiao, J.; Teng, H.; Wang, H.; Tan, J. Psychological emotions-based online learning grade prediction via BP neural network. Front. Psychol. 2022, 13, 981561. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Purkayastha, N.; Chaurasia, H.; Muhammad, T. Socioeconomic inequality in psychological distress among older adults in India: A decomposition analysis. BMC Psychiatry 2021, 21, 179. [Google Scholar] [CrossRef] [PubMed]
- Adiba, F.; Siswanto, S. Evaluation of the clustering results in dermatology data using the Silhouette coefficient. AIP Conf. Proc. 2024, 2774, 060004. [Google Scholar] [CrossRef]
- Välimäki, A. Customer Segmentation Using Two-Stage Clustering: A Case Study in the Banking Sector. 2025. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1987598&dswid=-5074 (accessed on 5 June 2025).
- Xia, H.; Chen, L.; Wang, D.; Lu, X. Improved Denclue outlier detection algorithm with differential privacy and attribute fuzzy priority relation ordering. IEEE Access 2023, 11, 90283–90297. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, P. Effect of college students’ academic stress on anxiety under the background of the normalization of COVID-19 pandemic: The mediating and moderating effects of psychological capital. Front. Psychol. 2022, 13, 880179. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Chen, G.; Yang, J. Being an only child and children’s prosocial behaviors: Evidence from rural China and the role of parenting styles. Humanit. Soc. Sci. Commun. 2024, 11, 551. [Google Scholar] [CrossRef]
- Wu, X.; Kim, K.Y.; Jian, Z. Potential categories of employment stress among rural college students and their relationship to employment psychology. Front. Psychol. 2024, 15, 1363065. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.R.; Khanam, S.J. Relationship of academic performance and well-being in university students. Pak. J. Med. Res. 2017, 56, 126–130. [Google Scholar]
- Mahdavi, P.; Valibeygi, A.; Moradi, M.; Sadeghi, S. Relationship between achievement motivation, mental health and academic success in university students. Community Health Equity Res. Policy 2023, 43, 311–317. [Google Scholar] [CrossRef]
- Seligman, M.E.P. Flourish: A Visionary New Understanding of Happiness and Well-Being; Simon and Schuster: New York, NY, USA, 2011. [Google Scholar]
- Cebral-Loureda, M.; Tamés-Muñoz, E.; Hernández-Baqueiro, A. The fertility of a concept: A bibliometric review of human flourishing. Int. J. Environ. Res. Public Health 2022, 19, 2586. [Google Scholar] [CrossRef]
- Fowers, B.J.; Novak, L.F.; Calder, A.J.; Kiknadze, N.C. Can a theory of human flourishing be formulated? Toward a science of flourishing. Rev. Gen. Psychol. 2024, 28, 123–142. [Google Scholar] [CrossRef]
- Carver, C.S.; Scheier, M.F.; Segerstrom, S.C. Optimism. Clin. Psychol. Rev. Nov. 2010, 30, 879–889. [Google Scholar] [CrossRef]
- Tarrats-Pons, E.; Mussons-Torras, M.; Jiménez-Pérez, Y. Efficacy of a Positive Psychology Intervention in Enhancing Optimism and Reducing Depression Among University Students: A Quasi-Experimental Study. Behav. Sci. 2025, 15, 571. [Google Scholar] [CrossRef]
- Kaya, M.; Erdem, C. Students’ well-being and academic achievement: A meta-analysis study. Child Indic. Res. 2021, 14, 1743–1767. [Google Scholar] [CrossRef]
- Seligman, M.E.; Ernst, R.M.; Gillham, J.; Reivich, K.; Linkins, M. Positive education: Positive psychology and classroom interventions. Oxf. Rev. Educ. 2009, 35, 293–311. [Google Scholar] [CrossRef]
- Xu, G.; Liu, Y.; Tu, Z.; Yang, X. A Study on the Differences in Parental Educational Expectations and Adolescents’ Academic and Psychological Development: A Comparative Analysis of Only Children and multiple childrenren. Behav. Sci. 2025, 15, 402. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Chen, M. Parental involvement and students’ academic achievement: A meta-analysis. Educ. Psychol. Rev. 2001, 13, 1–22. [Google Scholar] [CrossRef]
- Chi, X.; Huang, L.; Wang, J.; Zhang, P. The prevalence and socio-demographic correlates of depressive symptoms in early adolescents in China: Differences in only child and multiple children groups. Int. J. Environ. Res. Public Health 2020, 17, 438. [Google Scholar] [CrossRef] [PubMed]
- Rao, W.W.; He, F.; Qi, Y.; Lok, G.K.I.; Jackson, T.; Zheng, Y.; Xiang, Y.T. Mental health among school children and adolescents in China: A comparison of one-child and multiple-children families from a nationwide survey. Asian J. Psychiatry 2024, 100, 104130. [Google Scholar] [CrossRef]
- Carlo, G.; Mestre, M.V.; Samper, P.; Tur, A.; Armenta, B.E. The longitudinal relations among dimensions of parenting styles, sympathy, prosocial moral reasoning, and prosocial behaviors. Int. J. Behav. Dev. 2011, 35, 116–124. [Google Scholar] [CrossRef]
- Wolke, D.; Skew, A.J. Bullying among siblings. Int. J. Adolesc. Med. Health 2012, 24, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, Q. Who benefits from being an only child? A study of parent–child relationship among Chinese junior high school students. Front. Psychol. 2021, 11, 608995. [Google Scholar] [CrossRef]
- Ke, T.; Li, W.; Sanci, L.; Reavley, N.; Williams, I.; Russell, M.A. The mental health of international university students from China during the COVID-19 pandemic and the protective effect of social support: A longitudinal study. J. Affect. Disord. 2023, 328, 13–21. [Google Scholar] [CrossRef]
- Kent, K.; Visentin, D.; Peterson, C.; Primo, C.; Elliott, C.; Otlowski, M.; Murray, S. The perceived importance and intended purchasing patterns of sustainable foods in Australian university students. Sustainability 2021, 13, 11928. [Google Scholar] [CrossRef]
- Russell, J.; Austin, K.; Charlton, K.E.; Igwe, E.O.; Kent, K.; Lambert, K.; O’flynn, G.; Probst, Y.; Walton, K.; McMahon, A.T. Exploring financial challenges and university support systems for student financial Well-Being: A scoping review. Int. J. Environ. Res. Public. Health 2025, 22, 356. [Google Scholar] [CrossRef] [PubMed]
- Khlaif, Z.N.; Salha, S.; Kouraichi, B. Emergency remote learning during COVID-19 crisis: Students’ engagement. Educ. Inf. Technol. 2021, 26, 7033–7055. [Google Scholar] [CrossRef]
- Cárdenas, D.; Lattimore, F.; Steinberg, D.; Reynolds, K.J. Youth well-being predicts later academic success. Sci. Rep. 2022, 12, 2134. [Google Scholar] [CrossRef]
- Moore, A.; Nguyen, A.; Rivas, S.; Bany-Mohammed, A.; Majeika, J.; Martinez, L. A qualitative examination of the impacts of financial stress on college students’ well-being: Insights from a large, private institution. SAGE Open Med. 2021, 9, 20503121211018122. [Google Scholar] [CrossRef]
- Salazar-Fernandez, J.P.; Munoz-Gama, J.; Sepúlveda, M. Implications of losing a need- and merit-based scholarship on the educational trajectory: A curricular analytics approach. High. Educ. 2025, 89, 441–464. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Li, J.; Xuan, C.; Du, X.; Jiang, C.; Wang, X. A survey on improving core literacy among impoverished students in Chinese pharmaceutical universities under a development-oriented funding system. BMC Med. Educ. 2024, 24, 1384. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Ma, Q.; Ji, X. The influence of financial aid systems on student academic development in higher education in China. Sustainability 2022, 14, 14068. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Gao, W. Subjective well-being of college students: Developmental trajectories, predictors, and risk for depression. J. Psychol. Afr. 2024, 34, 477–486. [Google Scholar] [CrossRef]
- No, L. Gender Differences in Dropout Rates Across Course Types in Higher Education. SSRN 5024031 2024. 2024. Available online: https://ssrn.com/abstract=5024031 (accessed on 5 June 2025).
- Bouchrika, I. College Dropout Rates: 2025 Statistics by Race, Gender & Income. College Dropout Rates: 2025 Statistics by Race, Gender & Income. 2025. Available online: https://research.com/universities-colleges/college-dropout-rates (accessed on 5 June 2025).
- Aashiq, I.; Zeb, I.; Yan, Z.; Tahir, A.; Nazneen, A. The impact of socioeconomic Status on students’ academic achievement. Int. J. Nov. Res. Educ. Learn. 2023, 10, 39–46. [Google Scholar] [CrossRef]
- Munir, J.; Faiza, M.; Jamal, B.; Daud, S.; Iqbal, K. The impact of socio-economic status on academic achievement. J. Soc. Sci. Rev. 2023, 3, 695–705. [Google Scholar] [CrossRef]
- Chzhen, Y.; Leesch, J. Why does school socio-economic composition matter to adolescents’ academic performance? Role of classroom climate and school resources. Br. Educ. Res. J. 2023, 49, 1291–1311. [Google Scholar] [CrossRef]
- Allen, K.A.; Kern, M.L.; Rozek, C.S.; McInerney, D.M.; Slavich, G.M. Belonging: A review of conceptual issues, an integrative framework, and directions for future research. Aust. J. Psychol. 2021, 73, 87–102. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Lv, M.; Cheng, Z.; Tao, Y. The influence of interpersonal relationships on college students’ physical activity: Chain-mediated effects of social support and exercise motivation. Front. Psychol. 2025, 16, 1567122. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S.; Deng, H.; Yuan, C.; Yang, Z. Influence of interpersonal relationship on subjective well-being of college students: The mediating role of psychological capital. PLoS ONE 2024, 19, e0293198. [Google Scholar] [CrossRef]
- Byl, E.; Topping, K.J.; Struyven, K.; Engels, N. Peer interaction types for social and academic integration and institutional attachment in first year undergraduates. In The Power of Peer Learning: Fostering Students’ Learning Processes and Outcomes; Springer International Publishing: Champaign, IL, USA, 2023; pp. 305–323. [Google Scholar] [CrossRef]
- Joo, J.H.; Bone, L.; Forte, J.; Kirley, E.; Lynch, T.; Aboumatar, H. The benefits and challenges of established peer support programmes for patients, informal caregivers, and healthcare providers. Fam. Pract. 2022, 39, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.K.; Thompson, M.; Falik, R.; Shaw, A.; O’Sullivan, P.; Lowenstein, D.H. Mental illness among us: A new curriculum to reduce mental illness stigma among medical students. Acad. Psychiatry 2014, 37, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Saheb, R.; Mortimer, T.; Rutherford, E.; Sperandei, S.; Reis, A. Creating Healthy Universities: The role of campus-based health promotion events in supporting student well-being. Health Promot. J. Aust. 2021, 32, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Sotardi, V.A. Four Pillars of Help-Seeking Attitudes: Emotional, Societal, Cognitive, and Relational Insights From New Zealand Youth. J. Adolesc. Res. 2024. [Google Scholar] [CrossRef]
- Szkody, E.; Steele, E.H.; McKinney, C. Race and gender: Perception and reception of support from family and friends. Transl. Issues Psychol. Sci. 2021, 7, 435. [Google Scholar] [CrossRef]
- Canedo-García, A.; García-Sánchez, J.N. Exploring the instrumental and emotional supports for sustainability and social participation. Sustainability 2022, 14, 10377. [Google Scholar] [CrossRef]
- Hidayat, M.B.; Toybah, N. Gender Differences in Coping Strategies for Marital Stress: The Role of Marital Satisfaction and Implications for Counseling. Acta Psychol. 2025, 3, 171–180. [Google Scholar]
- Zaman, A.; Bibi, K.; Asif, M.; Arif, M.B.; Dino, R.; Khan, N. Understanding Gender-Based Differences in Coping Mechanisms and Social Support Among Adolescents in Chitral. J. Soc. Signs Rev. 2025, 3, 213–226. [Google Scholar]
- Jaye, C.; McHugh, J.; Doolan-Noble, F.; Wood, L. Wellbeing and health in a small New Zealand rural community: Assets, capabilities and being rural-fit. J. Rural. Stud. 2022, 92, 284–293. [Google Scholar] [CrossRef]
- Wang, J.; Jia, W. Resources allocation and utilization efficiency in China’s healthcare sector. China Financ. Econ. Rev. 2021, 10, 88–109. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Y.; Chen, Y.; Zhou, M. Healthcare resource allocation and patient choice: Evidence from rural China. Int. J. Equity Health 2025, 24, 87. [Google Scholar] [CrossRef]
- Song, Z. Disparity in educational resources between urban and rural areas in China. J. Adv. Res. Educ. 2023, 2, 64–69. [Google Scholar] [CrossRef]
- Cruz-Soto, M.; Baeza-Torres, E.S.; Castañeda Pelaez, L.; Rojas Jaimes, J.; Palacios-Delgado, J. Trajectories of Emotional Exhaustion and Their Contribution to Depression: Optimism as a Buffer in Young People. Brain Sci. 2025, 15, 656. [Google Scholar] [CrossRef]
- Palacios-Delgado, J.; Acosta-Beltrán, D.B.; Acevedo-Ibarra, J.N. How important are optimism and coping strategies for mental health? Effect in reducing depression in young people. Psychiatry Int. 2024, 5, 532–543. [Google Scholar] [CrossRef]
Dimensions | Questions | Total (Mean ± SD) | |||
---|---|---|---|---|---|
Connectedness | C1 | C2 | C3 | C4 | 3.63 ± 0.86 |
3.52 ± 1.12 | 3.39 ± 1.0 | 3.82 ± 0.99 | 3.77 ± 1.04 | ||
Perseverance | P1 | P2 | P3 | P4 | 3.24 ± 0.81 |
3.42 ± 0.95 | 3.16 ± 1.04 | 3.31 ± 0.96 | 3.08 ± 1.01 | ||
Optimism | O1 | O2 | O3 | O4 | 3.33 ± 0.89 |
3.27 ± 1.06 | 3.28 ± 1.13 | 3.39 ± 1.1 | 3.37 ± 1.01 | ||
Happiness | H1 | H2 | H3 | H4 | 3.48 ± 1.03 |
3.38 ± 1.0 | 3.31 ± 1.01 | 3.55 ± 0.99 | 3.48 ± 1.03 | ||
Engagement | E1 | E2 | E3 | E4 | 3.31 ± 0.82 |
3.39 ± 0.98 | 3.31 ± 0.96 | 3.32 ± 0.95 | 3.22 ± 0.97 | ||
Note: Standard deviation = SD |
Variable | Connectedness | Perseverance | Optimism | Happiness | Engagement |
---|---|---|---|---|---|
Gender | |||||
Correlation value | 0.23 | 0.00 | 0.08 | 0.12 | 0.01 |
p-value | <0.001 | 0.941 | <0.001 | <0.001 | 0.657 |
Grade | |||||
Correlation value | −0.07 | −0.04 | −0.10 | −0.12 | −0.08 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Only Child | |||||
Correlation value | −0.07 | −0.05 | −0.06 | −0.05 | −0.05 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Household registration | |||||
Correlation value | 0.11 | 0.06 | 0.09 | 0.07 | 0.06 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Financial | |||||
Correlation value | 0.07 | 0.02 | 0.05 | 0.06 | 0.04 |
p-value | <0.001 | 0.161 | 0.004 | <0.001 | 0.15 |
Domestic average income | |||||
Correlation value | 0.18 | 0.11 | 0.12 | 0.13 | 0.11 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Dimensions | Questions | Total | |||
---|---|---|---|---|---|
Connectedness | C1 | C2 | C3 | C4 | Mean ± SD |
Cluster 0 | 4.21 ± 0.80 | 4.13 ± 0.62 | 4.53 ± 0.40 | 4.50 ± 0.46 | 4.34 ± 0.30 |
Cluster 1 | 3.04 ± 1.03 | 2.88 ± 0.62 | 3.33 ± 0.81 | 3.26 ± 0.88 | 3.13 ± 0.46 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Effect Size | d = 1.201 | d = 1.586 | d = 1.495 | d = 1.467 | d = 1.934 |
Perseverance | P1 | P2 | P3 | P4 | Mean ± SD |
Cluster 0 | 4.00 ± 0.67 | 3.77 ± 0.99 | 3.95 ± 0.76 | 3.71 ± 0.91 | 3.86 ± 0.47 |
Cluster 1 | 3.01 ± 0.67 | 2.73 ± 0.68 | 2.87 ± 0.55 | 2.64 ± 0.62 | 2.81 ± 0.32 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Effect Size | d = 1.205 | d = 1.167 | d = 1.359 | d = 1.245 | d = 1.688 |
Optimism | O1 | O2 | O3 | O4 | Mean ± SD |
Cluster 0 | 4.08 ± 0.70 | 3.97 ± 0.98 | 4.22 ± 0.74 | 4.14 ± 0.60 | 4.10 ± 0.38 |
Cluster 1 | 2.70 ± 0.64 | 2.80 ± 0.92 | 2.82 ± 0.73 | 2.83 ± 0.60 | 2.79 ± 0.36 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Effect Size | d = 1.703 | d = 1.199 | d = 1.641 | d = 1.701 | d = 2.162 |
Happiness | H1 | H2 | H3 | H4 | Mean ± SD |
Cluster 0 | 4.16 ± 0.54 | 4.12 ± 0.60 | 4.36 ± 0.44 | 4.31 ± 0.50 | 4.24 ± 0.33 |
Cluster 1 | 2.84 ± 0.58 | 2.75 ± 0.54 | 2.98 ± 0.60 | 2.90 ± 0.61 | 2.87 ± 0.37 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Effect Size | d = 1.764 | d = 1.820 | d = 1.887 | d = 1.877 | d = 2.299 |
Engagement | E1 | E2 | E3 | E4 | Mean ± SD |
Cluster 0 | 4.03 ± 0.70 | 3.97 ± 0.67 | 3.98 ± 0.67 | 3.87 ± 0.81 | 3.96 ± 0.44 |
Cluster 1 | 2.94 ± 0.65 | 2.85 ± 0.59 | 2.86 ± 0.56 | 2.77 ± 0.53 | 2.86 ± 0.34 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Effect Size | d = 1.336 | d = 1.420 | d = 1.432 | d = 1.362 | d = 1.797 |
Dimensions | Mean Score (Students of Concern) | Mean Score (Overall Students) | Mean Difference | p-Value |
---|---|---|---|---|
Engagement | 3.10 ± 0.80 | 3.31 ± 0.82 | −0.21 | 0.016 |
Perseverance | 2.99 ± 0.78 | 3.24 ± 0.81 | −0.25 | 0.002 |
Optimism | 3.02 ± 0.86 | 3.33 ± 0.89 | −0.31 | <0.001 |
Connectedness | 3.20 ± 0.81 | 3.63 ± 0.86 | −0.43 | <0.001 |
Happiness | 3.21 ± 0.80 | 3.78 ± 0.92 | −0.57 | <0.001 |
Dimensions | Mean Score (Well-Being Students) | Mean Score (Overall Students) | Mean Difference | p-Value |
---|---|---|---|---|
Engagement | 3.57 ± 0.93 | 3.31 ± 0.82 | +0.26 | 0.005 |
Perseverance | 3.53 ± 0.88 | 3.24 ± 0.81 | +0.29 | <0.001 |
Optimism | 3.77 ± 0.9 | 3.33 ± 0.89 | +0.44 | <0.001 |
Connectedness | 4.32 ± 0.73 | 3.63 ± 0.86 | +0.69 | <0.001 |
Happiness | 4.43 ± 0.86 | 3.78 ± 0.92 | +0.65 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Ren, L.; Tan, Y.; Wong, Y.H.; Siau, C.S.; Wee, L.H. A Cluster Analysis of EPOCH Questionnaire Data from University Students in Sichuan, China: Exploring Group Differences in Psychological Well-Being and Demographic Factors. Healthcare 2025, 13, 2476. https://doi.org/10.3390/healthcare13192476
Wan J, Ren L, Tan Y, Wong YH, Siau CS, Wee LH. A Cluster Analysis of EPOCH Questionnaire Data from University Students in Sichuan, China: Exploring Group Differences in Psychological Well-Being and Demographic Factors. Healthcare. 2025; 13(19):2476. https://doi.org/10.3390/healthcare13192476
Chicago/Turabian StyleWan, Juan, Lijuan Ren, Yufei Tan, Yin How Wong, Ching Sin Siau, and Lei Hum Wee. 2025. "A Cluster Analysis of EPOCH Questionnaire Data from University Students in Sichuan, China: Exploring Group Differences in Psychological Well-Being and Demographic Factors" Healthcare 13, no. 19: 2476. https://doi.org/10.3390/healthcare13192476
APA StyleWan, J., Ren, L., Tan, Y., Wong, Y. H., Siau, C. S., & Wee, L. H. (2025). A Cluster Analysis of EPOCH Questionnaire Data from University Students in Sichuan, China: Exploring Group Differences in Psychological Well-Being and Demographic Factors. Healthcare, 13(19), 2476. https://doi.org/10.3390/healthcare13192476